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Abstract 

The spatial distribution of Origin-Destination (OD) demands between different OD pairs 

reveals the structural information of OD matrices. Generally, OD pairs from geographical 

zones sharing similar activities, travel cost, and destination choices have a similar distribution 

of trips. Most of the traditional statistical measures are based on a cell by cell comparison and 

do not account for the additional structural knowledge in terms of similarity of trip distribution 

while comparing OD matrices. Thus, there is a need for new comparative measures to account 

for the structural information by computing statistics on the group of OD pairs. In this light, 

the paper adopts and extends an existing metric – Levenshtein distance for structural 

comparison of OD matrices. The proposed Mean Normalized Levenshtein distance for OD 

matrices comparison (MNLdOD) is an optimization-based metric and is computationally better 

than another popular metric – Wasserstein distance proposed by Ruiz de Villa et al. (2014).    

 

Keywords: OD matrices comparison, Levenshtein distance, Wasserstein distance, OD matrix 

structure, statistical measures, Bluetooth OD.     

1. Introduction 

The distribution of travel demand between different origin-destination (OD) pairs is generally 

represented by an OD matrix. The “structure” of OD matrices is defined as the distribution of 

OD demands between different zonal pairs. The OD matrices have similar structure if groups 

of OD pairs share similar geographical zones, activities, travel cost and destination choices etc. 

resulting in similar travel patterns. Any changes in activity-travel patterns are reflected from 

the structural changes within OD matrix. The quality of OD matrices is generally assessed 

using traditional performance measures (RMSE, MAE etc.) that are generally based on cell by 

cell comparison of OD values and lack the potential to account for structure of OD matrices. 

By far in literature, very few statistical measures have focused on the structural knowledge of 

OD matrices. Bierlaire and Toint (1995 developed Matrix Estimation Using Structure 

Explicitly (MEUSE) approach to incorporate structural knowledge from parking surveys in 

traditional OD estimation. Kim et al. (2001) expressed the ratio of OD demand to origin flows 

as an important source of structural information that can be used as additional constraint in OD 

estimation process. Djukic et al (2013) applied Structural Similarity Index (SSIM) for 

comparing OD matrices and also proposed to use as an objective function in dynamic OD 

estimation. However, the SSIM approach is sensitive to the size of sliding window and is 

theoretical in nature. Ruiz de Villa et al. (2014)  deployed Wasserstein Metric to compare OD 
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matrices by taking into account network topology. To the best of authors’ knowledge, this is 

the only method based on optimization formulation designed for structural comparison of OD 

matrices. Due to which it is computationally intensive for comparing OD matrices of large 

scale dimensions (further insights in section 5). In this light, the objectives of this study are to: 

 

1. Develop a new measure –Mean Normalised Levenshtein distance for OD matrices 

structural comparison (MNLdOD); and  

2. Compare the proposed MNLdOD  with existing Wasserstein metric proposed by Ruiz de 

Villa et al. (2014).  

2. Levenshtein Distance 

The distribution of origin flows to different destinations provides insights into structural 

knowledge of travel patterns. For example, the preference of destinations could be different on 

different types of days. Say, the choice of destinations during Mondays are different as 

compared to that during a Sunday. This is due to different activities and their schedules during 

both days. Even if destination choices are same during both days, the number of trips could be 

different. This implies the structure of traffic flows are different if destination choices and 

number of trips are different between the same set of OD pairs.  

 

Comparing OD matrices from this perspective requires a statistical metric that can exploit this 

additional structural information. For this purpose, we propose to extend traditional 

Levenshtein distance (details in section 4.1) into a new approach (presented in section 4.2) to 

suit its applicability for structural comparison of OD matrices. 

2.1 Traditional Levenstein distance 

Levenshtein distance, developed by Vladimir Levenshtein in (1966), is a measure of proximity 

between two strings, majorly applied to compare sequences in linguistics domain such as 

plagiarism detection and speech recognition, in molecular biology for comparing sequences of 

macro molecules, etc. It calculates least expensive set of insertions, deletions or substitutions 

that are required to transform one string into another. For example, if we have to compare two 

strings such as “MONDAY’ and ‘SATURDAY’, one of the optimum ways is to insert  the 

letters “S” and “A” and  substitute “M”, “O” and “N” with “T”, “U” and “R” respectively 

leading towards a Generalized Levenshtein Distance (GLD) of 5. 

 

Let’s define S = {𝑆𝑜 , 𝑆1, . . 𝑆𝑘 … 𝑆𝑠} as the sequence of edit operations to transform string Y to 

X as represented by Y ⇒  X, and then the cost associated with each edit operation as 

{𝛽0, 𝛽1. . 𝛽𝑘. . 𝛽𝑠}. Generalized Levenshtein Distance (GLD) is the minimum total cost required 

to transform Y to X (see equation 1). 

  

                GLD (X, Y) = min
𝑆

(∑ 𝛽𝑘)𝑘=𝑠
𝑘=0   

(1) 

The Normalized Levenshtein distance (NLD) is the GLD normalized by the sum of the lengths 

of two strings (equation 2). This metric always lies between 0 and 1 (Yujian and Bo 2007). 

 

 NLD (X, Y) =
GLD (X,Y) 

|𝑋|+|𝑌|
 (2) 

 

Refer, Heeringa (2004 for the pseudo code for computing GLD and NLD for two strings X and 

Y. 
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2.2 Levenshtein distance for OD matrices comparison 

We extend the applicability of the technique to identify changes in preferences of destinations 

and number of trips made to different destinations from an origin. Here, for a given origin we 

can define a string that represents the order of destinations (in descending order of the demand 

to the destination from the origin). To compare two OD matrices, we compare the order of 

destination strings from each origins. However, contrary to the traditional application here 

different destinations have different demand values. We propose to include the demand in the 

estimation of Levenshtein distance. Hereon, the proposed approach for comparing origin row, 

n is termed as LdODn; the normalized comparison as NLdODn and the mean comparison 

between OD matrices as MLdOD and its normalized version as MNLdOD respectively.  

 

Here, the cost (in terms of trips) associated with each edit operation are 𝛽0, 𝛽1. . 𝛽𝑘. . 𝛽𝑠 and the 

LdODn is expressed as shown in equation 3. If the comparison is required between a scale of 0 

and 1, one can use Normalized LdODn (NdLODn) values as shown in equation 4. Here, NdLODn 

is obtained by normalizing over the sum of origin flows from both matrices. The formulation 

for MNLdOD is shown in equation 5. 

 

 LdODn (𝑹𝑋
𝑛, 𝑹𝑌

𝑛) =min
𝑆

(∑ 𝛽𝑘)𝑘=𝑠
𝑘=0      (3) 

NdLODn (𝑹𝑋
𝑛, 𝑹𝑌

𝑛) = 
𝐿𝑑𝑂𝐷𝑛 (𝑹𝑋

𝑛 ,𝑹𝑌
𝑛)

(∑  𝐴𝑥𝑖
𝑛𝑖=𝑀

𝑖=1 +∑  𝐴𝑦𝑖
𝑛𝑖=𝑀

𝑖=1 )
 

(4) 

MNdLOD(X,Y) = 
∑ 𝑁𝑑𝐿𝑂𝐷𝑛 𝑛=𝑁

𝑛=1

𝑁
 

(5) 

 

Where, for OD matrix Y (of size say, N x M), the sorted set of destination IDs and the 

corresponding demand from an origin n is expressed as  𝑹𝑌
𝑛 = ( 𝑫𝑌

𝑛, 𝑨𝑌
𝑛 ) = 

{(𝐷𝑦1
𝑛 , 𝐴𝑦1

𝑛 ), . . (𝐷𝑦𝑖

𝑛 , 𝐴𝑦𝑖

𝑛 ) … (𝐷𝑦𝑀
𝑛 , 𝐴𝑦𝑀

𝑛 )} where Dy𝑖
 and Ay𝑖

 are the ith preferred destination and 

its corresponding demand value, respectively. Similarly, we express 𝑹𝑋
𝑛= (𝑫𝑋

𝑛 , 𝑨𝑋
𝑛) for matrix 

X. 

 

Unlike GLD, LdOD does not have any substitution operation because the destinations in the 

two OD matrices are same, however their order varies. Since, the LdOD formulation considers 

OD demand besides the sequence of destination IDs, we propose edit operation – “absolute 

trips-difference” that accounts for the demand variations over different destinations. This 

operation is in addition to the insertion and deletion operations.  

3. Wasserstein vs Levenshtein distances 

Levenshtein and Wasserstein metrics compare OD matrices through an optimization 

formulation to find minimal difference in the distribution of OD demand over the network.  

Despite this similarity, they are different from each other as discussed below. 

 

Firstly, MLdOD computes the structural differences between OD matrices in terms of OD 

flows. On the other hand, Wasserstein metric expresses in terms of travel cost. 

 

Secondly, Wasserstein metric is computationally very expensive as compared to MNLdOD. 

This is because solution search space for Wasserstein metric is spread over the entire OD matrix 
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i.e. travel cost for all combinations of OD pairs need to be checked for an optimum distance. 

Whereas, the LdODn is computed locally for each row due to which the solution search space 

is constrained to OD pairs originating from a specific origin only. To compare the 

computational strength of two metrics, Bluetooth OD matrices from Monday and Sunday are 

compared against each other. The OD matrices are constructed from Bluetooth observations 

for Brisbane City Council (BCC) region. The test is conducted on a Dell computer with Intel(R) 

Core(TM) i7-4770 CPU, 16GB RAM (3.40GHz) and time taken for computation is 0.33 

seconds for MNLdOD and 1690 seconds for Wasserstein approach respectively. 

4. Conclusion  

The study focusses on the need for statistical measures that can perform holistic structural 

comparison of OD matrices. It opens with the review of indicators that are specifically meant 

for structural comparison and then discusses the development of a new approach- Mean 

Normalized Levenshtein distance for OD matrices (MNLdOD). This novel concept is borrowed 

from traditional Levenshtein distance that is popularly used for comparison of strings in 

linguistics field.  The findings of this study are two-fold: 

 

Firstly, MNLdOD is designed to capture the order of destination choices along with the 

distribution of trips while comparing OD matrices. The difference in the distribution among 

the group of OD pairs originating from the same origin zone are compared to identify the 

structural differences. For example, higher the similarity in the order of destinations and 

volume of OD demands, lower is the MNLdOD value between OD matrices. 

 

Secondly, it is computationally more effective than Wasserstein metric for structural 

comparison of large scale OD matrices that are not sparse. 
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