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1. Introduction 8 

To ensure operational continuity of urban road networks, the resilience of a transportation 9 

system has become an important issue. Over the last two decades, there has been extensive 10 

discussion about the need for robust networks to minimise the economic and social impacts of 11 

disruptions. Detailed reviews of the literature related to degraded networks have been 12 

conducted, e.g. Berdica (2002) and Mattsson and Jenelius (2015). Koorey et al. (2015) explored 13 

the scope for dynamic traffic signal control to reduce the impact of disruptions associated with 14 

non-recurrent congestion (e.g. traffic incidents). It has been suggested that reducing these will 15 

have a great effect on network reliability as half  the congestion delay is caused by non-16 

recurring events (Pearce, 2000, Schrank et al., 2009).  Several studies of infrastructure 17 

resilience have proposed a disruption profile to capture the phases of any significant disruption 18 

before, during and after the disruption (Asbjornslett, 1999, Sheffi, 2005, Bruneau et al., 2003). 19 

More recently, Taylor (2017) presented a representation to reflect the dynamic performance of 20 

an infrastructure system. This distinguishes between frequent minor variations in performance 21 

and infrequent major disruptions. One can improve the resilience by reducing the area of the 22 

resilience triangle by reducing its height (i.e. reducing the reduction in system performance 23 

when the incident occurs) and/or its base (i.e. the recovery time). There are various options to 24 

achieve this, including constructing or improving parallel routes between given pairs of nodes. 25 

Another option is to use traffic signal control, and the aim of this study is to reduce the impact 26 

of a disruptive event using traffic signal control, as previously investigated by Koorey et al. 27 

(2015). 28 

Traffic signal control can be used to assist drivers to avoid blockages and to use other routes to 29 

minimise delays. Various optimisation algorithms have been implemented to find the optimal 30 

set of signal timings, taking into account the impact of re-routing. One of these optimisation 31 

methods is the Cross-Entropy (CE) method proposed by Rubinstein (1997). Maher (2008) 32 

introduced the CE algorithm to optimise the signal settings on a six-arm signalised roundabout. 33 

Ngoduy and Maher (2011) and Maher et al. (2013) further explored the CE method to optimise 34 

traffic signals in urban networks. The results of applying the CE method showed encouraging 35 

advantages for computational efficiency and convergence, with its more formal mathematical 36 

and statistical basis making it simple to apply (Maher, 2008). 37 

The time slices approach, presented in this paper, was proposed by Van Vliet (1982) using the 38 

simulation and assignment procedures in SATURN software package. This approach is 39 

referred to as quasi-dynamic (Van Vliet, 1982) and semi-dynamic (Bliemer et al., 2017), and 40 

the latter will be used in this paper to refer to the time slices approach. This method involves 41 

dividing the simulated time horizon into short time slices, with the traffic conditions at the end 42 

of a time slice becoming the starting conditions for the subsequent time slice. The main 43 

objective of this paper is to investigate the time slices assignment to improve the resilience of 44 
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urban road networks subject to short-term closures in comparison with the results of the static 45 

approach described in Abudayyeh et al. (2018). Transport researchers have subsequently 46 

modelled residual queues using link capacity constraints (Bell, 1995, Kheifits and Gur, 1997, 47 

Schmöcker et al., 2008, Fusco et al., 2012, Bliemer et al., 2014, Tajtehranifard, 2017). These 48 

studies showed that this approach is considered a reasonable ‘midpoint’ between the static and 49 

dynamic assignment models as it combines the computational efficiency of static assignment 50 

models and the realism of traffic flow in dynamic assignment models.  51 

2. Method and implementation 52 

To understand the impact of disruptions on traffic network performance under optimum signal 53 

control, a bi-level optimisation problem was formulated. The approach, which was introduced 54 

by Ngoduy and Maher (2011), was adopted and extended to account for urban network 55 

degradations. The process for optimising the signal settings involves iterating between the CE 56 

algorithm and SATURN. The CE algorithm searches for the combination of signal settings 57 

which minimises the Total Travel Time (TTT), calling SATURN to estimate the flows and 58 

travel times for specified combinations of signal settings, considering re-routing.  59 

The upper level optimisation problem represents planners trying to minimise the average travel 60 

time immediately after the disruptive event, when equilibrium has not yet been reached among 61 

the road users. The upper level of the problem is formulated as: 62 

     1
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where ( , ( ))PI XUEX q is the performance index function (i.e. the TTT in the network) which is 64 

the sum of the product of the link flows and link travel times over the whole network and it 65 

depends on the vector of link equilibrium flows qUE and the vector of signal timings  X 66 

consisting of the vector of offsets β, the vector of green times θ and the cycle length C; L is the 67 

number of links; qa is the flow on link a; ta is the average travel time for the link flow a. 68 

Consistent units are assumed throughout the paper. Since changing the signal timings in a 69 

network will generally cause some re-routing of traffic, UE
q = ( )X

UE
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where Cmin and Cmax are the lower and upper bound of the cycle length, respectively; βn is the 73 

offset at node n; θn,s is the green time at node n for stage s; min

,n s    and max

,n s  are the lower and 74 

upper bound of the green time at node n for stage s; Sn is the number of stages at node n; In,s is 75 

the inter-green time at node n for stage s. We consider the signal settings to be discrete integer 76 

values.  The lower level represents users following the user equilibrium principle under the 77 

given network condition. This can be formulated as: 78 

  
0 q   UE UEt(X,q ).(q - q )

                                              (3) 79 

where q is the vector of link flows and qUE is the vector of equilibrium link flows. In Equation 80 

(3), t(X,qUE )  denotes the vector of link travel times, which is dependent on the vector of signal 81 
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timings and the equilibrium link flows. denotes the feasible space of the link flow vector and 82 

is explicitly defined as: 83 
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where 0

aq  is the link capacity; O and D are the sets of origins and destinations; P is the set of 85 

possible paths; i, j are the origin index and destination index; p is the path index; fijp is the path 86 

flow between origin i and destination j using path p; δaijp is an indicator variable which equals 87 

one if the link a is on path p between i and j, and zero otherwise. 88 

The CE method was originally developed to estimate the probability of occurrence of rare 89 

events (e.g. the probability of failure of a particular network), then it was extended to solve 90 

combinatorial optimisation problems when the objective function is very complicated and it is 91 

necessary to do a lot of sampling. A full description of the method is given in Rubinstein and 92 

Kroese (2004). The CE involves three main steps: generating a random sample from a pre-93 

specified probability distribution function, evaluating the selected sample based on a 94 

performance index, then updating the sample based on a smoothing parameter (α).  Each 95 

observation in this sample is scored for its performance as the solution to the specified 96 

optimisation problem. A fixed percentage of the best performing observations are referred to 97 

as the elite sample. The elite sample helps to update the parameters in the next generated 98 

solutions to improve the quality of the solution. The process is repeated until convergence 99 

occurs and an optimal solution is found. 100 

3. A study case to test the numerical model on a real network 101 

The performance of the proposed approach was assessed by applying it to the Cambridge (UK) 102 

network, which comprises 141 zones, 1,091 links and 608 nodes, including 24 signalised 103 

junctions with 2-phase arrangements. The common cycle length was fixed at 60 seconds, and 104 

all inter-greens were set to 5 seconds. The total demand in this network reflects one peak hour, 105 

with a total number of 42,023 commenced vehicle trips. The objective was to find the set of 106 

values for the 47 variables (i.e. 24 phase A green times and 23 offsets) that minimises the travel 107 

time in the network in the case of disruption. These variables were constrained to be integers 108 

(i.e. round-up of seconds), with the minimum green times being set to 7 seconds, and the offsets 109 

ranging from zero up to 59 seconds, with the offset at node 2045 being zero. The traffic flow 110 

at the most congested intersection (node 2010) was degraded by applying several blockage 111 

scenarios; which involved various combinations of two factors (the duration and the % of 112 

capacity reduction of the blockage).  113 

3.1. Simulation results of static assignment  114 

The results of simulating different blockage scenarios (i.e. the green times and offsets) are 115 

summarized in Table 1 for node 2010 and the adjacent nodes 3089 and 2040. These results are 116 

for five levels of capacity reduction (0%, 25%, 50%, 75%, and 100%) at node 2010, for a 117 

period of one hour. The results indicate that the optimal signal settings for node 2010 appear 118 

to be sensitive to the severity of the disruption. For instance, there is a 54% increase in the 119 

optimal green time at node 2010 with a 75% reduction in its capacity. Moreover, the changes 120 

as the capacity reduction increases from 0% to 100% are far from linear (i.e. the optimal 121 
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settings tend to fluctuate). For example, the offsets at 2010 are, respectively, 17s, 41s, 12s, 18s, 122 

and 10s and the phase (A) green times at 2040 are, respectively, 43s, 22s, 43s, 43s, and 43s.  123 

Table 1. Phase (A) green times and offsets for nodes: 2010, 3089, and 2040 using the static approach 124 

Capacity reduction at 

node 2010 for 60 min. 

Node 2010 Node 3089 Node 2040 

Green 

Times (s) 

Offsets 

(s) 

Green 

Times (s) 

Offsets 

(s) 

Green 

Times (s) 

Offsets 

(s) 

0% 28 17 19 37 43 57 

25% 23 41 22 37 22 9 

50% 43 12 23 15 43 9 

75% 43 18 12 28 43 9 

100% 22 10 35 4 43 11 

3.2. Simulation results of semi-dynamic assignment 125 

Using the semi-dynamic approach, the simulated hour was divided into 4-minute intervals (i.e. 126 

15 time slices) to test different degradation durations (4, 20, 36, and 60 minutes) and severities 127 

(25% reduction in capacity up to a complete closure) to replicate blockages in real life 128 

scenarios.  The results of 4-minute intervals showed that when node 2010 is completely closed 129 

for different time durations  the green times gradually decreased at the blocked junction, and 130 

increased at the nearby junctions (Table 2). In addition, the results show that the green times at 131 

node 2040 are increased to the upper bound (i.e. 43 seconds) during different degradation 132 

durations. This implies that traffic is diverting around node 2010 to the nearest node 2040.  133 

 134 
Table 2: Phase (A) green times and offsets for nodes: 2010, 3089, and 2040 using the semi-dynamic 135 
approach  136 

A complete capacity 

reduction at node 2010 

Node 2010 Node 3089 Node 2040 

Green 

Times (s) 

Offsets 

(s) 

Green Times 

(s) 

Offsets 

(s) 

Green 

Times (s) 
Offsets (s) 

4 minutes 43 28 20 59 43 15 

20 minutes 35 42 20 11 43 45 

36 minutes 30 10 24 22 43 35 

60 minutes 21 22 31 6 43 42 

 137 

3.3. Comparison of results for the static and semi-dynamic assignments  138 

Compared with the static results, the semi-dynamic results show better convergence (i.e. fewer 139 

iterations) for offsets and green times, especially for offset values at the blocked node (Fig. 1a 140 

and 2a). The results obtained for a 50% reduction for 60 minutes using both static and semi-141 

dynamic approaches are presented in Figs. 1 and 2, respectively for several intersections (i.e. 142 

2010, 3089, and 2040), those figures describe the standard deviation of the best solutions over 143 

the 30 iterations. 144 

Comparing the phase (A) green times and offsets results from applying the static and semi-145 

dynamic approach (i.e. cells in Table (1) and Table (2) highlighted in gray) shows that for a 60 146 

minute complete closure at node 2010, the semi-dynamic approach gave slightly lower phase 147 

A green times (21s at node 2010, 31s at node 3089, and 43s at node 2040) compared to (22s at 148 

node 2010, 35s at node 3089, and 43 s at node 2040) for the static approach. This could be due 149 

to the fact that the semi-dynamic approach converged quicker (i.e. fewer iterations for both 150 

green times and offsets) to better solution than the static approach. In terms of offsets, 151 
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interestingly, the offsets for both the static and semi-dynamic results fluctuate, with higher 152 

values obtained for the semi-dynamic approach.  153 
 154 

Figure 1: The convergence using the static approach for (a) offsets, (b) green times (phase A)  155 

 156 
 157 
 158 
 159 
 160 
 161 
 162 
 163 
 164 
 165 
 166 
 167 
 168 
Figure 2: The convergence using the semi-dynamic approach for (a) offsets, (b) green times (phase A) 169 
 170 
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4.  Discussion of results 183 

Several points can be observed from the results. First, it was found that better convergence, in 184 

terms of iterations, has been achieved for green times and offsets using the semi-dynamic 185 

approach, especially for the blocked junction, as the offsets and phase (A) converged after 28 186 

iterations for offsets and 16 iterations for green times compared to 30 iterations for offsets and 187 

21 iterations for green times in the static approach for the same sample size 1,000. Second, it 188 

was noticed that both the level of reduction in capacity (i.e. 25% up to a complete closure) and 189 

duration (i.e. 4 minutes closure up to 60 minutes) have an impact on the convergence. For 190 

instance, the convergence was quicker for a 25% reduction in capacity (i.e. it takes less 191 

iterations) than for a complete reduction in capacity.  192 

5.  Concluding remarks and future research  193 

In this paper, we have demonstrated that the CE optimisation method and the semi-dynamic 194 

approach can be used to find the optimal green times and offsets in disrupted networks to 195 

minimise the TTT. Furthermore, we have presented results for different blockage scenarios, 196 

using both the static and semi-dynamic approaches, to simulate different disruption severities 197 
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and durations, allowing for changes in  user route choice behaviour in the period immediately 198 

following a disruptive event (during the recovery period). The research results indicate that 199 

there is value in using the semi-dynamic approach (i.e. time slices) in modelling disrupted 200 

networks, as this approach gives better convergence, in terms of iterations. However, one 201 

should keep in mind that the running time for the semi-dynamic approach is higher than for the 202 

static approach. To reduce the running time for this network; the total number of iterations (i.e. 203 

30 iterations) could be almost halved (i.e. to 16 iterations) as the semi-dynamic approach 204 

converged after 16 iterations.  205 
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