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 Abstract 
 

 

Dynamic speed guidance at signalised intersections to minimise the fuel consumption has 

been explored for many years. The vehicle manoeuvring in the urban setting will be mainly 

influenced by the traffic signal control and neighbouring vehicles, but its combined effect on 

the driving speed control has not been fully explored in the literature. In this paper, a 

Reinforcement Learning based speed control algorithm is proposed to provide the real-time 

fuel-optimal velocity. The control objective is to minimise the fuel consumption of a control 

vehicle at an isolated signalised intersection. Although the literature presents some early 

studies of eco-speed control, their application is limited to simple driving environments where 

there is no neighbouring traffic other than one control vehicle. The proposed algorithm is able 

to optimise the driving speed of a control vehicle taking into account its leading vehicle as well 

as the traffic signal timing condition. The analysis results show that the algorithm is able to 

effectively reduce the fuel consumption and complete stopping at a red signal. The saving of 

fuel ranged from 6% and 58%. The variation in the fuel saving is analysed by the control 

vehicle’s approaching speed, traffic signal timing and leading vehicle status.  
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1. Introduction 

The transport sector is responsible for 60% of global fuel consumption (Jollands et al., 2010) 

Fossil fuel is one of the major greenhouse gas contributors, and 88% of transport-related CO2 

emission is caused by the surface transport sector (Stanley et al., 2011). Therefore, it is 

essential to address the negative externalities caused by automobiles. Eco-driving was 

introduced to reduce fuel consumption and emission exhaust by enhancing driving habits. 

Early eco-driving practice focused on providing driving guidelines and training programs for 

drivers (Andrieu and Pierre, 2012, Strömberg and Karlsson, 2013, Beusen et al., 2009). 

However, drivers tend to fall back to their old driving behaviour quickly, as predicting such 

optimal manoeuvring under realistic driving environments is simply implausible (Kanok et al., 

2010, Thew, 2007, Beusen et al., 2009).   

In the urban setting, the traffic signal is the main source of periodic disruption of traffic flow. 

Responding to the changes in traffic flow imposed by traffic signals and neighbouring traffic, 

vehicles deviate from their optimal trajectory. Acceleration, deceleration and stop-and-go as a 

result of the traffic signal operation are the main contributors to excessive fuel consumption 

and emission exhaust (Barth et al., 2011, Mandava et al., 2009). The stop-and-go behaviour 

may incur additional emission exhaust of up to 14%, compared to vehicles travelling at a 

constant speed (Xia et al., 2012). Minimising unnecessary idling, acceleration and 

deceleration can effectively reduce fuel consumption and emission. However, current eco-

driving practice requires considerable improvements to allow drivers to better respond to the 

traffic signal operation and neighbouring traffic to extend its application to wider and more 

realistic driving environments. 

The emerging connected vehicle technology offers technological support to significantly 

advance the current practice of eco-driving by allowing to exchange real-time information 

among cars and between cars and infrastructures (Olia et al., 2016, Katsaros et al., 2011, 

Guler et al., 2014, Feng et al., 2015). More recent studies have proposed adaptive speed 

guidance algorithms, which provide driving speed recommendations on a real-time basis to 

cope with changing traffic control conditions, as an improvement to the earlier eco-driving 

practice (Barth et al., 2011, Rakha and Kamalanathsharma, 2011). Existing speed control 

algorithms provide individual control vehicles with target speeds, acceleration or deceleration 

limits and speed alerts to reduce vehicle fuel consumption levels. Various assumptions have 

been made regarding the driving environments; however, most of the speed control algorithms 

are limited to simple driving environments where there is no neighbouring traffic other than 

one control vehicle (Barth et al., 2011, Kamalanathsharma and Rakha, 2013, Hooker, 1988, 

Saerens, 2012, Zhang and Yao, 2015, Ozatay et al., 2012) 

A number of optimisation methods have been applied to achieve various control objectives to 

provide vehicles with speed recommendations. Mandava et al. (2009) proposed an algorithm 

using a constrained optimisation technique. Asadi and Vahidi (2011)  developed a cruise 

control system using model predictive control. Other optimisation techniques including; a 

Lagrange multiplier method (Wu et al., 2011), Pontryagin’s minimum principle (Schwarzkopf 

and Leipnik, 1977, Wan et al., 2016, Ozatay et al., 2012), Dynamic Programming (Mahler and 

Vahidi, 2014, Mensing et al., 2011, Ozatay et al., 2013, Hellström et al., 2010, 

Kamalanathsharma and Rakha, 2013) and genetic algorithm (Chen et al., 2014),  have been 

used for driving speed control in the literature. The aforementioned optimisation methods have 

drawbacks, including mathematical complexities, the need for an explicit model of the 

environment, or low computational efficiency (Mensing et al., 2011, Wan et al., 2016, Ozatay 

et al., 2012, Baskar et al., 2011). 
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Due to the complex and multi-factorial interactions among vehicles and with traffic signal 

control, machine learning techniques such as reinforcement learning (RL) have great potential 

for driving speed optimisation. RL is widely used, due to its generality and close relation to 

human thinking and learning behaviour through experience. RL has been employed to solve 

optimisation problems across a broad variety of engineering areas, but it has not been fully 

explored in the context of traffic engineering applications (Abdulhai and Kattan, 2003). A 

model-free RL technique called Q-learning offers significant advantages over traditional 

optimal control techniques including computational efficiency, easy implementation, and a 

continuous learning process (Sutton and Barto, 1998, Watkins and Dayan, 1992, Abdulhai 

and Kattan, 2003). 

This paper presents a Q-learning based speed control algorithm. The control objective is to 

minimise the fuel consumption of a control vehicle at an isolated signalised intersection. 

Although the literature presents some early studies of eco-speed control, their application is 

limited to simple driving environments where there is no neighbouring traffic other than one 

control vehicle. The proposed algorithm is able to optimise the driving speed of a control 

vehicle taking into account its leading vehicle as well as the traffic signal timing conditions.   

This proposed eco-speed control algorithm is significant in that: 1) it is able to account for the 

leading vehicle and the traffic signal operation in the driving speed optimisation; 2) it takes a 

model-free, self-learning approach for improved practicality and adaptability; and 3) it utilises 

an explicit fuel consumption model rather than an oversimplified surrogate measure. This 

study builds on the Q-learning agent, developed and calibrated through a comprehensive 

sensitivity test (Gamage and Lee, 2016). The enhanced algorithm is trained and tested using 

Aimsun microsimulation model. The algorithm is validated through a series of simulation tests 

under varying conditions. The performance is quantified in terms of fuel consumption, travel 

time, and complete stopping, which is then compared to a base scenario without the speed 

control for performance evaluation.  

 

2. Methodology 

2.1 Reinforcement Learning 

RL is a closed-loop autonomous sequential decision-making algorithm that is inspired by 

human learning behaviour and decision-making process (Sutton and Barto, 1998). The 

decision-making of RL is refined through direct trial-and-error interactions with its 

environments without direct supervision. During the learning period, a learning agent attempts 

to perceive the current state 𝑠𝑡 of the environment and choose an action  𝑎𝑡 at each episode.  

The action results in changes in the state of the environment, which makes the agent to 

encounter a new state. A scalar reward value is given to assess the desirability of executing 

an action, while being on the given state space (Sutton and Barto, 1998).  Figure 1 shows the 

agent-environment interaction. 
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Figure 1: Agent-environment interaction 
 

The state represents some characteristics of the environment, which are relevant to the control 

problem. The controller, learner or the decision maker, is called an agent. The objective of the 

action is to change the environment by moving from one state to another. To evaluate the 

impact of the performed action on the agent’s final desirability, a reward is given. Normally, a 

positive reward is given on positive actions, and a negative reward is given on negative 

actions. Q-learning is a model-free Reinforcement learning technique. The agent’s mapping 

from state to action is called as policy, 𝜋. The policy is improved iteratively through the agent’s 

experience. The  𝑄(𝑠, 𝑎) represents the expected sum of the discounted rewards of taking an 

action 𝑎 in the state 𝑠 by a certain policy (𝜋). Many possible trials are executed during the 

training phase to confirm that the agent has learnt from enough experiences and convergence 

of each state-action pair. The control problems` ultimate goal is to find the optimal policy 𝜋∗ 

which determines the best control action when the agent is in a particular state, 

𝜋∗(𝑠) ∈𝑎𝑟𝑔 𝑚𝑎𝑥 𝑎∈𝐴𝑄(𝑠,𝑎)        (1) 

The value associated with a state-action pair is updated in a look-up table with its current 

value  𝑄(𝑠𝑡, 𝑎𝑡), instance reward that receives for the executed action 𝑟 and with the expected 

return starting from that state𝑄 (𝑠𝑡+1, 𝑎𝑡+1). The Q-learning process may be expressed as 

below.   

Algorithm 1 Pseudo code of Q-learning  

Input: set of states 𝑆, set of actions 𝐴, reward 𝑅 

Input: Discount rate (𝛾), Learning rate (𝛼) and action selection policy parameter(𝜀) 

Initialise 𝑄(𝑠, 𝑎) arbitrarily for every state 𝑠 and every action 𝑎 

For each episode do 

 Initialise 𝑠 

 Repeat {for each step of the episode} 

  Choose 𝑎 from 𝑠 based on the policy derived 

               (e.g. 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦) 

Take action a, observe r, s.'      

  𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) +  𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝛼𝑄(𝑠′,𝑎′) − 𝑄(𝑠, 𝑎)] 

                             𝜋(𝑠) ← 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑠, 𝑎) 

                   𝑠 ← 𝑠’; 

 Until 𝑠 is terminal 

End for 

 

Where 𝛾 is called discounted rate (0 <  𝛾 ≤ 1) and 𝛼𝑡 is called the learning rate (0 <  𝛾 ≤ 1) 
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2.2. Algorithm Development  

The control objective of the algorithm is to minimise the fuel consumption of the following 

controlled vehicle from its arrival on the intersection approach until crossing the stop line. It 

was assumed that the leading vehicle’s trajectory was not impacted by the other traffic in the 

road. Hence, the leading vehicle travels at free-flow speed. The manoeuvring of the leading 

vehicle was determined by Aimsun without further modifications of the relevant parameters, 

and free-flow speed varies as a result of responding to the traffic signal timings. 

Figure 2, illustrates the layout of the experimental intersection. The intersection approach was 

a single-lane, one-way street. The traffic signal operated a pre-timed timing plan with the 60-

seconds of cycle time with two phases. For each episode, two vehicles – one leading non-

control vehicle and one following controlled vehicle – were randomly generated 750 metres 

upstream of the intersection to maintain a random gap. The algorithm computes the optimal 

driving speed for the control vehicle at two control points at 300-metre (A) and 150-metre (B) 

upstream of the intersection. The target speeds were provided at two control points only to 

avoid frequent speed changes and potential fluctuations. It was also chosen to reduce the size 

of the state-space to minimise the computational load. To allow wide variations in the driving 

environment, the arrival speed of the control vehicle at the 300-metre point was chosen 

between 30 km/h and 54 km/h with an increment of 4 km/h. 

 

Figure 2: Experimental Intersection Layout 

 

2.2.1 Problem Formulation 

To formulate the environment, each state is defined by a 4-quatiple, 𝑠 = (𝑣𝑖, 𝑑𝑖 , 𝑡𝑖, ℎ𝑖); where, 

𝑣𝑖 is the current speed, 𝑑𝑖 is the current position of the following vehicle, 𝑡𝑖 is the traffic signal 

timing status, and ℎ𝑖 is the headway between the leader and the follower. The proposed speed 

control was measured states at discrete moments in the distance (measured using the sample 

distance ∆𝑑). Hence, at every ∆𝑑 the algorithm measured the state information. The speed 

was discretised into 2 kmh intervals, and traffic signal consists of 60 seconds of cycle timing 

and it was discretised into 1-second intervals. The time headway (ℎ𝑖) between the control 

vehicle and the leading vehicle was discretised into 1 second intervals between 1s and 30s. 

The possible actions in this paper include changing the current driving speed to a target speed; 

restricted to +8 km/h and -10 km/h from the current speed between the maximum and 

minimum driving speeds, defined at 60 km/h and 20km/h, respectively. The agent used normal 

acceleration and deceleration speeds to reach the target speed and then continued cruising 

at that speed until the next decision point. The following controlled vehicle also adjusted the 

driving speed to maintain the safe distance from its leading car and also to respond to the 
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traffic signal operation. The maximum acceleration and maximum deceleration were used as 

+2.2 m/s2   and 2.7m/s2 respectively. 

As the main control objective is to minimise the fuel consumption along the vehicle trajectory, 

the reward function is inversely proportional to the cumulative fuel consumption experienced 

by the vehicle between two successive decision points. A penalty of 2 was given if the 

headway between leading and following vehicle is less than 2 seconds during the learning 

period. It should be noted that by reducing this extra component does not impact on the 

behaviour of optimal policy, as it is necessary to keep the minimum safe headway.  

 

2.2.2 Vehicle Fuel Consumption  

Vehicle fuel consumption can be determined by a variety of factors including torque, air drag 

coefficient, temperature, driving speed, and so on. The microscopic fuel consumption model 

embedded in Aimsun was used in this paper. This model accounts for the time spent by each 

vehicle in the network during each simulation step in each of four operating modes; 

acceleration, deceleration, cruising and idling. The fuel consumption during idling, 

deceleration and acceleration is derived from Ferreira (1982), and cruising fuel consumption 

is derived from Akçelik (1983). During a given simulation time step the fuel consumed by a 

given vehicle 𝑛 is given by, 

 

𝐹𝑢𝑒𝑙𝑛 =  𝑓𝑐𝑢𝑟𝑖𝑠𝑒
𝑛 + 𝑓𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑛  + 𝑓𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑛 +𝑓𝑖𝑑𝑙𝑒

𝑛                               (2) 

𝑓𝑐𝑢𝑟𝑖𝑠𝑒
𝑛 = 𝑘1(1 + (

𝑣

2𝑣𝑚
)3)  + 𝑘2𝑣    

𝑓𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑛 = 𝑐1 + 𝑐2𝑎𝑣  

 

𝑐1+𝑐2 – The two constants in the equation for the fuel consumption rate for the accelerating 

vehicles (ml/s), 𝑘1 and 𝑘2 need to be determined empirically for each vehicle type. 𝑣𝑚 – the 

speed at which the fuel consumption rate, in ml/s, is at a minimum for a vehicle cruising at 

constant speed. It is assumed that the fuel consumption rate is constant for the idling and 

decelerating. This assumption can be easily relaxed (Osorio and Nanduri, 2015).  

 

 

 

3. Simulation Test and Discussion 

In this section, the simulation results of the proposed algorithm are discussed. The driving 

speed of the control vehicle was adjusted to achieve a recommended driving speed by RL. 

The initial control point is located 300 metres (point A) upstream of the intersection. Once a 

control vehicle enters into the control area, it follows the speed recommended by the algorithm 

until it reaches the next control point or discharges the intersection. The following controlled 

vehicle will attempt to achieve the recommended driving speed otherwise interrupted by the 

leading vehicle or the traffic signal control.  
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3.1 Reinforcement Learning Agent Training  

There are two basic phases in developing the RL based eco-speed control algorithm. The first 

phase is training process, and the next is implementation phase. In this study, a lookup table 

was used to store Q-values during the training phase. The Q-values (𝑄(𝑠, 𝑎)) for all state-

action pairs were stored in a 2-dimentional matrix. Each row is represented by a single state 

and each column is represented by a single action. Each cell value represents a measure of 

how good or bad the executed action under the particular state condition. As the learning 

continued, the Q-values stored in the look up table progressed such that the most desired 

action will be the maximised the Q-value.  

Initially, all the 𝑄(𝑠, 𝑎) values were set to zero and the different rewards for various actions in 

states were observed and updated accordingly. The Q-value per state-action pair was then 

updated using the one-step equation as in below, 

(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) +  𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝛼𝑄(𝑠′,𝑎′) − 𝑄(𝑠, 𝑎)]       (3) 

In other words, Q-values for a given state (s) under a particular action (a) is represented by 

immediate reward plus the maximum discounted future reward from the best future action 

taken in the following state. The training process was continued until all the states met the 

termination criteria. The termination criteria were defined by the following condition. If the 

absolute value of the Q-value function in iteration N and iteration N-1(error) was oscillating with 

a small variation (0.001) for few consecutive iterations, then the learning was terminated. 

∆𝑄𝑡
𝑁 =  ⃓𝑄𝑡

𝑁(𝑠′, 𝑎) − 𝑄𝑡
𝑁−1(𝑠′, 𝑎)⃓                               ∀ 𝑡, 𝑠′, 𝑎           (4)                  

Once the ∆𝑄𝑡
𝑁 for all the state-action pairs were satisfied with the defined threshold value, the 

training process was terminated.  The agent was trained under different starting conditions 

which available due to the different traffic signal timing states and arrival speeds. This 

guarantees training with the all different time dependent variations of driving conditions. After 

all the training was completed the algorithm performance was evaluated during the 

implementation phase. The converged look-up table (𝑄∗) for each state𝑠 ∈ 𝑆, action 𝑎 ∈ 𝐴 pair 

was used during the implementation phase.  

The fuel consumption of a total 2,400 control vehicles was compared with and without the 
speed control under the exactly identical test conditions (i.e., traffic signal status, control 
vehicle arrival speed, and leading vehicle status). The average fuel consumption, the average 
travel time, and the percentage of complete stopping during the red signal were collected for 
the test. The fuel consumption was estimated using the velocity and acceleration as presented 
in equation (2). The same fuel consumption parameters as in (Kamal et al., 2010)  were used 
in this study. The fuel consumption parameters used for this study were as follows. c1 = 0.42,c2 

= 0.26, 𝐹𝑖= 0.333, 𝐹𝑑= 0.537, 𝐹1 = 4.7, 𝐹2=6.5 and 𝑣𝑚 = 60 km/h. The parameters related to 
the Q-learning algorithm were selected as 𝜔 = 0.8 and ε = 0.8. 
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3.2 Results and Analysis 

In the following, overall algorithm performances were presented considering vehicle fuel 
efficiency, travel time and complete stopping at the intersection (this could be either due to the 
red signal or leading vehicle). The comparisons were made between the following controlled 
vehicle (vehicles with speed control algorithm) and the following uncontrolled vehicle (vehicles 
without speed control algorithm).  

3.2.1 Impact on Travel Time  
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Figure 2: Impact of Average Travel Time 

Manoeuvring of a control vehicle with the speed control algorithm (Blue colour) and without the 

control algorithm (Orange colour) 

The algorithm’s impact on the travel time of following controlled vehicles was analysed in this 

section. The impact was analysed considering two variables; traffic signal timing and arrival 

speeds of the following vehicles. The highest travel timing saving achieved was around 60% 

when the following controlled vehicles arrived at the beginning of the green signal. For 

demonstration purposes Figure 3 (a) and (b), show the manoeuvring of a following controlled 

vehicle with the arrival speed at 34km/h. In figure 3 (a), the following controlled vehicle avoided 

the complete stopping at the red signal by accelerating the driving speed. The following vehicle 

without the speed control had to wait for the next green time as a result of maintaining its 

driving speed.  

The following controlled vehicles with 30km/h and 34 km/h arrival speed achieved significant 

travel time improvement at the end of the red phase as a result of discharging the intersection 

during the earliest possible green time by accelerating. Figure 3 (b) shows the vehicle 

manoeuvring when the red signal is presented. However, the travel improvement at the end 

of the green and at the beginning of the red was marginal. During above two signal timing 

periods, following controlled vehicle also decelerated or idled for a short period to avoid 

stopping at the intersection. The defined constraints (maximum possible deceleration and 

number of control points) made it unavoidable. Hence, there was no significant travel time 

improvement compared to the following vehicles without the speed control algorithm.  

 

 

 

 

 

15

25

35

45

55

65

0 10 20 30 40 50 60A
v
e
ra

g
e
 T

ra
v
e
l 
T

im
e
 (

s
)

TST(0-30 Green, 30-60 Red)

50 kmh

15

25

35

45

55

65

0 10 20 30 40 50 60A
v
e
ra

g
e
 T

ra
v
e
l 
T

im
e
 (

s
)

TST (0-30 Green, 30-60 Red)

54 kmh



 ATRF 2017 Proceedings 
 

  

 

(a)          (b) 

Figure 3: Manoeuvring of a control vehicle with the speed control algorithm (Blue colour) and 

without the control algorithm (Orange colour) (a) A vehicle approach the intersection during at 

the beginning of the green signal (b) A vehicle approach the intersection at the end of the red 

signal 

 

3.2.2 Impact on Fuel Consumption 

 

Figure 4: Average Fuel Savings %  
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The average fuel saving % is calculated using following equation,  

AFS% = ∑ (𝐹𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑
𝑛
𝑖=1 − 𝐹𝐶𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑)/(∑ 𝐹𝐶𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑)𝑛

𝑖=1  

Where i is the number of vehicles, and FC is the fuel consumption 

The algorithm’s impact on the fuel savings of control vehicles was analysed in this section. 

The impact was analysed considering two variables; traffic signal timings and arrival speeds 

of the following vehicle. The highest fuel saving achieved was around 58% when the following 

controlled vehicles arrived at the beginning of the green signal. Here, the following controlled 

vehicle used traffic signal information and leading vehicle information and discharged the 

intersection at green signal by accelerating the driving speed. The following vehicles without 

speed control react aggressively to reduce its speed and idle until next green signal.  The 

average fuel saving was around 10 - 20% which was achieved at the end of green and at the 

beginning of red. It was found that the vehicles with speed control algorithm reduced its speed 

early to avoid an unnecessary stopping during the red phase.  

As depicted in figure 4, fuel savings of around 52 % was achieved at the beginning of the 

green phase by accelerating to discharge the intersection within the current green phase. The 

reason for this behaviour is that, when the delay time required due to the red signal timing 

become smaller, the average vehicle speed becomes higher. When the vehicles without speed 

control algorithm maintain their current speed of 30 km/h, the vehicles with speed control 

algorithm accelerated from their current speeds and maintained higher average speeds. As a 

result of this, the following uncontrolled vehicle achieved significant fuel savings compared to 

the following uncontrolled vehicle. In contrast, there were no significant fuel savings at the end 

of the red phase, as the majority of the following vehicles maintained current speeds without 

further adjustments.  

 

3.2.3 Impact on Vehicle Stopping at Red Signal 

 

Figure 5: Relationship between vehicle arrival speeds and stopping at red 
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Figure 5, shows the complete stopping at the red signal as a percentage of a total number of 

simulated vehicles under each arrival speed. As mentioned above, both the red phase and 

the leading vehicle dynamics were responsible for the complete stopping at the intersection. 

The compete stopping of following controlled vehicles showed an inclined trend as the speed 

was increased. The reason for the behaviour is due to the restrictions imposed by the number 

of speed control points and minimum deceleration level. In this study, the minimum 

deceleration limit was assumed as 2.7m/s2, and the number of speed control points was 

assumed as two. When the vehicle arrival speed was high, the lowest speed suggested by 

the algorithm was greater than the speed that was required to discharge the intersection. 

However, even at high arrival speeds, stopping % of following vehicles with speed control 

algorithm was significantly low compared to the following vehicles without speed control. 

 

3.2.4 Leading vehicle Impact 

It is important to analyse further the impact of leading vehicle’s behaviour on the following 

controlled vehicle as well as on the fuel economy. The time headway between leading and the 

following controlled vehicles and fuel saving % was plotted against 200 vehicles at two control 

points (point A and B). The headway variation of leading and the following vehicle was caused 

by the following vehicle’s arrival speed, approaching time and leading vehicle’s free-flow 

speed. The 200 vehicles consisted with 8 different arrival speeds at the end of the green 

phase.  

 

Figure 6: Relationship between headway and fuel savings % 
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fuel savings was recorded. In contrast, the fuel savings percentage was proportional to the 

headway variation of the next 100 vehicles. This behaviour is due to the fact that when the 

headway became smaller, the influence of the following controlled vehicle became more 

significant. Also, the low headway between leading and following vehicle restricted the 

possible target speeds that can be achieved by the following controlled vehicle. 

 

4. Conclusion and Future Work 
In this paper, a driving speed control algorithm was proposed to minimise the fuel consumption 

of vehicle at an isolated signalised intersection. The algorithm utilised the traffic signal timing 

and the leading vehicle information to compute the optimum driving speeds. The performance 

was analysed in terms of the average fuel savings percentage, the average travel time-saving 

% and the % of vehicles stopping at the red signal. The most significant fuel saving was 

approximately 58%. The algorithm also effectively reduced the travel time of the control 

vehicles up to 60% compared to the scenario without the speed control. The number of 

vehicles stopping at the red signal was reduced approximately 30% with the speed control 

algorithm. Also, the temporal and spatial constraints imposed by the leading vehicles 

dynamics significantly impacted on the following vehicle’s fuel economy. The algorithm 

presented in the paper only considered a single leading vehicle. However, further analysis is 

required considering varying neighbouring traffic conditions to analyse the performance of the 

algorithm at more realistic driving environments.  
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