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Abstract 
This paper outlines the final stage in a detailed and complex application of e-ticketing 
transaction data, supported by focussed surveys to generate an overall image of the 
patronage of a complex, multiply connected and multi-modal public transport network.  The 
work aimed to leverage big data assets into survey design and analysis.  Doing this provides 
the opportunity for detailed, robust (and eventually on-demand) statistics about complex 
transport networks without exorbitant resource costs. 

The work was done in conjunction with Public Transport Victoria and their myki system, 
however, it has application to any of the e-ticket systems worldwide. We highlight two 
individual surveying regimes:   

1. One results in a patronage estimate that incorporates a correction term to the digital 
transaction record to account for the difference between digital transactions and 
physical access (the touch-on/off rate or TOR).   

2. The second is an origin-destination (OD) derivation, which combines digital 
patronage data and a traditional intercept survey. This integrated approach enabled 
estimates to be generated for the likelihood of trip combinations that were not directly 
detected in the surveys, increasing efficiency in field and accommodating the 
~47,000 potential OD pairs. 

Rather than specifics on the survey implementation, this paper provides an overview of the 
relationship between the surveys and the transaction data assets and provides the 
generalised statistical methodology for combining the stand-alone touch-on rate and OD 
surveys with the transaction stream. It is presented to provide specific methods, but also to 
stimulate discussion about new opportunities for ‘traditional’ survey data collection within a 
big-data environment. 
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1.  Introduction 
E-ticketing for public transport has many benefits to the consumer (e.g. ease of use and 
reduction in waste). However, it carries far more return for the implementing agency. The 
deployment of more complex ticketing products that can account for multiple modes, multiple 
ticketing zones, and different usage levels is just one example. As data systems mature, 
agencies are increasingly in a position to leverage and combine with other data sources for a 
constantly updating view of network usage. 

All e-ticketing solutions work fundamentally on the same principal:  

1. The patron accesses the network through a (controlled) node, travels on the network 
unmonitored and unhindered, and then exits the network through another (controlled) 
node.   

2. At each control point, the unique identifier of the e-ticket is recorded, facilitating not 
only a financial record, but a geo-located and time-stamped record.  

If this were the complete situation, this digital record would be enough to understand the 
human flow across the network, including patronage loads and demand cycles. 
Unfortunately, the systems are more complex.  

To avoid dangerous situations and impeding people, some access/egress nodes use a pass-
through validator, rather than a physical, automated barrier. These are necessary on 
vehicles such as bus and tram, but they may also be found at stationary locations such as 
rail and light-rail stations.   

In addition, those access nodes that are attached to a vehicle (naturally) move. Although 
GPS can tag and locate the device and the transaction, technical issues such as time-lag 
delay, canyoning (where the vehicle is in the midst of skyscrapers and can’t find a base-
station) all lead to an incomplete instantaneous patronage view.  It should be noted that, with 
respect to the financial ledger, these are not issues. But for policy and planning, and general 
longer term operational aspects of the network, these gaps can lead to misleading analyses 
and, in particular, inappropriate load and demand views. 

Making use of these data assets requires considerable data infrastructure, but also careful 
design work – to ensure that each data set collected integrates into the existing data. 

This particular piece of work was implemented on the public transport network in 
metropolitan Melbourne. It was originally commissioned by Public Transport Victoria, and 
employed Symbolix for sampling design and preparation, analytics and data management. 
Ipsos Australia managed the origin-destination project team, including the complex field-
work components. PTV managed the field deployment of the TOR survey. 

Components of this work have been applied to the bus, tram/light rail and rail networks, as 
well as regional bus networks. We will be focussing on the rail network (Figure 1). It is the 
simplest but is still multiply connected, with a central loop common to all branch lines. The 
access nodes are physical gates permanently positioned (as opposed to the added 
complexity of moving ‘gates’ on trams and buses). 

To establish context in what is a complex environment, this paper will first detail the 
necessary touch-on/off (TOR) correction required for the digital transaction record. From this 
we can detail the new, origin-destination intercept surveys, and how they can be cast onto 
this digital record to gain an insight into the entire set of possible origin-destination 
combinations. 
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Figure 1 The metropolitan Melbourne train system. Note the hub and branched spoke design 
and the potential for bi-directional trips in the loop. Image: www.ptv.vic.gov.au 

 
 

2.  Information architecture 
Before we outline the two case studies we demonstrate the overarching data system that 
relates the e-ticketing system to the two survey datasets (Figure 2).  

In order to be able to sample patrons on the network we required an estimate of patronage. 
Initially this was drawn from earlier incarnations of the patronage surveys (or from timetabled 
trip counts where patronage estimates were not initially available at the required resolution). 
As the TOR survey was implemented, the TOR was used to augment every single 
transaction with a transaction-to-patronage boost factor. This data is fed back into the 
process to allow patrons to be representatively sampled each survey. 

The e-ticketing data was also used to support sampling for the OD survey and to develop the 
final OD matrix. 

Custom staging databases and scripts were developed to manage the sampling and 
analysis process.  Publicly available timetable information (using the General Transit Feed 
Specification) was also integrated to automate the sampling and workload allocation 
process. 
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Figure 2: Relationship between survey and e-ticketing data sets 

 
 

3.  Touch-on rate correction methods 
Within an e-ticketing network, users become effectively invisible to the system whilst within 
it. After scanning-on at an access node, most ticketing systems allow users to move freely 
within the network, until such time as they scan-off and an appropriate charge is levelled. 
Until (or if) a scan-off is registered, there is no information available to the operator about the 
direction travelled on a line. 

Further to this, the use of e-ticketing facilitates more complex product lines, including weekly 
or monthly passes. With these tickets, the patron may bypass the scan-on process entirely 
without consequence, as their e-ticket is valid. 

There are therefore many legitimate reasons that the digital transaction record will not 
directly reflect patronage access. For patronage analysis, this record must be adjusted. We 
do this through a survey to determine the requisite “boost” factor. Statistically, we will use 
this as a ratio estimator (as opposed to a more traditional Horvitz-Thompson style), casting 
onto the digital transaction records to determine patronage count. 

Through careful stratification, and a survey design that attempted to minimise the bias 
impacts due to ratio estimation, we generated a boost factor that can be associated to each 
and every access node. 

In establishing the stratification it is important to note that the strata chosen need to reflect 
the behaviour pattern of scanning-on, and not the patronage pattern itself. This is to reduce 
the variance in the estimate. To do this, we stratified on the weekday type, four classes of 
stations based upon the differences in access mode to that station, and whether the access 
node was a barrier type or a validator. 
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Figure 3: Example plot showing the difference in number of transactions and number of 
patrons.  We aim to correct this with a touch-on rate boost correction. 

 
 

By generating the boost factor in this way, we can generate an access node level correction, 
which gives us the access patronage, corrected for factors such as ticketing product mix. 
This approach specifically targets the access (and egress) of the network.  

Using capital letters to designate “universal” values i.e. modal patronage (Y) and modal 
touch ons/offs (X), and lower case to signify sample values, we have the relationship (see 
Kish (1965) for statistical background on ratio estimators): 

𝑌 =
𝑦
𝑥
𝑋 = 𝑟𝑋 

The variance of Y, the estimate of patronage, is a product of the variance of r only. The 
sampling error in X is zero, as it is a census value taken from the entire financial data set. It 
contains the entire digital record of things that can only be recorded digitally.  

Therefore,  

𝑉𝑎𝑟 𝑌 = 𝑋)𝑉𝑎𝑟(𝑟) 

The bias of such an approach at an average cluster can be shown to follow: 

𝐵𝑖𝑎𝑠(𝑦) ≃ (1 −
𝑛
𝑁
)
1
𝑛𝑥4

(𝑟𝑆6) − 𝑅𝑆6𝑆8) 

So from this formula, we can make the following statements about bias of the total patronage 
estimate using this technique: 

The bias of the estimate will be small if 

• The sample 𝑛 is large 
• The sampling fraction 9

:
 is close to one 

• The average number of passengers through a gate is large (𝑥4) 
• 𝑆; is small (the standard deviation of the digital count) 
• The correlation R is close to one 
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4.  Origin-destination sampling methods 
Although the transactional patronage record provides origin-destination information, there is 
still a place for generating a stand-alone OD probability matrix.  For example, transiting (the 
act of changing services) becomes “invisible” within an e-ticketing system. The OD survey 
data itself can be used to provide more detailed information about the patrons’ end-to-end 
journey in addition to the estimated OD matrix.  Both these assets are important reference 
data sets.  They can be used to validate load models and to provide insight into the drivers 
for journey decisions. 

A traditional approach to generating a matched origin-destination matrix is to approach the 
access nodes individually (the O’s in origin) and directly intercept patrons. Techniques 
employed on the London Metro network involved counting patrons as they go through some 
traffic bottleneck (Department for Transport (UK), 2010). From this minor cohort, individual 
patrons were intercepted for interview, identifying their individual journey termini. The 
simultaneous count of people through the funnel serves to weight the relative propensity for 
that journey OD combination. 

The issue for such a survey design is getting enough coverage of the network. The London 
Area Travel Survey (LATS) employed 300,000 survey responses over 900 stations 
(Strategic Rail Authority Statistics Team (UK), 2005). The patronage flow is highly time 
dependent, so one has to generate a large, simultaneous survey count to ensure 
representative coverage. This issue is exacerbated if the intercepts are done on platforms, 
as the origin destination combinations are necessarily conditional upon the survey point. 

To survey the entire Melbourne rail network using this approach would take 217 person 
days, surveying each rail station for an entire day. In fact, it is nearly twice this value, as 
many platforms have a direction associated with them. To truly capture the entire row of the 
OD matrix will require every platform on the network. 

To increase the efficiency we needed to: 

1. Increase the number of journey OD combinations that can be intercepted at a single 
time point, and  

2. Remove the need to generate an absolute patronage estimate from the survey 
collection.  

This second point was tackled by generating a relative OD weighting, and then using the 
TORS corrected digital records to generate the universal count of patronage for each OD 
combination. 

This methodology required us to sample patrons proportional to patron/trip density but meant 
we could reduce the surveying effort significantly. 

4.1 Types of intercept 
There were two types of intercept used:  

1. Traditional gate intercepts, and  
2. On-vehicle intercepts.  

They perform two very different but related tasks. 

Gate intercepts have a simple probability of selection and the benefit that a surveyor can 
collect multiple surveys from the one origin location without moving. However, standing on a 
platform (or stop), one can only detect origin-destination pairs that are from that specific 
origin (Table 1). They are surveying a single row of the traditional OD matrix with no context.  

The second type of intercept is an “on-vehicle” intercept. If the interviewer waits until the 
doors of the vehicle shut, and intercepts a patron between two stops (i.e. before the doors 
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open again) then they are sampling from all OD combinations that span that interception 
point. This is a sub-matrix of the OD matrix, and is more efficient (Table 2). However, it 
carries the burden that calculating the probability of interception of these journeys is no 
longer simple.  

 

Table 1: Showing a traditional Access node interception survey made at Node C. Cross 
hatching indicates the potential for directionality 

 Destination 

A B C D E F G H 

O
rig

in
 

A         

B         

C         

D         

E         

F         

 

 

Table 2 : Showing an on-vehicle interception, between Nodes C & D 

 Destination 

A B C D E F G H 

O
rig

in
 

A         

B         

C         

D         

E         

F         

 

An alternate view of on-vehicle interception is shown in Figure 4. Note how the gate intercept 
(red dashed line) can only detect the two red journeys. The green dashed line denotes an 
on-vehicle intercept, and is capable of intercepting all the green journeys, as well as the two 
original red trips.  
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Figure 4: Possible on-vehicle intercepts (green) and at-gate intercepts (red). 

 
 

4.2 Sampling design 
We used two-stage sampling, where the cluster (intercept location) was chosen first, with 
probability proportional to trip density/patronage, then individuals were randomly chosen in-
field.  

The probability of intercepting patron j’s trip: 

	𝑃 𝑗 = 	𝑃 𝐼 𝑃(𝑗|𝐼) 

That is, the probability of intercepting j is the product of the probability of selecting the 
interception point, and the probability of selecting j given we are at the interception point. 

The interception point is behaving as a cluster. So the conditional probability is given by the 
number of interviews made divided by the volume of patrons. 

𝑃 𝑗 𝐼 ∝ 1/𝑁patrons 

To sample patronage (with equal probability of selection) the probability of selecting an 
interception point must be proportional to the number of patrons within the interception point, 
i.e. 

𝑃 𝐼 ∝ 𝑁Patrons 

To select the two samples we attach a selection weight to each of the interception points. 
For access nodes, this is simply the TORS corrected patronage count. For the on-vehicle 
interception points, we need an estimate of point load.  

The point load on a vehicle is estimated as the cumulative sum of all serviced access points 
(TOR adjusted patronage) less the cumulative sum of all estimated egress patrons to that 
point. This then is a time independent representation of the number of patron trips spanning 
an interception point. P(I). 

𝑃 𝐼 ∝ 	 𝑇𝑂𝑅 ∗ 𝑁On −	
OPQ

ORS

	 𝑇𝑂𝑅 ∗ 𝑁Off

OPQ

OR)
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Given a set of interception clusters, we select a time based again on the relative activity rate 
at that point. In this way, we have a set of clusters that are selected approximately 
proportional to patronage. 

4.2.1 De-weighting long trips during the post-collection analysis 
The probability of interception with on-vehicle intercepts is biassed towards trips that span 
more interception points. So, upon interception, the response needs to be de-weighted by 
this factor to produce a representative sample of patrons, and hence trips. This is not an 
issue with the gate interceptions. 

From Figure 4 we see how the patron can be captured at a variety of interception points and 
how shorter trips suffer a reduced detection probability with an on-vehicle intercept design.  

The probability then of a vehicular intercept interview j is then 

𝑃 𝑗 = 	 𝑃 𝑘 𝑃 𝑗 𝑘
Q∈W

	

≈ 𝑀Z𝑃 𝐼 𝑃(𝑗|𝐼) 

The M represents the number of possible interception points (k) where the patron j could 
have been intercepted. This is unknown until the interception interview itself. It is therefore 
added post hoc in the analysis stage. Without incorporating it, those taking longer trips will 
be more likely to be interviewed. 

4.3 Generating field workloads 
The two interception methods were employed within a single work-shift by a single 
interviewer/field officer. 

Shifts were created using custom scripts that statistically selected either an intercept or a 
gate to begin the shift. From this point, field officers were directed onto services to generate 
on-vehicle intercepts at particular points on the network, or back out onto gates based upon 
the patronage estimates.  The achieved sampling fraction for each required strata were 
dynamically updated and used to adjust the probability matrix for the next shifts.   

For safety reasons the shifts were generated such that field officers were not surveying on 
fully laden vehicles during peak periods. During these times gate interceptions were selected 
preferentially. A load model (under development) was used to predict high load services and 
adjust the shift accordingly. 

Field officers collected geo-location data that allowed us to verify the actual responses 
against the expected sample. 

Although complex, such a design enabled us to move the field officers across and through 
the network. They were able to move in such a way as to keep in touch with the average 
patron at that time, keeping the sampling representative. 

4.4 Verification through simulation  
To verify that this form of interception could work, a simulation experiment was run. In it we 
created a known OD patronage distribution. We create a survey agent who, based on a 
nominated interception point, randomly selects an allowable OD-pairing. From this we 
attempt to regenerate the original OD matrix. The code simulates a large number of 
‘surveyed’ journeys. 

As can be seen from Figure 5 we see the approach is non-biassed (the simulation results on 
the x-axis reproduce the simulated OD patronage on the y-axis). 

Secondly, it has a much lower variance around high patronage OD pairs. This follows 
precisely the same pattern as the TOR sampling approach, which is designed to generate 
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tighter relative confidence bounds around commonly used access nodes, than less common 
ones. This is an important feature of both surveys as a 20% relative error has far greater 
implications for planning on a million transactions-a-month gate, than it does on a 40 
transactions-a-month gate. 

The use of log-transformed axes is not to control for variance, as one might expect with 
count and proportional data, but merely to manage the large spread in response values and 
produce an interpretable chart.  

The horizontal and vertical artefacts correspond to the discretisation effects of generating 
proportions from integer-based counts.  

Attention is also to be drawn to the odd on-vehicle intercepts (blue) that appear to under-
predict quite significantly (to the right of the figure). These are left in the chart to highlight just 
how much information is needed regarding the network topology. The Melbourne train 
network is multiply connected, with a central loop (Figure 1).  This means there are different 
numbers of interception weights between two given OD pairs, depending upon how the 
patron travelled from O-to-D. In these cases, the simulation averaged the possible paths to 
generate the down-weight. In practice, this value is part of the survey response and is known 
explicitly. It was unavailable to the simulation, which had only an OD matrix to start with. 
These points are left to highlight the sensitivity of the approach to this knowledge (or lack of 
it) and as a point of discussion about the volume of external data that this approach rests 
upon. 

 

Figure 5: Verification simulation results.  Blue are simulated on-vehicle intercepts and red are 
at-gate.   

 
 

The simulation also gave us insight into how to generate a high coverage of the network 
using these two techniques in tandem. This is represented by the relative location of the gate 
(red) and the on-vehicle (blue) points in the above figure. 

With a hub-and-spoke style network with the hub at the CBD, performing a gate intercept at 
the hub generates coverage of the vast majority of possible journeys. Simply, most patrons 
travel from a spoke and exit in (or near) the hub (or vice-versa). Gate surveys are very 
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efficient at these locations. They complement the on-vehicle interceptions, which are more 
efficient towards the lesser-used spoke ends.  

The OD survey then uses both gate intercepts and on-vehicle intercepts as replicate surveys 
to combine and generate the complete, relative OD matrix. 

4.5 Analysis methods 
To generate a sample of every OD pair directly would be prohibitively expensive. One of the 
driving motivations for attempting such a survey design extends both from the increasing 
size of modern networks (the metropolitan Melbourne rail network has over 46,000 possible 
combinations), and we required a technique that returned a (non-zero) estimate for low 
proportion OD combinations.  

Following data collection, we generated two replicated survey tables, holding the proportion 
of OD trips on the network for each intercept type. These tables contained the proportions as 
directly measured by the survey responses, down-weighted by the number of interception 
points. 

In its simplest form, each cell of the OD matrix, γij, represents a proportion, which we would 
normally model using a beta distribution. We can, however, use the additional constraint that 
the row must total to unity to use a generalised distribution, the multinomial beta, or Dirichlet. 
This extends from the truism that every patron accessing the network at origin O must, 
necessarily exit the network somewhere. 

To provide an idea of the analysis method, let us focus on just one row, which describes the 
proportion of destinations, j, given an origin, i. 

We invoke a vector of parameters, called β, whose components, βj describe this row of 
destinations. We also describe a pseudo-population (the reasoning behind this terminology 
will become clear later) given by 𝐾 = 	 𝛽ZZ .  

From this we can generate the expectation for the proportion of each destination given the 
origin as 𝛾Z = 𝐸 𝜋Z = 	 `a

b
. This generalises to the entire OD matrix through 𝛾OZ = 𝐸 𝜋OZ =

	`ca
bc

.  

4.6 Incorporating TORS corrected e-ticketing data 
To generate an OD matrix that covers all possible trips, we added the patronage corrected 
e-ticketing data.  From this we extracted all existing OD pairs. This data set is not perfect but 
serves as a first-guess at the O-D matrix, allowing us to infer O-D probability even if a 
particular pair was not surveyed.  If we did not include an informative prior guess, we would 
require many more survey observations or accept a statistically (much) weaker result. 

Bayes theorem states that the expectation of the OD proportion (the posterior) is also a 
Dirichlet density (Agresti, 2002), implying  

𝐸 𝜋Z 𝑛S, … , 𝑛: = 	
𝑛Z + 	𝛽Z
𝑛 + 𝐾

 

 

Here, we have used the symbol, nj to denote the observed cell (row x column) population, 
and n to denote the relevant, row sample size. The key to this OD integration is the 
manipulation of the above to 

𝐸 𝜋Z 𝑛S, … , 𝑛: = 	
𝑛

𝑛 + 𝐾
𝑝Z + 	

𝐾
𝑛 + 𝐾

𝛾Z 
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The second term is our prior information (the e-ticketing generated OD matrix), and the first 
term is the sample effort information, which can be seen to be a weighted average through 
the relative sizes of the sample, n, and the pseudo-population, K, of the prior information. 

The problem was that K may be very large and dominate the study, more so than our 
expression of true confidence in it. The myki data (or any e-ticketing data) contains millions 
of paired transactions that swamp the size of the survey. We descaled this population, so 
that it gives the relevant insight, and allows each survey cohort to contribute its own 
information.  

4.7 The shrinkage parameter 
As alluded to in the introduction, the transactional set, even when corrected by the TORs 
boost factor, is not a complete set. There are many instances where there is legitimately no 
scan-off record associated with a scan-on, boosted or otherwise. 

Let us presume that we wish to bias our results to the prior assumption by 10%, i.e. 1:9 
relative weighting. To do this our pseudo-population for the prior must be  

𝐾 =
10%×𝑛

(100% − 10%)
 

This enables us to control how much influence our prior information holds over our 
observation. The sample size is fixed, so we manipulate the prior only, and generate a new 
estimate. A natural estimate of our confidence is the proportion of paired scan-ons within the 
transactional set. 

The variance for any point estimate of proportion under these constraints is then 

𝑉𝑎𝑟 𝜋OZ = 	
𝜋OZ(1 − 𝜋OZ)
(𝑛 + 𝐾 + 1)

 

4.7.1 Important Notes on the use of shrinkage 
The sampled control vector is relative weighted to accommodate the difference in trip 
interception probability. However, this relative weighting does not alter the effective sample 
size, n, which remains true to the survey (i.e. 100 sample count, even individually relative 
down-weighted, still sum to 100 weight). 

The shrinkage parameter can be used repeatedly, to “shrink” multiple surveys and data 
streams together. For the survey presented here we used this approach to combine the two 
intercept types onto the e-ticketing data. Care must be taken that the overzealous use of this 
control does not overwhelm the analysis with false confidence. A good rule of thumb is that 
at no time should the resulting pseudo-population (n+K) increase much beyond that of the 
sample sizes. 

4.8 Results 
To finally present a transport matrix, the relative scaling of the rows of the current 
proportional matrix must be re-enforced. The use of the Dirichlet structure means that the 
proportional OD matrix has each row independently combining to unity, or equal weighting 
across rows.  

Each row sums to 100%, and indicates the proportion of destinations given the access point. 
The e-ticketing data, with the relevant TORs correction gives the physical numbers of 
patrons using that access point. 

By multiplying this number onto each row, a traditional transport OD is generated, correctly 
reflecting the amount of patronage within each cell. Importantly, this also provides an avenue 
to generate the number of trips between an OD pair for a time-period where there was no 
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survey.  Provided the analyst is satisfied that the OD proportions remain reasonably 
constant, an OD proportion matrix generated by a survey in November could be multiplied 
onto the patronage for February to estimate the number of patrons attempting each journey 
in the latter month. 

Lastly, this approach also ensures that ‘one source of truth’ for patronage assessments 
within the organisation is maintained. That is, the estimated patronage from summing the 
OD matrix will always agree with the official, estimated patronage as generated from the 
focussed TOR/patronage survey. This is a critical aspect of modern data analytics, ensuring 
that different tools do not generate a plethora of interpretations for fundamental operational 
metrics. 

Figure 6 shows a complete OD picture of the metropolitan Melbourne train network. The 
lighter colour indicates greater numbers of patronage. While the axis text is illegible at this 
resolution, the figure still serves to highlight the connectivity of the network, and distinctive 
OD patterns are clearly visible. On each axis, stations in close geographic proximity to each 
other are presented near to each other on the axis, which is why there are distinctive 
squares, showing the journeys between those locations. The city loop stations are also easy 
to pick out, as they have a lot of patrons travelling in both the Origin and Destination 
directions, from all the other stations.  
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Figure 6: A complete OD picture of the metropolitan Melbourne train network. 
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