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Abstract 

The impact of transport accessibility on land and property values and development densities 
is well known and widely acknowledged among practitioners and researchers in land use and 
transport planning. Quantitative methods to examine and predict these impacts are becoming 
increasingly relevant in the Australian context. This paper uses a hedonic regression to 
explore the impacts of car, public transport and walk accessibility on residential property 
sales values in Melbourne, Australia. The analysis controls for a number of other known 
drivers of property values. The analysis also accounts for spatial autocorrelation. A spatial 
autoregressive maximum likelihood model for house sale prices between 2012 and 2016 is 
presented. Accessibility metrics are measured on a scale of 0 to 1. Each 0.1 increase in car, 
public transport and walk accessibility is associated with a 6.8%, 0.4% and 0.9% increase in 
house sale values respectively. 

1. Introduction 

The impact of transport accessibility on land use is well understood and widely 
acknowledged among transport and land use planners in government, academia and 
consulting. The concept of accessibility and its impact on land use was first popularised in the 
seminal 1959 paper “How accessibility shapes land use” by American planner Walter G. 
Hansen (Hansen, 1959). 

Despite this, most project appraisals for major infrastructure projects assume no change in 
land use between Base and Project Case. For major projects, this is a limitation which has the 
potential to bias evidence used to select and justify projects. 

The “city-shaping” influence of major infrastructure projects is growing in recognition and is 
beginning to influence investment cases. Infrastructure Australia now requires proponents to 
consider tolling or value capture mechanisms in business cases for initiatives and projects to 
be considered for the Infrastructure Priority List (Infrastructure Australia, 2017). This 
recognises the impact that transport infrastructure has on land and property values. 

In addition, the existence of “wider economic benefits” (WEBs) of transport projects is 
gaining recognition in Australia. The Australian Transport Assessment and Planning (ATAP) 
Guidelines are in the process of preparing guidelines for the estimation of WEBs in 
Australian cities. Some categories of WEB require the estimation of land use changes 
induced by a transport infrastructure project, including “WB1: agglomeration economies” 
(cluster effects) and “WB2b: move to more productive jobs” (KPMG, 2017). 
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Land use changes can be estimated using a “land use transport interaction” (LUTI) model. 
The estimation of changes in land and property values are a key component of LUTI models. 
The UrbanSim framework is commonly used for LUTI modelling in the USA and Europe. In 
addition to the transport model, UrbanSim implementations commonly include hedonic price 
modules to represent property values, “relocation and transition” modules to represent 
changes in population and employment, “location choice” modules to represent consumers’ 
and businesses’ location decisions and a “developer activity” module to represent supply 
decisions made by developers (Waddell, 2011). The function of the hedonic pricing module 
within a LUTI model framework is to mediate changes in land use – attractive areas increase 
in value, which puts a ‘brake’ on additional development. 

The objective of this work is to specify a residential hedonic pricing regression for assessing 
the impact of transport accessibility on land and property values in Melbourne, Australia. A 
hedonic pricing approach separates the various components that drive property values. It 
assumes that different attributes of a property (e.g. number of bedrooms, accessibility to jobs) 
have a cumulative effect on the property value. The work is intended to be able to be applied 
for value capture analysis and as a component for LUTI models. 

The remainder of this paper is structured as follows: 
 Literature Review 
 Methodology 
 Results 
 Discussion 
 Conclusion and next steps 

2. Literature review 

2.1 Accessibility and property values 

Accessibility can be defined as the ‘potential of opportunities for interaction’ (Hansen, 1959). 
In this context, accessibility represents the extent to which a person, at a given place and 
time, has the ability to access opportunities that they want or need to access. For example, 
employment is a specific type of opportunity that many people seek access to. Other 
opportunities include health services, education, social, recreational and leisure activities. 
Individuals seek out, and derive utility from, accessibility to opportunities.  

The common maxim in real estate “location, location, location” reflects the importance 
people assign to accessibility in forming preferences about where to purchase property. Well 
located properties are valuable in large part because they provide residents with high quality 
access to opportunities (e.g. jobs and services). 

2.2 Cross-sectional and longitudinal analyses 

A large body of research exists exploring the relationship between accessibility and the value 
of land and property. There is significant evidence that accessibility contributes positively to 
property values.  

Existing studies can be divided into two broad categories: 
 Cross-sectional analyses consider how property values correlate with accessibility at a 

single point in time. The ability to draw conclusions about the direction of causality is 
limited in cross-sectional analyses. 
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 Longitudinal analyses consider how changes in property values relate to changes in 
accessibility at a given location (for example due to a new public transport corridor) over 
two or more points in time. Longitudinal analyses provide a more robust basis for 
inferring the causal relationship between accessibility and property values. 

While longitudinal analyses are theoretically preferable, lack of availability of accurate and 
consistent data for the performance of transport networks at a local level over time can limit 
the ability for researchers to conduct this type of analysis. As a result, cross-sectional 
analyses are more common. In the era of smart phones and “big data”, the availability of high 
quality time series transport network performance data is likely to increase in coming years. 
This may improve the capacity of researchers to undertake longitudinal analyses. 

Evidence of a positive relationship between accessibility and property values exists for both 
cross-sectional (LUTI Mecone, 2016; Iacono & Levinson, 2017; Giuliano, et al., 2010; 
Martinez & Viegas, 2009; Armstrong & Rodriguez, 2006; Srour, et al., 2002) and 
longitudinal analyses (LUTI Mecone, 2016; Mulley, 2014; Boucq, 2007).  

Iacono & Levinson (2017) found positive impacts of accessibility (using a cumulative 
opportunities measure) on property values for a cross-sectional analysis. However, this effect 
was not apparent when a longitudinal analysis was undertaken using the same data. It was 
postulated that this may be due to diminishing returns of marginal accessibility improvements 
in mature networks. The use of accessibility measures with a saturation function as proposed 
by Espada & Luk (2011) may be useful to control for this effect, as these measures explicitly 
account for diminishing marginal returns of improved accessibility. 

2.3 Measuring accessibility 

Geurs and van Wee (2004) identified four components that are theoretically important to be 
included in an accessibility measure: 

 The land-use component refers to the spatial distribution and quality of opportunities. 
 The transportation component refers to the disutility experienced in travelling from a 

given location to a relevant opportunity. Measures of disutility may include travel time, 
costs and perceived inconveniences like transfers. 

 The temporal component refers to the availability of opportunities at different times of 
day, and the time available for people to participate in those opportunities. 

 The individual component refers to the needs and preferences of different individuals. For 
example, how far a person is willing to travel, their car availability or their level of 
education and skill in assessing which employment opportunities are available to them. 

Numerous accessibility metrics have been defined and measured for various purposes. Geurs 
& van Wee (2004) characterise four types of accessibility measures: 

 Infrastructure-based measures consider the performance of a specific piece of 
infrastructure. For example, “level of service” and “average speed”. 

 Location-based measures consider the array of opportunities available from a given 
location. For example, “number of jobs within 30 minutes”. 

 Person-based measures consider the opportunities available to a given individual at a 
given time. 

 Utility-based measures consider the economic benefit that people derive from access to 
opportunities. 
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Location-based measures are appropriate for considering the impact of accessibility on land 
and property values and development densities, as land use is fixed in location by its nature, 
and may be used by a variety of individuals. 

Espada & Luk (2011) developed a location-based accessibility metric suitable for Melbourne 
known as the ARRB Accessibility Metric (AAM).  The AAM is an example of a ‘cumulative 
opportunities’ measure. Cumulative opportunities measures consider the number of 
opportunities (potential destinations) available from a given origin, typically weighted by an 
impedance decay. The AAM is similar to other cumulative opportunities accessibility 
measures used in the literature (e.g. Anderson et al. 2013, Melo et al. 2017). The AAM meets 
all four of the criteria for a theoretically robust accessibility measure as defined by Geurs and 
van Wee (2004). 

The AAM uses a ‘deterrence function’ to reflect that the value of an opportunity declines as 
the travel impedance between a given origin and that opportunity increases. For example, a 
job accessible within 30 minutes is ‘worth more’ than a job that is accessible in 60 minutes, 
but both jobs have opportunity value. 

Another key feature of the AAM is its specification of a ‘saturation function’ to reflect 
diminishing marginal returns of additional opportunities. This reflects that the availability of 
additional opportunities has declining marginal value. The value of additional activities tends 
to zero as the number of opportunities approaches infinity. Espada & Luk (2011) calibrated 
the saturation curve using the Melbourne Integrated Transport model, a strategic four step 
model held by the Victorian Government. 

The AAM specifies deterrence and saturation functions for a variety of accessibility 
measures, including for different opportunities (e.g. work, education, shopping and 
recreation) as well as for different modes (e.g. car, public transport, cycle, walk). 

2.4 Quantitative methods 

The most common quantitative method for estimating the impact of accessibility on property 
values is the Hedonic Price Method. The Hedonic Price Method assumes that the value of a 
good can be broken down into constituent components that each contribute to the total value. 
An advantage of the Hedonic Price Method is that it allows various components of a property 
(e.g. number of bedrooms, accessibility to jobs, etc.) to be assigned a separate value. The vast 
majority of studies considering the impact of accessibility on property value use a linear 
regression hedonic pricing specification. Other potential methods include multilevel models 
(e.g. random coefficient models) (Giuliano, et al., 2010), though these are less common in the 
literature. 

2.5 Controlling for other drivers of property value 

In order to estimate the impact of accessibility on property values using the Hedonic Price 
method, it is necessary to control for the impact of other known factors that influence 
property values. 

The following factors non-accessibility-related factors are demonstrated in the literature to 
impact on property values: 
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 Structural features of the property (e.g. number of bedrooms, number of bathrooms, floor 
space, lot size) (LUTI Mecone, 2016; Iacono & Levinson, 2017; Giuliano, et al., 2010) 

 Socio-economic characteristics of a neighbourhood (e.g. average income, mix of 
occupations, education levels, crime levels, perceived vitality) (Harris, 1999; De Nadai & 
Lepri, 2018) 

 Whether a property is within the catchment area of high quality educational institutions 
(Collins & Kaplan, 2017) 

 Proximity to coastline (Giuliano, et al., 2010) 
 Adjacency to major roads (LUTI Mecone, 2016) 

In addition, property values change over time, necessitating the use of time dummy variables 
which reflect the timing of property sales where the data is collected over a sufficiently long 
time period (Hansen, 2009). 

2.6 Spatial autocorrelation 

Spatial autocorrelation is when a functional relationship exists between values that are 
located nearby to each other in space. Several studies have demonstrated the existence of 
spatial autocorrelation in Ordinary Least Squares (OLS) hedonic price models which specify 
property values as an independent variable (Diao, 2015; Basu & Thibodeau, 1998). As a 
result, many existing studies that consider the impact of accessibility on property values 
attempt to control for spatial autocorrelation in some way (Diao, 2015; Mulley, 2014; 
Martinez & Viegas, 2009; Armstrong & Rodriguez, 2006). 

The existence of spatial autocorrelation suggests that significant factors that influence 
property values are missing from the OLS model, and these factors are spatially correlated. 
Some potential examples of this are the style and era of architecture, the quality of 
streetscapes and the perceived “niceness”, prestige or history of a neighbourhood. While it is 
difficult to measure these factors objectively and accurately for incorporation into an OLS 
model, they can be accounted for indirectly by using a spatial autoregressive model. 

The OLS model framework is not able to be adjusted to account for spatial autocorrelation. 
The inclusion of a spatially lagged dependent variable in OLS produces biased and 
inconsistent parameter estimates (Anselin, 1988). The presence of spatial residual 
autocorrelation results in inefficient parameter estimates. Therefore, the use of a maximum 
likelihood approach for spatial autoregressive model is required. 

Scripts are available in the R statistical package library “spdep” (spatial dependency) to 
estimate spatial autoregressive models using a maximum likelihood approach (Bivand, et al., 
2008). 

3. Methodology 

3.1 Model form 

This study uses a cross-sectional hedonic pricing regression. While it is acknowledged that 
longitudinal analyses are theoretically preferable for inferring causation, high quality time-
series data on transport network performance was not available for this study. 
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Initially, an OLS regression was fitted with the logarithm of sales price as the dependent 
variable, and a set of property characteristics as independent variables. The model form is 
shown in Equation 1. 

 ln 	 	   (1) 

Where lny is a vector of the logarithm of sales prices (the dependent variable), X is a matrix 
of regressors (the independent variables) and e is a vector of error terms. 

Separate regressions were undertaken for the houses and units sub-markets. 

After fitting the OLS regressions, Moran’s I tests were conducted to detect the presence of 
spatial autocorrelation.  Lagrange Multiplier tests were then conducted to identify the type of 
spatial autocorrelation present, and therefore the most appropriate spatial autoregressive 
model specification (Anselin, 1988). 

Two model specifications were considered to control for different types of spatial 
autocorrelation. The first is a “spatial lag” model as shown in Equation 2, which incorporates 
a spatially lagged dependent variable. The second is a “spatial error” model, as shown in 
Equation 3, which accounts for spatial autocorrelation in the model residuals (Bivand, et al., 
2008). The models can be executed in the open-source R Statistical Package using the library 
“spded”. 

 ln ln 	 	 	   (2) 
     
 ln 	  

 
	  

(3) 

Where W	 is a spatial weights matrix. For this analysis, spatial weights are assumed to be 
uniform (and sum to one) for all observations within 400 metres of each dependent variable 
record for houses, and 200 metres for units. 

The independent variables in the matrix X	can be separated into four categories as shown 
below: 
 Time variables 
 Structural variables 
 Accessibility variables 
 Neighbourhood variables 

The remainder of this Section describes the variables used in the analysis. 

3.2 Sales data 

The residential property sale price data was extracted from CoreLogic’s RP Data Property 
database. Permission was sought from and granted by CoreLogic to use the data for this 
analysis. Transactions within the Greater Melbourne area for sales that occurred between 
2011 and 2017 were included. This database includes 528,993 records. 

Spatial coordinates were obtained by geocoding the address strings in the sales database. A 
custom geocoder was prepared which matched the address strings to the VicMap Address 
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database obtained from the data.vic.gov.au website. Addresses that could not be obtained 
from the VicMap Address database were geocoded using the Google Maps API. Records 
with address strings that were unable to be geocoded by either method were discarded. 
19,143 records (3.6%) were discarded, leaving 509,580 records remaining after geocoding. 

In addition to the above, the dataset was filtered for sales prices between $100k and $10M, 
for one to eight bedrooms, for one to five bathrooms, that sold within the calendar years 2012 
through 2016, and with locations inside the Melbourne Greater Capital City Statistical Area 
(GCCSA) as defined by the Australian Bureau of Statistics for the 2011 Census. In addition, 
houses with lot sizes less than 150 m2 or more than 1500 m2 (or no lot size recorded) and 
units with more than four bedrooms were excluded from the analysis. 

The database was divided into two – one with records designated as “House” by CoreLogic 
and the other with records designated as “Unit”. Some records were designated as houses, but 
had the character ‘/’ in the address string (suggesting multiple dwellings on a parcel). These 
were assumed to be erroneously coded and were moved from the houses to the units database. 

After filtering, the final houses database had 228,824 records and the final units database had 
129,421 records. A representation of the houses database is shown in Figure 1. 

Figure 1: Sales prices in the houses property database 

 
Source: RP Data Property database, Corelogic 

3.3 Time variables 

A set of dummy variables was generated to represent the year of sale. The reference category 
was designated as sales from year 2016. The dummy variables for the remaining years were 
named y2012, y2013, y2014 and y2015. 
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3.4 Structural variables 

Dummy variables were generated to account for the number of bedrooms for each sold 
property. The reference category was designated as three bedrooms for houses and two 
bedrooms for units. The dummy variables for the remaining categories were named bed12 
(one and two bedroom houses), bed4 (four bedroom houses) and bed5plus (houses with five 
or more bedrooms). For units, bed1, bed2, bed3 and bed4plus were used. 

A dummy variable was generated for houses and units with more than one bathroom. The 
dummy variable was named extra_baths. 

The logarithm of lot size for houses was included, with the variable named ln(lotsize). No 
such variable was included for units. 

3.5 Accessibility variables 

The following accessibility variables were generated: 
 Car accessibility to work car_acc 
 Public transport accessibility to work pt_acc 
 Walk accessibility to amenities walk_acc 

The car accessibility, public transport accessibility and walk accessibility variables were 
derived using the AAM methodology (Espada & Luk, 2011). The accessibility indices are 
calculated using Equation 4. The AAM yields accessibility indices which are a continuous 
variable between 0.0 and 1.0. The accessibility outcomes are shown in Figures 2, 3 and 4. 

 
 

 

(4) 

Where s is the saturation function, d is the deterrence function, Cij is the transport impedance 
between zones i and j, and Xj is the number of opportunities available at zone j. 

The S-shaped deterrence function is calculated using Equation 5. 

 
1

 

 
1 	

 

 

(5) 

Where α	and β	are parameters. The assumed values are sourced from Espada & Luk (2011) 
and are shown in Table 1. 

Table 1: Deterrence function parameters 

Measure   

Car to work 25.5 0.14 

Public transport to work 46.0 0.07 

Walk to shopping and recreation 11.4 0.58 
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Congested car travel times were sourced from the Google Maps API “Distance Matrix” for a 
departure time of 8am. Predicted travel times for Tuesday 2nd May 2017 were used 
(collected in advance of that date). The date was selected as it falls outside of school holidays 
and is not in a week with any public holidays. In addition, May is usually considered as a 
“typical” month for weekday traffic congestion in Melbourne. Travel times predicted in 
advance were used to ensure that the values were not affected by any one-off events (eg. 
incidents, roadworks).  

Travel times were collected for a 281 by 281 zone system, where the zone system reflects the 
2011 Statistical Area 2 (SA2) boundaries as defined by the Australian Bureau of Statistics. 
The geographic centroids of each SA2 were used as origin and destination coordinates. 

Public transport travel times were sourced from the KPMG’s Melbourne Activity and Agent 
Based Model (MABM). Travel times include walk, wait and in-vehicle times, and are 
averaged for AM departure times of 7:50, 7:55, 8:00, 8:05 and 8:10. Services are assumed to 
run as scheduled, with no delays or cancellations. A custom zone system was defined for 
public transport origins and destinations, with a 1km grid along major public transport 
corridors and a 5km grid elsewhere. 

Costs are measured in generalised minutes. A value of time of $16 per hour is assumed to 
convert monetary costs to generalised minutes as per Espada & Luk (2011). Parking and tolls 
are included for car trips and fares are included for public transport. No monetary costs are 
incurred for walking trips. All relevant monetary costs were sourced from the MABM. Half 
of daily parking costs were assumed, as accessibility estimates are calculated for a one-way 
trip. 

Walk travel times were estimated using the pandana open-source software. Melbourne’s 
entire pedestrian network as defined on OpenStreetMap was converted to a network graph, 
allowing walk accessibility to be estimated at a fine resolution. Walk speed was assumed to 
be 4.3 km/h as specified in Espada & Luk (2011).   

The saturation function is calculated as follows: 

 	
∑

∑
  (6) 

Where κ is a parameter relating to the opportunity type.  

For car and public transport accessibility to work, opportunities are defined as jobs according 
to the Victoria in Future estimates for 2015 at a travel zone level (approximately 3,500 zones 
in the Melbourne GCCSA). A κ value of 10-5 is assumed as per Espada & Luk (2011). 

For walk accessibility to amenities, opportunities are defined as any “Google Place” defined 
as “supermarket”, “bar”, “restaurant” or “sporting facility”. Google Places were sourced from 
the Google Maps Public API. A custom κ value of 0.04 is assumed which was calibrated by 
the author to provide an intuitive measure, given the custom nature of the opportunity 
measure. 

Accessibility was assumed not to vary by year, due to lack of data regarding the change in 
performance of the transport network between 2011 and 2016. 
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Figure 2: Accessibility to jobs by car, 8am (car_acc) 

 
 
 
Figure 3: Accessibility to jobs by public transport, 8am (pt_acc) 
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Figure 4: Accessibility to amenities by walking (4.3 km/hr) (walk_acc) 

 

 

3.6 Neighbourhood variables 

Four neighbourhood variables were defined to control for other known drivers of property 
values. The following variables were included: 
 Socio-economic character of neighbourhood        irsad_q1, irsad_q2, irsad_q4 
 Within top public high school catchment top25_highschool 
 Proximity to coastline coast800 
 Adjacent to arterial road arterial50 

The ABS 2011 Socio-Economic Indexes for Areas (SEIFA) Index of Relative Socio-
Economic Advantage and Disadvantage (IRSAD) was used to control for the socio-economic 
character of each neighbourhood (at the Statistical Area 2 level). Dummy variables were 
generated for each IRSAD quartile, with quartile 4 representing the most advantaged and 
least disadvantaged neighbourhoods and quartile 1 representing the least advantaged and 
most disadvantaged neighbourhoods. The reference variable is IRSAD quartile 3, making the 
dummy variable categories irsad_q1, irsad_q2 and irsad_q4. 

The location of all Government secondary schools in Victoria was sourced from 
data.vic.gov.au. Each sales record was assigned to the nearest Government high school by 
straight line distance. This is an approximate measure of which secondary school catchment a 
property lies within. The top 25 Government secondary schools (excluding selective schools) 
were identified using the “Overall Rating” from the “Better Education” website , which 
considers the level of academic achievement. Properties falling within the catchment of a top 
25 Government secondary school (approximately the top ten percent of Victorian secondary 
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schools) were assigned a value of one for the dummy variable top25_highschool, with other 
properties assigned a value of zero for that variable. 

A dummy variable coast800 was specified with a value of one if the address point coordinate 
of a property falls within 800m straight line distance from the coast, and zero otherwise. 

A dummy variable arterial50 was specified with a value of one if the address point coordinate 
of a property falls within 50m of an arterial road. Arterial roads were defined as roads with a 
CLASSCODE of one, two or three (which does not include freeways) in the TR_ROAD 
dataset available on data.vic.gov.au. In practice, this generally means the property is directly 
adjacent to a major arterial road. 

4. Results 

4.1 OLS model results 

The results for the OLS model specifications are shown in Table 4 for houses. The equivalent 
results for units are not shown due to their limited generalisability as discussed in the 
remainder of this section. 

4.2 OLS statistical assumption testing 

The OLS models were tested for the degree to which they meet the statistical assumptions of 
linearity of model, heteroscedasticity, normality of residuals, outliers and influential cases 
and multicollinearity. Statistical assumptions are met to a reasonable degree for the OLS 
models, however the houses OLS violates the assumption of homoscedasticity and the units 
OLS violates the assumptions of homoscedasticity and normality of residuals. 

Violation of assumptions does not necessarily invalidate drawing of conclusions from the 
sample, but may affect the ability to generalise findings. 

4.3 Spatial autocorrelation 

Both the houses and units OLS models appeared to exhibit spatial autocorrelation of 
residuals. Moran’s I tests were undertaken, which confirm the presence of autocorrelation in 
model residuals for both the houses and units OLS at a p < 0.001 level of confidence. 

Lagrange multiplier tests were undertaken to determine which spatial autoregressive model 
specification is most appropriate. The results are shown in Table 2, with the test statistic 
clearly indicating that the spatial error model is the most appropriate specification for both 
houses and units. 

Table 2: Lagrange multiplier diagnostics 

Model Test statistic df p-value 

Houses, spatial lag 96,886 1 <2.2e-16 *** 

Houses, spatial error 1,915,061 1 <2.2e-16 *** 

Units, spatial lag 4,689 1 <2.2e-16 *** 

Units, spatial error 56,369 1 <2.2e-16 *** 

Significance codes: 0.001 ‘***’, 0.01 ‘**’, 0.05 ‘*’, 0.1 ‘.’ 
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Spatial error models were run for both houses and units. The results are shown in Table 4 for 
houses and not shown for units. In both cases, the spatial error model produces a substantially 
better fit to observed data than the OLS, as evidenced by lower Akaike Information Criterion 
(AIC) statistics. While both fits are improved, the fit is improved to a substantially greater 
degree for houses than units. In addition, a noticeable reduction in spatial autocorrelation is 
visibly apparent in the residuals. Spatial autocorrelation is reduced to a greater extent for 
houses than units. 

The houses spatial error model also exhibit a substantially reduced level of heteroscedasticity 
relative to the houses OLS model. This is demonstrated by a reduction in the studentised 
Breusch-Pagan test statistics as shown in Table 3. Heteroscedasticity is also reduced by the 
spatial error model for units, but to a lesser degree. 

Table 3: Studentised Breusch-Pagan diagnostics 

Model Test statistic df p-value 

OLS, houses 8,348.28 18 <2.2e-16 *** 

Spatial error, houses 686.66 18 <2.2e-16 *** 

OLS, units 1,699.07 17 <2.2e-16 *** 

Spatial error, units 1,298.67 17 <2.2e-16 *** 

Significance codes: 0.001 ‘***’, 0.01 ‘**’, 0.05 ‘*’, 0.1 ‘.’ 

Given the reduction in spatial autocorrelation and heteroscedasticity, the spatial error model 
for houses is deemed statistically robust and suitable for generalising findings. The other 
three models (OLS houses, OLS units, spatial error units) have statistical properties which 
limit the generalisability of findings.  
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Table 4: Model fits for OLS and spatial error models, houses 
 OLS, houses Spatial error, houses 

 
Estimate 

Std. 
Error 

t-value Pr(>|t|) Estimate Std. Error z-value Pr(>|z|) 

Intercept 10.509 0.0127 824.82 <2e-16 *** 10.946 0.0323 338.71 <2e-16 *** 

Time variables 

y2012 -0.3466 0.0024 -147.09 <2e-16 *** -0.3641 0.0016 -231.50 <2e-16 *** 

y2013 -0.3027 0.0022 -136.44 <2e-16 *** -0.3136 0.0015 -211.72 <2e-16 *** 

y2014 -0.2357 0.0021 -110.30 <2e-16 *** -0.2354 0.0014 -164.94 <2e-16 *** 

y2015 -0.1181 0.0021 -56.96 <2e-16 *** -0.1106 0.0014 -80.11 <2e-16 *** 

Structural variables 

bed12 0.0301 0.0030 10.18 <2e-16 *** -0.0618 0.0020 -30.63 <2e-16 *** 

bed4 0.0578 0.0017 34.41 <2e-16 *** 0.0669 0.0012 57.45 <2e-16 *** 

bed5plus 0.1968 0.0031 62.99 <2e-16 *** 0.1406 0.0021 66.78 <2e-16 *** 

ln(lotsize) 0.3035 0.0019 161.66 <2e-16 *** 0.2859 0.0017 171.88 <2e-16 *** 

extra_baths 0.1423 0.0018 77.91 <2e-16 *** 0.1089 0.0013 83.67 <2e-16 *** 

Accessibility variables 

car_acc 0.6350 0.0046 139.31 <2e-16 *** 0.6762 0.0367 18.42 <2e-16 *** 

pt_acc 0.4699 0.0028 166.89 <2e-16 *** 0.0406 0.0086 4.69 2.69e-6 *** 

walk_acc 0.7475 0.0049 153.30 <2e-16 *** 0.0886 0.0114 7.76 8.66e-15 *** 

Neighbourhood variables 

irsad_q1 -0.2465 0.0020 -122.55 <2e-16 *** -0.1071 0.0082 -13.09 <2e-16 *** 

irsad_q2 -0.0726 0.0021 -35.05 <2e-16 *** -0.0417 0.0060 -6.90 5.35e-12 *** 

irsad_q4 0.3091 0.0022 141.89 <2e-16 *** 0.0451 0.0066 6.79 1.12e-11 *** 

top25_highschool 0.1862 0.0023 81.88 <2e-16 *** 0.0223 0.0064 3.49 4.80e-4 *** 

coast800 0.3934 0.0036 108.09 <2e-16 *** 0.0134 0.0082 1.63 0.1025 

arterial50 -0.0328 0.0026 -12.45 <2e-16 *** -0.0585 0.0019 -31.18 <2e-16 *** 

Residual std. error 0.3323 on 228,805 degrees of freedom  

Adjusted R2 0.6961  

Pseudo-R2   0.8593 

F-statistic 
2.91e+04 on 18 and 228,805 DF,  p-value: < 2.2e

-16 
 

Wald statistic  2,052,700, p-value: < 2.22e-16 

AIC 145,220 -30,922 

Significance codes: 0.001 ‘***’, 0.01 ‘**’, 0.05 ‘*’, 0.1 ‘.’  
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5. Discussion 

This discussion draws on the results from the houses spatial error (cross-sectional) model, 
which is deemed statistically robust. The results show that all three accessibility measures 
(walk to amenities walk_acc, public transport to jobs pt_acc and car to jobs car_acc) are 
positively associated with house sale prices. This finding is generally consistent with the 
literature. Car accessibility has the strongest influence, with a semi-elasticity of 0.68 (i.e. 
each 0.1 unit increase in car accessibility raises house sale prices by approximately 6.8%). 
Walk and public transport accessibility semi-elasticities are substantially lower, at 0.09 and 
0.04 respectively.  

This finding suggests that Melbourne homebuyers have a lower willingness to pay for walk 
and public transport accessibility than car accessibility. This is consistent with the car-
dependent nature of Melbourne – car ownership is high in Melbourne, and Melburnians 
undertake 72% of trips and 82% of kilometres by private car (Victorian Government, 2013). 

This study also highlights the importance of appropriately controlling for spatial 
autocorrelation in hedonic pricing analysis for property sales. Using an OLS model 
specification produced significantly different magnitudes of parameter estimates, particularly 
for measures with a spatial element (i.e. accessibility and neighbourhood variables). For the 
bed12 dummy variable, the sign of the parameter estimate was inconsistent with theory, with 
fewer bedrooms having a positive influence on house sales values (the bed12 dummy 
variable represents one and two bedroom houses compared to the reference category of three 
bedroom houses). This effect was (appropriately) no longer apparent after controlling for 
spatial autocorrelation. 

For both OLS and spatial error model specifications, model performance was substantially 
better for house sales than unit sales, both in terms of predictive power and statistical 
assumptions. A potential explanation for this is that attributes that are not reflected in the 
dataset are important drivers of unit prices. For example, floor space, views and features of 
the apartment building itself (attractiveness, availability of services like a concierge and 
facilities like shared spaces, pools or gyms) are not included in the analysis. In addition, the 
units database also includes townhouses, which may be considered a separate sub-market, but 
are unable to be distinguished. These issues limit the generalisability of the units models. 

6. Conclusions and next steps 

This study presents a statistically robust hedonic price model that may be used to inform 
value capture and LUTI modelling studies in Melbourne using trip-based measures of 
accessibility which are consistent with most strategic transport models used in Australia. It is 
recommended that only the results of the houses spatial error model be generalised. The 
houses spatial error model produced semi-elasticities of car accessibility to jobs, public 
transport accessibility to jobs and walk accessibility to amenities of 0.68, 0.04 and 0.09 
respectively.  

Further work may produce a longitudinal analysis to estimate how changes in accessibility 
impact changes in property values (for example using repeat sales measures). This work 
would require high quality time series transport network performance data, and would need to 
control for changes in the quality of properties (eg. renovations) and neighbourhoods (eg. 
parks and gardens, schools, town centres) in addition to changes in accessibility. 
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Further work may also include testing of alternative specifications of accessibility metrics 
and control variables, or specifying additional control variables. 
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