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1 Abstract

Microscopic traffic models replicate the behaviour of individual drivers and their interactions
with each other. As such, the accuracy of simulation predictions is closely tied to a realistic re-
production of actual human driving behaviour. Despite being a well-researched subject, there is
not much literature about the differences between drivers; in most simulations dynamics emerge
from interactions of homogeneous driver populations or from a few different behavioural types
at best. In this paper we investigate and quantify the car-following (CF) differences between
drivers. The underlying dataset contains over 700 min of high-precision CF data and has been
used in several research papers. Methodologically we focus on analysing feature distributions,
visualising correlations of driver acceleration to space gap, headway, relative speed as well as
lead vehicle acceleration and calculating the driver reaction times by shifting the correlating
fields. The article uses lots of innovative visualisation methods to efficiently summarise the
obtained results.
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2 Introduction

2.1 Motivation and contribution

With world-wide population growth, accelerating urbanisation processes and more people having
access to motorised individual transport, understanding jamming behaviour and simulating
vehicle movements has become an important branch of civil engineering. Traffic simulations
are classified based on their observation and abstraction levels: models involving individually
represented vehicles are termed microscopic, aggregated distributions of speed, space gap or
headways are termed mesoscopic and if the individual nature of vehicles dissolves into a stream
with fluid-like qualities the term macroscopic is used. Due to advancements in computational
power, microscopic models have become more accessible and are arguably the largest group.
Their popularity is fostered by the wide range of phenomena they exhibit and the possibility to
incorporate empirical observations.

In this publication we carry out a systems analysis in which we statistically investigate
driver behaviour from a microscopic perspective. It is based around the the idea that drivers
react at diverge times with varying amounts to different stimuli. Our contributions are two-fold:
using Spearman, Kendall-Tau and Pearson correlation coefficients, we identify the most relevant
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stimuli for drivers when following other vehicles. In the course of this statistical analysis we also
show which acceleration values drivers select and how high the latency between input stimuli and
acceleration/deceleration actions is. Starting with distributions of trajectorial features, we built
correlation heatmaps and use time shifting to visualise the spread of reaction times and stimuli
responses to car-following input. The central idea of driver differences shows in all figures and
runs like a common thread through is work. While similar analyses were conducted individually
before, this is the first attempt to capture the whole picture of driver variance. Furthermore,
the foundation for this analysis is a high-precision dataset recorded in Tomakomai (Japan) and
was used in several publications [10, 17, 18].

2.2 Abbreviations, terminology and related work

CF models treat traffic participants as separate entities whose motions can be described by
a vector of state variables. Subscripted with the letter n, the nth vehicle is identified and a
vector with variables for speed (v,), acceleration (a,) and spatial location (z,,) is defined. A
microscopic traffic model is then a set of rules or equations evolving v, x, and a,, over time in
dependence on the states of other vehicles. The absence of additional indices already implies
that movement are only one-dimensional. With this restriction, there is no difference between
speed and wvelocity; the terms are used interchangeably unless noted otherwise. Some other
symbols used throughout this publication are the front-bumper to front-bumper distance A z,,,
the space a car occupies in a jam (vehicle length plus some additional space) [,,11, the space
gap g defined as g, := A x,, —l,,+1 and the time headway h calculated as h,, = Azn/v,. Relative
speed is the difference between two vehicles: Av := v,_1 — vy,

Figure 1: Speed vs. space gap and a liner regression.

(a) This plot contains all speed-space gap (b) Linear regression of the speed-
pairs in the dataset. space gap driving relationship grouped by
drivers.
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This dependence on other drivers is called driving relation and forms the core of all car-
following models: it defines a desired velocity as function of distance to the leading vehicle
(microscopic) or the vehicle density p (macroscopic). The underlying assumption is that drivers
tend to keep a individually different but constant time headway, making space gap proportional
to speed (v x g). In order for vehicle n not to crash into the leading vehicle n + 1, g, > vtyct,
which is equivalent to h,, > t.. In both relations, t,.i denotes the total reaction time and
includes mechanical delay as well as anticipation. When g exceeds a certain threshold (~ 70 m),
the lead vehicle’s actions are deemed to become irrelevant for the following vehicle. At this
point the driving relation disbonds and drivers adjust their speed freely.



To verify the linear v— g relationship, we plotted all v—g combinations in the dataset against
each other in|Fig. 1al [Fig. 1b|shows the ouput of linear regressions per driver. For space reasons,
residuals are not presented, individual drivers can nevertheless be identified easily. Despite the
varying slopes, the regression lines roughly meet at 11m < g < 13m and v ~20ms~ ', av —g
combination

A general description and analysis of traffic flows and individual drivers has been approached
from other angles before. In [10] Kerner and Rehborn|describe traffic flow’s experimental prop-
erties of complexity while [Lebacque and Lesort| studied the order of macroscopic traffic flow
models [11]. (Chowdhury et al.| and Helbing| analysed the statistical physics of vehicular traffic
as self-driven many-particle systems [3],[9], Nagel et al. investigated road traffic from the perspec-
tive of jamming [13]. Daganzo| macroscopically described homogeneous, multi-lane motorway
traffic as a result of cumulated driver curves/trajectories with different profiles [4]. There have
been many attempts at understanding and mimicking human driver behaviour by building
psychological models (for an overview, see [2, [7, 12 20] and references therein). Whilst the
majority of these publications are concerned with macroscopic effects and jamming transitions
(macroscopic fundamental diagram, perturbations, critical densities, etc.). Our goals are simi-
lar those of [Todosievl who instructed drivers in a simulator to follow a lead vehicle at what the
participants considered to be a minimum safe distance [22].

Collecting trajectories under real-world conditions is the preferred way obtain exploitable
data about driver behaviour. Unfortunately, the only non-invasive technique to aggregate indi-
vidual vehicle data are video recordings. From the positions of each road participant, speed and
acceleration can be calculated. Because speed/velocity is the first-order antiderivative (primi-
tive function) displacement, and the second-order antiderivative of acceleration. As a result, the
noise from recorded location data grows exponentially when subsequently calculating speed and
acceleration from position data. The publicly available NGSIM datasets ([23]) are therefore not
suited for this analysis. Furthermore, outside controlled experimental conditions drivers might
be distracted or base decisions not only on car-following stimuli but on other factors such as
opposite and adjacent traffic, curves, or road conditions like potholes, slope or narrow lanes.

Figure 2: Selection of speed patterns as executed by driver GO01.
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To avoid these pitfalls, this CF system analysis is based on experimental data, recorded on
a test track| located near Tomakomai (Hokkaido province, Japan). Human CF behaviour was
observed on two 1200 m straight sections without opposing traffic; this is the optimal case and
drivers were probably more attentive here than under real-world traffic conditions. Ten pas-
senger cars were tracked with RTK GPS receivers while following each other. Vehicular speeds
were recorded with a Doppler effect-based tool and an accuracy of 0.04 ms~! (0.16 kmh~1).
All other trajectory features (g, h, x,a) were calculated from the speed measurements. Drivers
whose CF behaviour we are interested in were aged from 20 years to 30 years; their years of driv-
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Figure 3: Bootstrapped traces for the time-variant « — Av relationship for each of
the nine CF vehicles.
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ing experience are shown in To reconstruct real-world driving conditions, driver D01
imitated several patterns of acceleration, constant velocity and deceleration (Fig. 2J).

Table 1: Summary of drivers participating in the experiment.

driver driving experience [years| driver’s age CF time [minutes]

GOl 40 60 N/A
G02 10 30 80.8
G03 3 21 80.9
G04 3 25 80.9
GO5 5 24 80.8
G06 7 25 80.7
GOo7 3 23 80.9
GO8 2 22 80.7
G09 3 24 69.6
G10 10 30 69.4

3 Methodology And Results

Methodologically, the exploratory data analysis of the >700min car-following data is based on
the visualisation of frequency and distribution for a, g, Av and other features. Spectra and
peculiarities of aggregated and individual driver data are presented using violin plots, level-
value plots and box-whisker plots, utilising their respective advantages. Standard deviations on
a per-driver basis are calculated based on normalised inputs for the aforementioned trajectory
features and their differences classified.

The second major part of the paper deals with other input stimuli being decision factors for
a driver to accelerate, decelerate or maintain velocity. This is done by calculating the correlation
between a and said factors. Using bivariate Kernel Density Estimations, differences between
drivers are elaborated and bounds for selected drivers shown. By shifting the observed data



against each other, recalculating correlation coefficients, the time where correlations are highest
can be identified. As exemplarily shown in said peak is approximately located at —1s
for Awv. This trajectory feature shows the highest correlation with driver acceleration behaviour.
The importance of Av and the magnitude of the driver delay confirm previous research. What
is new, is the quantification of differences between drivers leading to this aggregated numbers.

4 Conclusion

In this paper we statistically analysed high-precision car-following trajectories covering more
than 700 min of nine drivers. Distributions of trajectory features were visualised using violin
plots and unravelled that drivers may have a preferred headway they like to maintain but the
range differs immensely from driver to driver. Correlations between vehicle acceleration and
an+1,Av, h and g were investigated with scatter plots and bivariate KDE. We quantified how
strongly drivers react to car-following input stimuli and found some behavioural commonalities
but also individual differences. In the last section we investigated the role of delay by shifting
data series against each other. Employing Spearman, Pearson and Kendall Tau correlation
coefficients, we found the average total reaction time for drivers to be ~1s and showed that Av
is the strongest stimulus when making acceleration decisions. Both results are in agreement
with previous research.

Most current traffic simulations generate their macroscopic dynamics from the interactions
of homogeneous driver populations. The results for similarly experienced and aged drivers
on a test track presented here, indicate that agent-based simulations with higher degrees of
variability would replicate reality more accurately. Since the reactions of individual drivers
were highly inconsistent consistent, coarse microsimulations like Traffic Cellular Automata do
not necessarily yield worse results than more complex simulations. Further research is needed to
understand acceleration behaviour in more detail and answer how long drivers accelerate with a
constant force, how many discernible acceleration steps they employ and in which combinations
drivers switch between these levels.
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