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Abstract 

Ramp metering has been shown to be a useful tool for increasing the overall efficiency of the 
freeway system. However, they can have negative side-effects such as user rejection, 
encouragement of congestion inducing trip choices, and even urban sprawl. To reduce the 
burden of these side-effects, this paper develops the building blocks of a supplementary 
algorithm which is able to address some of these issues. An analytical framework is 
developed to better justify the choices made in developing the algorithm and is used to 
compare the proposed solution to the system optimal and the typical equity strategy adopted 
in the literature. The results show that some of the side-effects examined are addressed 
whilst still operating close the system optimal efficiency. 

1. Introduction 

A ramp meter is a set of traffic lights placed along freeway entrance on-ramps. The main 
difference between standard traffic lights and ramp meters is that short cycle lengths 
(typically between 4 to 18 seconds) are used to regulate the release of vehicle/s (one vehicle 
or a small cluster of vehicles) into the freeway (Burley and Gaffney 2013). Ramp meters fall 
within the broader field of Intelligent Transport Systems (ITS) (Piotrowicz and Robinson 
1995). 

Whilst the benefits of ramp metering has been shown through both simulation 
(Papageorgiou and Kotsialos 2002, Kotsialos and Papageorgiou 2004, Amini, Aydos et al. 
2015, Amini, Grzybowska et al. 2015) and field data (Haj-Salem and Papageorgiou 1995, 
Levinson and Zhang 2006, Faulkner, Dekker et al. 2013), many of the side-effects 
associated with ramp metering continue to be a concern. Figure 1 classifies and summarizes 
these side effects. 

Figure 1: Negative Side-effects of Ramp Metering 
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Majority of the negative impacts of ramp meters are due to the uneven distribution of ramp 
metering delays between the onramps. Examples of negative side effects include: 

 An increase in long discretionary trips during the peak period (ZhangI and Levinson 2002) 

 Large ramp metering delays can cause motorists to re-route through local streets (i.e. rat-run) 

to use an alternative onramp with lower delay (Piotrowicz and Robinson 1995). 

 Whilst trips at onramps that are metered appear to experience peak spreading, the unmetered 

entry points experience peak narrowing (Papageorgiou and Papamichail 2007).  

 The inequity resulting from the current methods of distributing ramp metering delays among 

onramps have also been sighted as a major concern for motorists and the road authorities 

(Arnold Jr 1998, Jacobson, Stribiak et al. 2006, Mizuta, Roberts et al. 2014). 

(Amini, Gardner et al. 2016) suggested that if the ramp metering delays were distributed 
according to the level of congestion caused by each onramp many of the negative side-
effects may be alleviated. This concept was based on horizontal equity or cost-responsibility 
(as referred to in congestion tolling). A methodology was also developed for calculating the 
“equitable” ramp metering delays (in this paper referred to as the ideal RM delays) based on 
the same concept. However, the previous paper only focused on evaluating existing ramp 
metering systems and did not explore the methodology of implementing the proposed 
concept. The aim of this research is to fill this gap by developing a supplementary ramp 
metering algorithm to address the negative side effects of ramp metering.  

In the process of developing the supplementary algorithm an analytical framework is 
developed to isolate the effects of the proposed ramp metering strategy. The framework is a 
direct response to the concerns raised regarding how ramp metering algorithms have been 
evaluated in the literature (Zhang and Levinson 2004). Typically the only validation step 
taken is simulating the final product (i.e. ramp metering strategy). Whilst simulations allow for 
the evaluation of complex and interacting variables, they do not indicate why an algorithm 
performs the way it does. 

The proposed analytical framework determines how the proposed RM strategy performs in 
comparison to existing strategies. To isolate the implications of the PS strategy, an idealized 
scenario is assumed where ramp meters are able to perfectly maximize throughput on the 
freeway. These assumptions result in deterministic mathematical equations and closed form 
solutions for different strategies given any demand and network configuration. The 
framework is also used to compare the Proposed Solution (PS) against two other strategies, 
namely System Optimal (SO) and Typical Equity (TE). The assumptions are then removed 
sequencially until a generalized optimization program and its associated solution method is 
developed. 

Three ramp metering strategies are examined. These trategies differ only in how they 
distribute the RM delays when maximizing the bottlneck/s utilization. Their objectives are 
defined as: 

1. System Optimal (SO) - minimize Total System Travel Time (TSTT). 

2. Typical Equity (TE) – the RM delays are the same across all onramps. 

3. Proposed Solution (PS) – distribute the RM delays between the onramps (and in time) 

according to the level contribution to the bottlnecks. Detailed reasons for selecting this 

objective is summarized in (Amini, Gardner et al. 2016). 

2. Assumptions in the Analytical Framework 

In this section the primary assumptions of the analytical framework and the associated 
terminologies are defined. 

A metering update-period (also refered to as control period or traffic cycle) is a short period 
of time during which the same ramp metering rate is applied. During each update-period 
traffic conditions are measured by detectors and used to calculate the metering rate to be 
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applied in the following update-period. Update-periods used in ramp metering range 
between 15 to 60 seconds (Papageorgiou and Papamichail 2007). In the analytical 
framework an update-period of one hour is defined to simplify the formulations presented 
and to exadurate the effects. 

The analytical framework is assumed to operated under the steady-state condition, such that 
the travel time between onramps and any part of the freeway (i.e. bottleneck/s) is 
instantanious as long as the freeway is congestion free. 

The bottleneck patrons of onramp i, refers to the number of vehicles that depart the onramp 
and travel through bottleneck b (see Figure 3). In addition, the proportion of bottleneck 

patrons ( bi, ) refers to the bottleneck patrons divided by the total number of vehicles 

departing onramp i. The non-bottleneck patrons exit the freeway via offramps upstream of 
the bottleneck. 

Dead time occurs because each motorist on an onramp has to wait their turn to enter the 
freeway regardless of their destination. Dead time refers specifically to the ramp metering 
delay experienced by motorists that are non-bottleneck patrons. As metering non-bottleneck 
patrons does not improve the bottleneck condition, dead time only serves to increase the 
inefficiency of the ramp metering system. 

Unlimited controlability is assumed. Thus, no limit is imposed on the queue storage space or 
maximum metering rates. The minimum metering rate is equal to zero (i.e. ramp closure). 

Ramp Metering (RM) delay is defined to be the average ramp metering delay experienced 
by vehicles exiting an onramp during one update-period. A vertical queue at the stopline of 
the onramps is assumed. The Input-Output diagram (shown in Figure 2) is used to calculate 
the RM delay of each onramp (Lawson, Lovell et al. 1997). The area between the input and 
output lines is the experienced delay (Lovell and Windover 1999). As shown in Figure 2, the 
RM delay () is the area of the triangle w-x-z divided by the metering rate (r). The left-over 
delay (triangle x-y-z) is the delay incurred by vehicles that are unable to depart the onramp 
during the update-period. The Total Metering Delay (TMD), is defined to be the sum of the 
area w-x-y across all onramps. The TMD is used to compare the efficiency of each ramp 
metering strategy. These variables can be derived by calculating the area of the respective 
triangles. 
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Figure 2: Input-Output Diagram of an Onramp with a Ramp Meter 
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It is assumed that the controllers are able to realise perfect metering, meaning that 
maximum bottleneck throughput is achived at all times. In other words, if the traffic demand 
at a bottleneck is larger than its capacity, the controllers meter the demand so that the total 
amount of traffic at the bottleneck is exactly at capacity (i.e. just before capacity drop). Thus, 
maximizing the bottlneck throughput is a pre-condition of the ramp metering strategies 
examined. The perfect metering assumption can be sumarized mathematically: 


i

iirC    Ii          4 

3. Development of the PS Strategy 

3.1 Simple Network 

The network shown in Figure 3 has the advantage of allowing for exact solutions to be 
solved numerically.  

Figure 3: Simple Network (one bottleneck) 

 

The PS strategy has three interacting variables all of which are dependant on the decision 
variable (i.e. metering rates). Firstly the bottleneck utilization is to be maximized using 
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Equation (4). Second, the RM delays (Equation 1). Third, the onramp contribution to the 
bottleneck and is comprised the following two ratios: 

1. P1 is the direct contribution from an onramp to the bottleneck (i.e. punishment for 

contributing to congestion). It is defined as the bottleneck patrons from onramp i divided by 

the total number of motorists in the bottleneck:  
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2. P2 is the proportion of bottleneck patrons (i.e. compensation for not contributing to 

congestion). It is defined as the bottleneck patrons from onramp i divided by the total vehicles 
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The final contribution of onramp i is defined in Equation 5. Thus, the contribution increases 
as more vehicles from the onramp entre the bottleneck. The contribution is reduced as its 
ratio of bottleneck patrons is reduced (i.e. to reduce the burden non-bottleneck patrons): 
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The objective of the PS strategy is to distribute the RM delay (required to maintain the 
bottleneck at capacity) among the onramps according to their contribution. Thus, the 
according to the PS strategy, the RM delay to be applied at onramp i is: 

 
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As an alternative, the total RM delay (i.e.  ) was considered instead of the average RM delay 
(i.e.  ). The advantage of using total RM delay is that the TMD remains the same after 
redistributing it using Equation 6. However, the total RM delay can be reduced by releasing 
less vehicles (i.e. more restrictive metering), which would increase the average RM delay. 
As the objective of the PS strategy is to take into account the delay experienced by 
individual drivers, the average RM delay is utilized. 

Substituting Equation 5 and 1 into Equation 6: 
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Substituting Equation (4) in Equation (7) and solving for 1r : 
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1r  in Equation 8 can be solved using the standard quadratic formula. 2r  can be solved using: 
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3.2 Generic Network 

Figure 4: Generic Network

 

This section explores the solution method for the generic network shown in Figure 4. The 
generic network (especially the possible existence of multiple bottlenecks) can result in a 
number of challenges in meeting the objectives of the PS strategy. These issues are 
systematically addressed and the properties of the solution methods examined. 

It is easy to see that the algebraic solution method adopted for the simple network is too 
complicated to adopt for the generic network. Thus, its optimization program is derived and 
solved to global optimum using the Couenne solver in AMPL (Belotti 2009).  

The optimization program for the PS strategy is bi-objective, because it requires maximum 
bottleneck utilization and to distribute the RM delays according to the strategy’s objective.  
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Derivation of the Contributions for a Generalized Network: 

The PS strategy requires that the RM delays are distributed between the onramps according 
to its contribution to the freeway congestion. The contribution of onramp i to bottelneck b can 
be calculated by generalizing Equation 5 to a multi-bottleneck network. However, it may 
result in unintentional bias between bottlenecks, because the summation of the contributions 
to bottleneck b may not equal unity (unless i,b=j,b=1). i.e.: 
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To remove the unintentional bias between bottlenecks, it is necessary that the summation of 
all onramp contributions to bottleneck b is equal to one. Otherwise each bottleneck could 
have a different weight according to the values of i,b’s. Thus, the bottleneck weights are 
normalized as follows (N.B. normalization of Equation 5 for a simple network is not required 
as there is only one bottleneck): 

 

















































Ik

kbk

ibi

Ik

Ij

jbj

kbk

Ij

jbj

ibi

bi
r

r

r

r

r

r

oncontributi
2

,

2

,

,

2

,

,

2

,

,












      10 

The total contribution of onramp i is equal to the summation of the normalized contribution to 
each bottleneck: 
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The Objectives of the PS Strategy Cannot be Perfectly Satisfied: 

The “ideal” RM delay ( i̂ ) according to the PS strategy is calculated as follows: 
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For any solution the ideal RM delay can be calculated. The term ideal RM delay ( i̂ ) is used 

because it is typically impossible to realize the ideal RM delay across all onramps. The ideal 

RM delay ( i̂ ) is distinguished from the Optimized RM delay ( i ). The Optimized RM delay 
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is associated with the solution that will result in the minimum gap with ideal RM delay. Thus, 
the objective of the PS strategy is to find the Optimized RM delay.  

There are a number of methods available for measuring the gap ( ii  ˆ ) (Creedy 1998, 

Ramjerdi 2005, Raffinetti, Siletti et al. 2014, Litman 2015). Whilst some consider the total 
gap in the system (e.g. Least absolute deviation), others focus purely on the distribution of 
the gap (e.g. Normalized Gini coefficient). The Root Mean Squared Error (RMSE) is a well-
known method used for measuring the differences between values (e.g. a set of predicted 
and measured values), and is highly sensitive to outliers due to its squared term. The latter 
is highly desirable in this context, as the minimization of RMSE tends towards solutions that 
distributes the gap relatively equally among the onramps. Whilst the MinMax approach 
ensures the minimum gap for the onramp with the largest gap, RMSE also takes into 
account the total gap created in the system. RMSE is selected as the objective function of 
the PS strategy due to its desired properties, relative simplicity, and having the same unit as 
the measured variable.  
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Constraint 14 ensures that the bottleneck capacities are never exceeded. Constraints 15 and 
16 ensure minimum metering flows and flow conservation respectively. 

Maximising Bottleneck Utilization: 

The above program minimizes RMSE without maximizing the utilization of bottleneck/s. In 
keeping with the objective of developing a supplementary algorithm, it is assumed that the 
nearest upstream onramp to each bottleneck (i.e. responding onramp) is responsible for 
regulating the bottleneck inflow at capacity. Thus, the freeway utilization is maximized by 
restricting the metering rates at responding onramps as constraints. Whilst the metering 
rates at the remaining non-responding onramps are the decision variables in the RMSE 
minimization problem as discussed above. In other words, the onramp closest to each 
bottleneck is responsible for keeping it at capacity and its impact on RMSE is controlled 
indirectly through the combined metering rate of onramps further upstream. 

The metering rates of the responding onramps are calculated according to Equation 17 
(similar to Equation 11). This way the efficiency of every bottleneck is ensured, whilst 
distributing the metering task in order to minimise RMSE.  
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It is theoretically possible that the responding onramp is unable to maintain the bottleneck at 
capacity (e.g. due to limited demand) and the bottleneck would experience capacity drop. 
However, such a scenario is unlikely as the increased bottleneck accumulation would result 
in the contributing onramps being assigned significantly more RM delay until the bottleneck 
is at capacity again. Regardless, the ideal responding onramp assigned to optimize a 
bottleneck would have the highest level of controllability over the bottleneck (which is 
typically the nearest upstream onramp). 

To demonstrate the proposed method of maximizing the freeway utilization the experiment 
shown in Figure 5 is devised. The responding onramps are highlighted as orange onramps. 
The green off-ramps (placed immediately before the bottlenecks) represent all upstream off-
ramps up to the next upstream bottleneck. The experiment is first solved using program 13 
to 16, which does not consider the utilization of the two bottlenecks. The results show that 
RMSE of zero can be achieved. However, the throughput of both bottlenecks is less than 
1200 vehicles/hour, much lower than the available capacity of 1500 vehicles/hour. Thus, the 
system is said to be “starved”, a highly undesirable outcome as the supply of the road 
network is wasted. 

The same experiment was solved by adding Constraint 17 to the program, thus maximising 
the utilization of the bottlenecks. The results show a small gap (RMSE=0.042 hours) 
between ideal and optimized RM delays. This is because the metering rates are forced to 
completely utilise the bottleneck capacities (i.e. the throughput of both bottlenecks is at 
capacity). In other words the constraint of maximizing the freeway bottleneck (Constraint 17) 
limits the solution space which may result in some degree of discrepancy between the ideal 
and optimized delays. As a result the Total Metering Delay is reduced significantly (more 
than 30% in this scenario) (Figure 5). 

Figure 5: Impact of Maximizing Bottleneck Utilization in the PS Strategy
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Permanent Versus Removable Bottlenecks: 

In a multi-bottleneck freeway, optimising the outflow of one bottleneck (according to the PS 
strategy) may affect the demand at another bottleneck. It is possible that the demand at the 
affected bottleneck is reduced such that it is unnecessary for its responding onramp to 
continue metering it. More specifically, if the metering rate of a responding onramp is 

calculated to be larger than or equal to its demand (i.e. ii qr   according to Equation 17), the 

bottleneck is assumed to be operating in the non-congested regime and is no longer 
considered a bottleneck. This condition is more likely to occur at bottlenecks with a demand 
close to capacity. It can be caused by upstream bottleneck/s: the combination of optimized 
metering rates responding to an upstream bottleneck result in a large portion of traffic exiting 
the freeway between the two bottlenecks. It can also be caused by downstream bottleneck/s: 
the onramp contributions to downstream bottleneck/s are large enough that the optimized 
RM delays result in the demand of an upstream bottleneck to be lower than its capacity. 

To demonstrate the above condition the scenario shown in Figure 6 is examined. The 

maximum traffic that can exit bottleneck 3 is 10003 C  vehicles/hour. Thus, the maximum 

demand of bottleneck 2 is ( 260032,342,462,6  qqq  ) vehicles/hour (due to 2,62,5  

and 36 Cq  ). The maximum demand of bottleneck 2 is close to its capacity 25002 C  
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vehicles/hour. The following describes how the influences of upstream and downstream 

bottlenecks reduce the demand of bottleneck 2 such that 22 qr   (according to Equation 17): 

 Effect on bottleneck 2 due to bottleneck 3 (upstream): 1,61,5    and 3,63,5   , 

thus the contribution of onramp 5 is higher than onramp 6. It is expected that 65 rr   

after the metering rates are optimized. Thus, the demand for bottleneck 2 is reduced 

(since 2,62,5   ).  

 Effect on Bottleneck 2 due to Bottleneck 1 (downstream): onramp 4 contributes to 

Bottleneck 1 and 2, resulting in a larger optimized RM delay for this onramp, further 

reducing the demand for Bottleneck 2.  

 

Figure 6: Scenario for Highlighting the effects of Permanent and Removable Bottlenecks 

 

The discussion above highlights that Bottleneck 2 is close to its capacity and that the 
metering required at the other two bottlenecks would reduce the demand at Bottleneck 2 
below its capacity. The top chart of Figure 7 shows the solution for the Program 13 to 17. 
Constraint 17 imposes an increase of the metering rate at onramp 4, otherwise Constraint 16 

would not be satisfied for onramp 3 (i.e. 33 qr  ). These constraint restrictions have resulted 

in an increase of RMSE. Thus, enforcing Constraint 17 on a bottleneck with low demand can 
significantly restrict the realisation of the PS strategy objectives. A low demand bottleneck 
should be treated like any other (free-flowing) segment of the freeway, otherwise it artificially 
increases RMSE simply because it was pre-selected as a bottleneck location.  

To increase the flexibility of the responding onramps when their bottleneck demand is low, 
Constraint 17 is replaced with Constraint 18 and 19. The Dummy Variables (DV) are binary 

variables and allow the solution to bound ir  when Constraints 15 and 16 are active. 

Constraint 19 ensures that only one of the DV’s is equal to one and the other two equal zero. 
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DVDVDV         19 

 

Bb  

and bi  is the 

onramp 

immediately 

upstream of b
(i.e. responding 

onramps) 

The middle chart of Figure 7 shows the optimized solution given the program 13 to 16 
including Constraints 18 and 19. Bottleneck 2 is now able to operating below capacity (i.e. a 
total inflow of 2382 vehicles/hour and a capacity of 2500 vehicles/hour). Constraint 18 allows 

the meter at onramp 3 to switch off (i.e. 33 qr  ), without effecting upstream onramp. 

However, the resulting RMSE is even larger than applying Constraint 17, because onramp 3 
contributes to Bottleneck 1 but does not experience any RM delay. 
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To deal with the above issue, it is proposed that when ii qr   (according to Equation 17), the 

bottleneck is removed from the system. More specifically contributions to it are set to zero 
and its responding onramp is released from its duty (i.e. constraint to maximise its 
bottlenecks utilization). Thus, this ramp meter is free to be optimized directly as a decision 
variable (in the same way as other non-responding onramps). To achieve this, Constraints 
18 and 19 are modified as follows: 
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onramps) 

If DV1=1 then ir  is bounded to Constraint 15 (i.e. )200ir . The inequality in Constraint 20 

and 21 allows ir  to be restricted to Constraint 17 when DV3=1 (i.e. when its bottleneck is 

active). If DV2=1 then it is bounded by ii qr 200  (i.e. its bottleneck is removed), thus ir  

is a decision variable with the same level of freedom as the non-responding onramps. 

Constraint 22 ensures that the only time DV2=1 is when ii qr   (i.e. ir  can only be “free” 

variable when the condition to remove its bottleneck is met). Constraint 23 forces only one of 
the DV’s equal one. Constraint 24 ensures that if a bottleneck is removed then any 

contributions to it are removed from the objective function by setting the variable 0bBC  

(N.B. 1bBC if ii qr   for its responding onramp). Constraints 25 and 26 ensure that at 

least one bottleneck is forced to be at capacity. If all bottlenecks are allowed to operate 
below capacity, the objective of maximizing bottleneck utilisation would not been achieved 
(i.e. it would be possible for all bottlenecks to be removed by metering all bottlenecks below 
capacity). 

In order to allow the bBC  variable to remove or include the contributions to a bottleneck, it is 

multiplied by the normalized bottleneck contribution (i.e. multiplied by Equation 10). Thus, 

the ideal RM delay ( i̂ ) of the Objective Function 13 is calculated using Equation 27 instead 

of Equation 12. 
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To highlight the effects of removing a bottleneck, the solution to Program 13 to 16 ( i̂  

calculated using Equation 27) including Constraints 20 to 26 is shown in the bottom chart of 
Figure 7. The demand for Bottleneck 2 (i.e. 2285 vehicles/hour) is still below capacity. 

However, 3r  is no longer restricted to the traffic conditions at Bottleneck 2 and is effectively 

a “free” variable in the same manner as the other non-responding onramps. The result 
shows that the flexibility of removing in-active bottlenecks significantly reduces RMSE. The 
resulting TMD (i.e. 1056 vehicle.hours) is slightly larger than the TMD obtained when 
assuming a permanent bottleneck and applying Constraint 17 (i.e. 1022 vehicle.hours). The 
latter method is in effect increasing the freeway throughput (i.e. disregarding the PS strategy 
until the low demand bottleneck is activated). A distinction is made between increasing the 
freeway throughput simply to activate a bottleneck and maximizing the bottleneck utilization 
when it is already active (which is one of the objectives of the PS strategy). 
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Figure 7: Comparison of Permanent and Removable Bottlenecks in the PS Strategy
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All Bottlenecks are Not Equal: 

Equation 10 normalizes the contribution to each bottleneck, therefore all bottlenecks are 
considered equal. However, as shown in Figure 7, some bottlenecks carry a larger number 
of vehicles. In addition, once the perfect metering assumption is removed, each bottleneck 
may contain a different level of congestion. Thus, when calculating the contribution to 
congestion across multiple bottlenecks, it is necessary to distinguish between bottlenecks by 
weighing them according to their throughput and level of congestion. 

Two methods for intentionally differentiating between bottlenecks were explored, including 
the average bottleneck delay and bottleneck count. Both of which can be easily calculated 
using count detectors at the entrance and exit of the bottleneck segment. The advantage of 
using the average bottleneck delay (of the vehicles exiting the bottleneck segment in an 
update-period) is that it is sensitive to the congestion level and uses the same unit as the 
decision variable (i.e. delay). However, bottleneck count is able to capture both the 
congestion level and the throughput difference between bottlenecks. Thus, Bottleneck Count 

( bBC ) is selected to weigh bottlenecks. Due to the perfect metering assumption (i.e. 

bottleneck queue build-up does not occur), bBC is equal to the bottleneck outflow during an 

update-period. The complete program 28 to 38 of PS strategy for a generic network is 
presented below. Constraint 36 includes the total bottleneck outflow as a weighting factor. 

Figure 8 highlights the difference between equal bottleneck weights and bottlenecks 
weighted using bottleneck counts. The demand scenario is the same as Figure 6, and the 
top chart in Figure 8 is the same solution as the bottom chart in Figure 7. The bars in Figure 
8 highlight the contribution to each bottleneck. There are no contributions to Bottleneck 2 as 
it has been removed as described previously. The middle chart in Figure 8 highlights the 
solution with weighted bottlenecks. The contributions to Bottleneck 3 are reduced by a third 
when weighted. The resulting change in contribution pushes a larger RM delay at onramps 
contributing to Bottleneck 1. However, the capacity Constraint 29 restricts this desire. The 
bottom chart of Figure 8 shows the changes to on the optimum RM delay due to the 
bottleneck weights. Onramp 1 is assigned more delay as it is the main contributor to 
Bottleneck 1. The total contribution of onramp 5 is reduced more than onramp 6, because 
onramp 5 is the main contributor to Bottleneck 3 (the weight of which is reduced). Thus, 
onramp 6 is assigned relatively more RM delay when bottleneck weights are included. 
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Figure 8: Comparison of Weighted and Non-weighted Bottlenecks in the PS Strategy
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4. Comparison with SO and TE Strategies 

4.1 Derivation of the System Optimal (SO) Program 

In the SO strategy the objective is to minimize TSTT, which is equivalent to maximising 
throughput (Papageorgiou 1980). The the SO strategy can be achieved by solving the 
optimization program 39 to 42. 











Ii

irMin           39 

Subject to: 

 



Ii

bbji Cr ,   Bb         40 

200ir   Ii          41 

ii qr    Ii           42 

To maximize throughput, the objective function maximises the metering rates across all 
onramps, whilst ensuring the freeway demand is at or below the capacity of all bottelnecks 
(i.e. Constraint 40).  Constraints 41 and 42 ensure minimum metering flows and flow 
conservation respectively. 

4.2 Derivation of the Typical Equity (TE) Program 

The TE strategy can be solved with the optimization program for SO if the following 
constraint is added to the program. Constraint 43 requires that all onramps have equal RM 
delays (derived from Equation 1).  

i

i

q

r

q

r


1

1   Ii          43 

Objective Function 39 ensures optimum utilization of the freeway capacity, and Constraint 43 
ensures the RM delays are distributed according to the TE strategy. 

4.3 Comparative Results 

As an example the scenario shown in Figure 9 is optimized (globally) for the SO, TE, and the 
final PS strategy programs using AMPL. The results of the three strategies are highlighted in 
Figure 10. The ideal RM delay is calculated using Equation 27 and is utilised only in the PS 
strategy. However, it is displayed with the optimized results of the SO and TE strategies for 
comparison purposes, and to highlight the interaction between contributions and the 
optimized RM delays. 
Figure 9: Example Scenario for Comparison of the Three RM Strategies
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Figure 10: Comparison of SO, TE, and PS Strategies
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All three bottlenecks operate at capacity in solution of the SO strategy. The strategy assigns 
the entire metering task for Bottleneck b to the onramp with the largest proportion of 

bottleneck patrons ( bi, ). As described in Framework 1 this strategy minimizes dead time. 

However, the ideal RM delay shows that the onramps that are switched off are have a large 
contribution in comparison to the metered onramps. As a result a large RMSE=0.559 hours 
is observed. 

All bottlenecks are at capacity in the PS strategy. The constraints that maximise the 
bottleneck utilisation, limit the degree to which the ideal RM delay can be realized. However, 
in comparison to the SO strategy most ramp meters are switched on and RM delays are 
distributed according to the onramp contributions as best as possible. The resulting 
TMD=991 vehicle.hours is 7% more than the SO strategy (as compared to 67% in the TE 
strategy), whilst the RMSE=0.211 hours which is less than half the RMSE of the SO strategy 
(and smaller than the TE strategy). 

The PS strategy reduces other side-effects as well. For example, the maximum RM delay 
experienced by an individual vehicle is 0.45, 0.44, 0.8 hours for the PS, TE, and SO 
strategies respectively. In addition, the maximum onramp queue at the end of the one hour 
period is 524, 899, 800 vehicles for the PS, TE, and SO strategies respectively. 

5. Conclusions 

The foundation of a supplementary algorithm is developed with the aim of alleviating some of 
the negative side effects of ramp metering. The generalized optimization program and its 
associated solution algorithm is fit for incorporation into a Model Predictive Control (MPC) 
framework to realise the PS strategy in the real world (i.e. subject of future research). In 
addition an analytical framework has been developed and used to examine the properties of 
the proposed solution. The proposed solution (PS) was compared to System Optimal (SO) 
and Typical Equity (TE) ramp metering strategies. The comparison reveals that the proposed 
strategy can operate close to system optimal efficiency, whilst significantly improving equity, 
reducing maximum RM delay and the maximum onramp queue length. In future research its 
impact on other side effects such as diversions and urban sprawl will be examined. 
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Notations 

 Sets 

I  Set of all onramps 

T  Set of all discretised update-periods during the study 

B  Set of all freeway bottleneck 

iU  Set of onramps upstream of onramp Ii  
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Parameters 

tbC ,  Capacity of bottleneck Bb during update-period Tt  (vehicles/hour) 

iq
 Inflow demand for onramp Ii  (vehicles/hour) 

bi,
 Proportion of bottleneck patrons from onramp Ii  and bottleneck Bb  

n  The total number of onramps included in the study 

  The total number of update periods included in the study 

  The total number of bottlenecks included in the study 

Variables 

i  the index of an individual onramp Ii  

t  the index of an individual discretised update-period Tt  

b  the index of an individual bottleneck Bb  

 tri  Metering rate at onramp Ii  during update-period Tt  (vehicles/hour) 

ti ,
 Optimized (applied) RM delay of onramp Ii  during update-period Tt  (seconds 

per vehicle) 

ti ,̂
 Ideal RM delay of onramp Ii  during update-period Tt  (seconds per vehicle) 

tbiDV ,,  Dummy variable associated with onramp Ii  and bottleneck Bb  during update-

period Tt  

tbBC ,  Bottleneck Count (weighing factor) associated with bottleneck Bb during update-

period Tt . Comprised of bottleneck outflow plus accumulation of vehicles in the 

bottleneck segment during an update period. 
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