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Abstract 
This study proposes a Neural Network (NN) classifier model for predicting crashes on 
freeways and arterials in urban road networks. NN is a biologically-inspired information 
processing paradigm which is composed of interconnected processing elements (neurons). 
This study considers the probability of crash occurrence as a class variable and applies an 
NN model to compute the crash probability to predict a crash occurrence within a given area 
in the network. Feature variables in this study are traffic condition variables (speed of links). 
This study develops a data-driven approach for building and evaluating NN models. The 
models are trained and tested using actual traffic and crash data collected in Brisbane, 
Australia from 2013 to 2016. The evaluation results show that the proposed models can 
successfully predict crash occurrence with a desired level of accuracy.  

 

1. Introduction 

In recent years, there is a growing trend to apply big data and machine learning techniques to 
real-time traffic management. Traffic crash prediction is one of the fields that can make use of 
such technological advance. If traffic managers can anticipate the time and location of a crash 
occurrence before it happens, the managers will be able to reduce the duration and impacts 
of unplanned traffic crashes more effectively and proactively manage the network to reduce 
or prevent the risk of crashes occurring. 

A significant progress has been made in the field of traffic crash prediction since 2001. Various 
machine learning models are applied to this field, such as Bayesian model (Oh et al., 2001; 
Yu and Abdel-Aty, 2013a), log-linear model (Lee et al., 2002, 2003; Hourdos et al., 2006), 
logistic regression (Abdel-Aty et al., 2004, 2005; Lee et al., 2006; Abdel-Aty and 
Pemmanaboina, 2006; Abdel-Aty et al., 2007; Ahmed et al., 2012; Xu et al., 2014), 
probabilistic neural network (Abdel-Aty and Pande, 2005; Oh et al., 2005), Bayesian belief net 
(Hossain and Muromachi, 2012), Bayesian hierarchical models (Yu et al., 2013; Yu and Abdel-
Aty, 2013a), support vector machine (Yu and Abdel-Aty, 2013b; Sun et al., 2014), and random 
forest (Xu et al., 2013). 

There are, however, limitations in the existing studies, especially when it comes to the 
applicability of traffic crash prediction models in a real-world context for real-time traffic 
management. Some research gaps identified from the existing literature are summarised as 
follows: 

 1) Spatial coverage and network scale: the existing models were mainly tested for 
freeways and most study networks are limited to the corridor-level. To support traffic and 
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incident management covering the entire network, a network-level traffic prediction model 
should be developed and tested, considering various road types and modes.  

 2) Temporal coverage of crash prediction: the existing studies adopt a 5-minute interval 
as a prediction horizon, which means that the models can predict a crash occurrence 5 
minutes before it may happen. While some studies attempt to predict crash occurrences 20 
minutes into the future, most of the existing models focus on the 5-minute prediction horizon, 
which is considered to be too short for traffic managers to take meaningful actions to mitigate 
or prevent the potential crashes. 

3) Handling imbalanced datasets: Since crashes are rare events, the ratio of crash 
data to non-crash data is very small (less than 5% of the total traffic observations). Such 
imbalanced datasets make the distribution of class variable highly skewed and tend to prevent 
the model from learning the class distribution properly. To address challenges faced with 
imbalanced datasets, the existing studies apply a sampling technique called undersampling, 
which is to filter a large portion of the non-crash data to create a balanced dataset. Although 
such a technique provides a temporary solution to handling challenges in model training, 
fundamental questions on practical solutions to this imbalanced dataset problem in crash 
prediction remain largely unanswered. 

The objective of this study is to establish a traffic crash prediction model for real-time traffic 
management by addressing the above-mentioned limitations. Extending our previous study 
that applies a Naïve Bayes model for network-wide crash prediction (Wang and Kim, 2016), 
this study develops a large-scale Neural Network (NN) model for crash prediction that 
incorporates link speed information from the whole network and predicts a crash occurrence 
within a given area in the network up to 3 hours into the future. 

2. Neural Network 
A Neural Network (NN) is a biologically-inspired information processing paradigm which is 
composed of interconnected processing elements (neurons). An NN can be regarded as a 
non-linear function, whose estimation process is determining the value of the parameters of 
the neurons. In general, constructing an NN model requires the following three steps: (i) 
defining input (feature) and output (class) variables for the model, (ii) specifying the model 
structure, and (iii) specifying parameters of the neurons. Figure 1 shows an example of the 
NN model. The input layer is the input of the model, and the output layer is the output of the 
model. Each neuron in the input layer (A or B) represents a corresponding feature variable 
(i.e. predictor, attribute), which is the input of the model. Similarly, each neuron in the output 
layer (E) represents a corresponding class variable (i.e. target variable), which is the output of 
the model. The second step is to determine how many neurons are placed in the model and 
how they connect with each other. Neurons are connected through arrows, which represent 
the data flow. Each neuron has its own input and output. In Figure 1, the outputs of neuron A 
and B are the inputs of each of C and D; the outputs of C and D are the inputs of E. The 
parameters of a neuron are weights and bias, which are used for computing the linear 
transformation of the inputs. Let N be the number of inputs of the neuron; Ii be the i-th input; 
Wi be the i-th weight; B be the bias, L be the linear transformation outcome, formula (1) shows 
the linear transformation process. 

ܮ  ൌ ൭෍ ௜ܹ ∗ ௜ܫ

ே

௜ୀଵ

൱ ൅  (1) ܤ

In order to introduce nonlinearity to the mapping from input to output of a neuron, an activation 
function is applied to compute the output of a neuron. One common selection of activation 
function is a sigmoid function. In such case, let A be the activation function (sigmoid), O be 
the output of the neuron, then: 



ATRF 2017 Proceedings 

3 

 ܱ ൌ ሻܮሺܣ ൌ ሻܮሺ݀݅݋݉݃݅ݏ ൌ
1

1 ൅ ݁ି௅
 (2) 

To conclude, the computation of neuron output is sending inputs to a linear map, followed by 
a non-linear map. In the third step of NN model constructing, the weights and the bias for each 
neuron are estimated based on historical data. 

After the model is constructed, the model output (class variable) can be computed based on 
model input (feature variable). 

 

Figure 1: An example of the NN model 

 

 

3. Data and Study Site 
In this project, the following set of data was used for the crash prediction modeling work: 

- Link speed data (2013-06-16 ~ 2016-04-05) from TMR through Public Traffic Data 
System (PTDS). The speed data were collected from a total of 744 links as shown in 
Figure 2. 

- Crash data (2013-06-16 ~ 2016-04-05) from TMR through STREAMS Crash 
Management System (SIMS). The crash data were mapped to the cells shown in Figure 
3 to define the class variable at the area-level and to estimate the probability of a crash 
occurring within each cell. 

These two datasets are processed such that traffic speed and crash states are presented at 
every 3-minute interval, producing a total of 365,936 records. 



ATRF 2017 Proceedings 

4 

Figure 2: Locations of 744 links from which traffic speed data were collected

 

 

Figure 3: A view of spatial boundaries for which an area-wide crash prediction is performed.  
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4. Model Development 

The value of a class variable in this study only represents the probability of crash occurrence 
without any location or occurrence time details. Therefore, multiple class variables are 
constructed for different combinations of Cells (polygon areas defined in Figure 3) and Time 
windows (time intervals in the future, defined in 5.1). Crash prediction models developed in 
this study are a set of NN models that have the same feature variables but different class 
variables. That is, we build a separate NN model for each class variable (i.e., the crash 
occurrence probability in the corresponding Cell and Time window) but use the same model 
structure and feature variables across all NN models.  

4.1. Defining variables 

In each crash prediction model, there are one class variable and a set of feature variables 
defined as follows: 

 - Class variable: Ci,j represents the probability that at least one crash will occur in Cell i during 
Time window j. Each cell is a polygon area defined in Figure 3. A time window is a 10-minutes 
time interval in the future. Time window j represents the time interval from (j – 1) * 10 minutes 
later to j * 10 minutes later. For example, C4,2 represents the probability of crash occurrence 
in Cell 4 during the period of 10 minutes later to 20 minutes later.  

 - Feature variable: NSm,n represents the normalized traffic speed value of Link m, n minutes 
ago. For example, NS157,30 represents the normalized speed of Link 157, 30 minutes ago. Let 
Sm,n be the corresponding speed (not normalized) of NSm,n. Formula (3) shows the 
computation process of NSm,n.  

 ܰܵ௠,௡ ൌ
ܵ௠,௡ െ ݉݁ܽ݊ሺܵ௠,௡ሻ

ሺܵ௠,௡ሻ݀ݐݏ
 (3) 

In this study, there are 744 links, so m can be one of the numbers from 1 to 744. The 
normalized speed of 60 minutes ago, 30 minutes ago, and present are selected as features, 
so n can be 0, 30, or 60. Therefore, each crash prediction model has 744 * 3 = 2232 features. 

As such, for each combination of cell and time window, the associated NN model includes a 
total of 2233 variables, which consist of 1 class variable and 2232 feature variables. Table 1 
presents the list of variables and their definitions. 

Table 2 provides an example of data used to build an NN classifier for Cell 3, Time window 5. 
The data are in the form of a 365936-by-2233 matrix, where 2233 columns represent the 
2233 model variables defined above and 365936 rows represent observations from the period 
of 2013-06-16 to 2016-04-05. 
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Table 1: Variables and their definitions for the proposed NN model 

Variable 
Type 

Name Specifics Variable Defined 

Class 
variable 

Crash occurrence 
probability in Cell i,  

Time window j 
 (௜,௝ܥ)

- For historical data, the value can only be 0 
or 1 because whether crashes have occurred 
is already known. 
- For computed outcome, the value range is 
from 0 to 1. 

For each 
combination of 

cells and  
time windows 

Feature 
variable 

Normalized speed 
of Link m, 

n minutes ago 
(ܵ௠,௡) 

- In each feature variable, the average value 
is 0 and the standard deviation is 1. 

For each 
combination of 

links and the time 
when the speed 

recorded 

Table 2: An example of processed data for the crash prediction model associated with Cell 3, 
Time window 5; columns represent 2233 model variables, which consist of 1 class variable + 
2232 feature variables, and rows represent observations. 

Ci,j NS1,0 NS2,0 … NS744,0 NS1,30 … NS744,30 NS1,60 … NS744,60 

0 0.392  2.022  … 0.014  ‐0.810  … 0.150  0.996  … ‐0.931 

0 ‐0.972  ‐1.230  … ‐1.285  0.422  … 0.019  0.579  … 0.657 

0 0.458  ‐0.096  … 0.181  0.516  … 0.599  0.861  … ‐0.276 

1 ‐0.242  ‐0.763  … 0.658  0.574  … 1.868  ‐0.760  … ‐0.774 

1 ‐1.608  0.248  … 1.284  ‐0.810  … 1.132  ‐0.555  … ‐1.438 

1 0.392  2.022  … 0.014  0.422  … ‐0.773  0.937  … 0.072 

… … … … … … … … … … … 
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4.2. Model overview 

The crash prediction models in this study have the same feature variables and model 
structure. Figure 4 shows the template of the prediction models. In each model, there are one 
input layer, five hidden layers, and one output layer. In the input layer, there are 2232 neurons, 
each of which corresponds to one feature variable. In each hidden layer, there are 200 
neurons. In the output layer, there is only one neuron that corresponds to a specific class 
variable. 

Figure 4: The template of crash prediction models 

 

 

5. Evaluation 

Once models are built, it is important to assess their prediction performance based on 
historical data. For each NN model of this study, the full dataset (with 365936 records, as 
described in 4.1 and Table 2) are randomly divided into 3 subsets: a training set (305936 
records), a validation set (30000 records), and a test set (30000 records). In the evaluation 
process, each NN model is first trained with training data, then different evaluation methods 
are applied to the model with test data. 

5.1. Preparations and settings 

5.1.1. Crash prediction models 

In the evaluation process, 4 cells and 18 time windows are selected for assessing the 
prediction performance of the proposed NN models. Therefore, there are 4 * 18 = 72 class 
variables, each of which has a corresponding NN model. 

The four cells selected for this validation are shown in the region map in Figure 3. In Figure 3, 
the cells are constructed using the radius-based partitioning method with the desired cell 
radius of 1.5 km. Cells with red circles (labeled 1, 2, 3, and 4) are four study sites in Chermside, 
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Brisbane City, Woolloongabba, and Eight Mile Plains selected for the model evaluation. The 
details of the study sites are provided in Table 3. These four sites were chosen because the 
road segments in these areas are known as crash hotspots, based on the information provided 
by TMR. 

The eighteen time windows are 10-minutes time intervals covering the next 3 hours. In another 
word, any time point within the next 3 hours corresponds to a specific time window. The time 
windows are labeled 1 to 18. 

For example, if we want to know the probability of crash occurrence 1 hour and 5 minutes later 
of Cell 3, the corresponding class variable is C3-7. Then the corresponding NN model is called 
to compute the probability of crash occurrence C3-7. 

 

Table 3: Information on the four selected study sites used for model validation; site number 
represent the labels shown in Figure 3 

Cell ID Latitude Longitude Description 

1 -27.3856 153.0309 Gympie Road at Chermside 

2 -27.4784 153.0274 Riverside expressway at Brisbane City 

3 -27.4894 153.0329 Pacific Motorway at Stanley St at Woolloongabba 

4 -27.5834 153.1045 
Pacific Motorway / Gateway in both directions at 

Eight Mile Plains 

 

5.1.2. Threshold probability for classification 

Once the crash probabilities are estimated, the next step is to assign a class label (either 
Crash or Non-crash) to each row based on a pre-defined threshold probability. The threshold 
probability is a threshold probability beyond which the test result is classified as positive when 
a specific condition is checked for. The specific condition considered in this study is “will there 
be a crash in Cell i in Time window j?” and, if we set the threshold probability of 0.1, the test 
result for an instance will be classified as ‘positive’ or ‘yes’ (e.g., labelled Crash) if the 
estimated probability of the condition happening is greater than 0.1 and classified as ‘negative’ 
or ‘no’ (e.g., labelled Non-crash) otherwise. Since the choice of the threshold probability 
directly affects the classification outcome, care must be taken in choosing a threshold 
probability. For instance, increasing the threshold would result in fewer false positives (fewer 
cases that wrongly identifies a crash when it has not happened) but more false negatives 
(more cases that fail to identify a crash when it has happened). A common method for 
selecting the optimal threshold probability value for a given NN model is to find the value 
that maximizes F1 score. Details of F1 score is provided in the next section. For each model, 
its own optimal threshold probability value is identified and the prediction results produced 
under this threshold probability are used to evaluate the model performance.  

5.1.3. Performance measures 

The proportion of records that have a crash is less than 5%, indicating that the occurrences of 
the crash are quite rare. As such, evaluating model performance using a simple measure of 
classification accuracy, which is the percentage that the predicted class matches the actual 
class, is not meaningful. For example, when the probability of the crash is less than 5% as 
mentioned above, the classification accuracy will be always greater than 95% even if the 
classifier predicts everything as “Non-crash” and never assign any instance to the “Crash” 
class. To address this issue, there are more accurate performance measures, which are 
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Precision, Recall, F1 score, ROC, AUC, and PRC. The definitions of these measures are 
provided below: 

 Precision, also called positive predictive value, is the ratio of true positive prediction to 
all positive prediction, measured at a given threshold probability value. The higher the 
precision, the more accurate the prediction result. In this study, it equals to the correct 
crash predictions divided by all crash predictions. In other words, it represents the 
proportion of crash prediction that is right. 

݊݋݅ݐ݅ܿ݁ݎܲ ൌ
݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ

݁ݒ݅ݐ݅ݏ݋݌	݀݁ݐܿ݅݀݁ݎ݌	݈݈ܽ
ൌ

݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ
݁݅ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ ൅ ݁ݒ݅ݐ݅ݏ݋݌	݁ݏ݈݂ܽ

 

 Recall, also called sensitivity, true positive rate, or probability of detection, is the 
ratio of true positive to all actual positive records, measured at a given threshold 
probability value. The higher the recall, the more accurate the prediction result. In this 
study, it is equal to correct crash prediction overall actual crash records. In other words, 
it represents the proportion of crash records that were correctly predicted by the model.  

ܴ݈݈݁ܿܽ ൌ
݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ

݁ݒ݅ݐ݅ݏ݋݌	݈ܽݑݐܿܽ	݈݈ܽ
ൌ

݁݅ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ
݁ݒ݅ݐ݅ݏ݋݌	݁ݑݎݐ ൅ ݁ݒ݅ݐܽ݃݁݊	݁ݏ݈݂ܽ

 

 F1 score takes both precision and recall into consideration as it is defined as the 
harmonic mean of precision and recall. As in precision and recall, the higher the ܨଵ score, 
the more accurate the result. ܨଵ score measures the average performance of the 
prediction at a specific threshold probability value. This thus can be used to select the 
optimal threshold probability value for a given model, which can be done by finding the 
threshold value that maximises ܨଵ score. 

ଵܨ ൌ 2 ∙
݊݋݅ݏ݅ܿ݁ݎܲ ∙ ܴ݈݈݁ܿܽ
݊݋݅ݏ݅ܿ݁ݎܲ ൅ ܴ݈݈݁ܿܽ

 

 ROC curve (Receiver Operating Characteristic curve) is a graphical plot that shows the 
value of true positive rate (TPR or sensitivity) against the value of false positive rate (FPR 
or 1-specificity) at various threshold probability values. While Precision, Recall, and ܨଵ 
score are threshold-specific measures, that is, they are defined for individual threshold 
probabilities, ROC curve is a threshold-free measure as it shows pairs of TPR and FPR 
values calculated at all possible threshold probability values. As such, a ROC curve 
measures the overall performance of a model. 

 AUC (Area Under Curve) is the area under the curve of ROC and provides a single score 
that captures the overall model performance measured by the ROC curve. The higher the 
AUC, the better the model performance. AUC is 0.5 for random guess and 1.0 for perfect 
classifiers. AUC scores are convenient to compare the performances of different models. 

 PRC (Precision Recall Curve) is a graphical plot that shows the value of precision against 
the value of recall at various threshold probability values. Like ROC, PRC curve is also a 
threshold-free measure that indicates the overall performance of a model. 
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5.2. Results 

5.2.1. Overview 

For each of the 72 combinations of 4 cells and 18 time windows, a correspond NN network is 
tested. In Figure 5, the test results are averaged among 18 time windows for modeling in 
each cell. The results show that the precision is between 0.109 and 0.200 and the recall is 
between 0.109 and 0.137. The highest precision of 0.200 was obtained for Cell 1 at Gympie 
Road at Chermside, suggesting that 20% of the model predicted crashes were correct. The 
highest recall of 0.137 was obtained for Cell 4 at Eight Mile Plains, suggesting that 13.7% of 
actual crashes are correctly predicted by the model. While variations are observed in 
individual precision and recall values, the overall model performance captured by ܨଵ score 
appears to be consistent across sites. 
 
Table 4: Performance measures derived from the crash prediction results for four cells 

Cell ID Precision Recall F1 AUC 

1 0.200  0.109  0.117  0.851 

2 0.109  0.125  0.102  0.827 

3 0.168  0.115  0.109  0.838 

4 0.165  0.137  0.123  0.866 

Average 0.160  0.121  0.113  0.846 

 

5.2.2. Comparison with Logistic Regression and SVM models 

To understand if NN is a good model type for this study, we prepare Logistic Regression (LR) 
models and SVM models to compare with NN models. For each of the 72 NN model, an LR 
model and an SVM model are built and test with the exact same datasets of the NN model. 
To compare the prediction performance of the three models among 4 selected cells, Figure 5 
and Figure 6 show the AUC and F1 score of the three model types among the 4 test cells. The 
NN models have the best prediction performance in all cells. 

Figure 5: AUC among test cells 
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Figure 6: F1 score among test cells 

 

 

To compare the prediction performance of the three models among 18 time windows, Figure 
7 and Figure 8 show how the AUC and F1 score of the three model types changes over the 18 
time windows. The NN models have the best prediction performance in all time windows. 

 

Figure 7: AUC among time windows 
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Figure 8: F1 among time windows 

 

 

Figure 9 presents the ROC curves which show the overall performance of the three model 
types. Those are averaged ROC curves, each of which is generated by integrating the 
probability predictions of the test sets of the 72 models of the corresponding model type. In a 
ROC graph, the model with better performance is closer to (0, 1), because the lower false 
positive rate and the higher true positive rate represents better prediction performance. For 
more information on ROC, readers are referred to introductory articles such as (Davis and 
Goadrich, 2006; Fawcett, 2006). According to Figure 9, NN is the best model type in ROC 
test. 

 

Figure 9: The ROC of three model types 
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Figure 10 shows the PRC curves of the three model types. Like ROC, the curves are averaged 
PRC curves for the three model types. PRC shows the relation of the precision and recall 
relation as the threshold changes. Precision and recall are typically inversely related. To take 
an incident model in this study as an example, a lower threshold value results in more records 
that classified as “Crash”. Therefore, the precision of the prediction outcome decreases (less 
precise), while the recall increases (successfully predicts more crashes). Considering a larger 
precision and recall indicate better model performance, the curve closer to (1,1) (i.e. the 
precision and recall are both 1) corresponds to a better model. In other words, the upper right 
curve represents better performance because it has a higher precision when the recall is the 
same, and it has a higher recall when the precision is the same. According to Figure 10, NN 
is the best model type in PRC test. 

 

Figure 10: The PRC of three model types 

 

 

6. Conclusion 

This study proposes a Neural Network (NN) classifier model for predicting crashes on 
freeways and urban road networks. Compared with other studies, the models in this study 
have following advantages: (i) The models in other studies can only be applied to a part of 
freeways, while models in this study can be applied to all freeways and urban road networks, 
(ii) The models in this study can predict crashes in the next 3 hours, which is significantly 
longer than the models in other studies, (iii) The models in this study is evaluated in the way 
that strictly simulates the real-time traffic management environment, (iv) The models in this 
study have high prediction performance.  

The methodology for building and validating an NN classifier model described in this study is 
general and flexible, allowing the NN-based traffic prediction framework to be easily applicable 
to other regions and cities. The proposed model could be easily integrated into real-time traffic 
and crash management systems, where the model is built offline (with parameters learned 
from historical data) and the prediction crashes can be performed online by updating the 
values of feature variables based on real-time traffic condition information.  
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There are some limitations in the current study and future research directions are identified to 
address them. Firstly, this paper focuses on only four cells that are known as incident hot 
spots for model evaluation. In order to assess the model performance more accurately, more 
cells will be included in the further study. Secondly, only the data from Brisbane is used for 
model training and evaluation. When the proposed model is applied to other cities, the model 
performance may vary. Therefore, a further study will be needed to test the model using data 
from other cities.  
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