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Abstract 

This paper proposes statistical approaches to identifying spatial relationships among road links 
in an urban road network to select predictors for a short term traffic prediction model for a given 
road link more systematically. For this purpose, two methods i.e. Granger causality test and 
elastic net regularization techniques have been adopted in this study. Urban road network in 
Brisbane, Australia is selected as a study site for a case study. One-year traffic flow and speed 
data from the selected road network have been used for the analysis. The study evaluates the 
performance of the proposed variable selection methods in terms of the prediction accuracy of 
short term traffic prediction models constructed based on the variables identified by the 
methods. This study uses time lagged multiple linear regression method as a short term traffic 
prediction model. For a given target link, the relevant predictors obtained by Granger causality 
and elastic net are used separately to build the respective traffic prediction models. It is 
observed that Granger causality based traffic prediction model provides better prediction 
accuracy than elastic net based traffic prediction model.  

Key words: Traffic prediction, Granger causality, Elastic net, variable selection, time-series. 
 

1. Introduction 

One of the crucial tasks in intelligent transport systems is to forecast traffic parameter or 
condition of a roadway precisely. Practitioners need the forecasted traffic information to improve 
traffic management and apply control strategies on the roadway if necessary. Future traffic 
information also aids travel information for the road users. Therefore, it is important to forecast 
traffic condition accurately. Precise future information of traffic condition can be achieved by 
developing accurate traffic forecast model. One of the concerns of building traffic model is 
efficient use of information from a large volume of dataset. It is impractical to use all the 
information available in high dimensional time series data as it may not improve traffic prediction 
enough when compared to the increase in computational cost. Therefore, it is necessary to 
discern the most relevant data from massive time series dataset which is useful to build 
accurate prediction model. This is also true for short term basis traffic prediction where the 
traffic conditions of the nearest future interval (i.e. usually less than one hour ahead) of a 
specific location is forecasted by historic data of response and predictor variables. Taking the 
most relevant variables as the predictors of response variable will help to build parsimonious or 
simpler prediction model and improve the accuracy of the prediction model.  
 
In order to predict traffic parameter of a specific section/location of the roadway in short term 
basis, previous studies used univariate and multivariate approaches of time series analysis and 
short term prediction modelling. In these studies, different set of predictor variables were used in 
the prediction models In univariate analysis, historical traffic parameter data, namely the nearest 
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past or moving average data of a target location or the nearest upstream location, is taken as 
predictors. In multivariate analysis, traffic parameters of nearby locations of target location are 
considered as the predictors. Univariate modelling approaches include Kalman filtering, 
nonparametric regression, neural network and autoregressive integrated moving average 
(ARIMA) whereas multivariate modelling methods include space-time ARIMA and Bayesian 
networks (Kamarianakis and Prastacos, 2004). 
 
In the univariate approach, traffic information of road links adjacent to the target link is usually 
omitted. However, utilizing traffic information from other adjacent road links is useful to gain the 
precise prediction of traffic (Sun and Zhang, 2006). In addition, univariate models are not 
suitable for a road network where hundreds of road links are available (Kamarianakis and 
Prastacos, 2004). In comparing univariate and multivariate approach, Chandra and Al Deek 
(2009) concluded that vector autoregressive (VAR) model provides higher accuracy than 
popular univariate ARIMA models in predicting traffic flow and speed in a freeway. Similarly, 
Stathopoulos and Karlaftis (2002) found their proposed multivariate state-space traffic prediction 
model is more accurate than ARIMA model. On the other hand, multivariate models used in 
previous researches mostly relied on spatial boundary set up. The studies of Hobeika and Kim 
(1994), Sun et al. (2006) considered only nearest upstream of target location as spatial 
boundary for developing traffic flow prediction whereas the study of Chandra and Al-Deek 
(2009)) selected both nearest upstream and downstream of target location as the spatial 
boundary. In considering the neighbours of the target location, Stathopoulos and Karlaftis 
(2002) only selected upstream locations rather than a combination of upstream and downstream 
locations in an urban arterial. A study by Kamarianakis and Prastacos (2003) used a 
hierarchical system of two orders of upstream neighbour locations as the spatial boundary of 
traffic flow prediction in urban road network. Although they found second order neighbours are 
more useful than first order neighbours to predict target link, they did not apply higher order of 
neighbour locations. In predicting speed of an urban road network, K-nearest neighbour (k=20) 
based predictor selection method was used by Smith et al. (2002) in order to finding predictors 
for a given target location. However, a direct or strong conditional relation may exist between 
the target link and any distant road link outside the k-nearest neighbourhood, a feature that is 
not considered in their study. It can be said that previous studies related to traffic prediction 
model considered a fixed and smaller spatial boundary such as upstream, downstream or 
nearest neighbour location of a target link as the predictor locations.     
 
This paper proposes a systematic way of selecting predictor road links for a given target road 
link using spatial dependency structure. Spatial dependency structure includes a given target 
road link and a set of predictor road links in the road network which are functionally or causally 
related to the target link. Unlike existing studies, this study does not consider any fixed spatial 
boundary as the predictor locations. Our approaches initially consider all road links in a study 
site as the predictor locations and then selects the relevant predictor locations for a given target 
link by statistical methods. Proposed statistical methods include Granger causality test 
(Granger, 1969, 1980) and variable selection technique known as elastic net (Zou and Hastie, 
2003).  Although these two methods are quite new in the area of traffic modelling, these are well 
as established statistical approach in other areas of research. Granger causality test method 
identifies directed functional or causal interactions of different variables in the time series data 
(Seth et al., 2015). Elastic net is useful to improve the prediction performance and detailed 
analysis of high dimensional massive data (Zou and Zhang, 2009).  
 
The remainder of the paper is organised as follows. Section 2 includes the description of the 
methodologies of two proposed models such as Granger causality and elastic net. Section 3 
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consists of the description of short term traffic prediction model. The following section contains 
the application of the models and detailed discussion about the results obtained. Finally, section 
5 concludes the paper.  

2. Spatial dependency model for variable selection 

2.1. Granger causality based model 

This study applies the Granger causality method to find out the spatial relation among the road 
links in a network. This relation is used to obtain relevant road links that can be used to predict 
the traffic parameter of a given target road link. Let xt−1be the lagged variable of 𝑥𝑡 ,   yt−1be the 

lagged variable of  𝑦𝑡 and 𝐀, 𝐁 represent vectors of coefficients. The Granger causality method 

is performed by the following linear regression model: 

 

yt =  a0  +  𝐀. yt−1          (1) 

 
yt =  a0  +  𝐀. yt−1 +  𝐁. xt−1         (2) 

 

If the second equation becomes a statistically significantly better regression model (i.e. predicts 
or computes yt more accurately) than the first equation, it can be said that xt−1 Granger causes 

yt. The statistical test for verifying if it is a better regression is simply an F-test (Arnold et al., 
2007). 
 
This study uses vector auto regression (VAR) based Granger causality test. In a VAR, each 
variable is taken as dependent variable once and the other variables are considered as 
predictor variables. Multivariate time series is used in VAR model where each variable is 
computed by lagged values of its own and lagged values of other variables (Zivot and Wang, 
2006). 
 
Let 𝐘t  =  (y1t, y2t, … . , ynt) be a (n×1) vector of time series variables. The basic p-lag vector 
VAR model can be written as 

 
𝐘t =  c +  Π1𝐘t−1 +  Π2𝐘t−2 +···  + Πp𝐘t−p + εt      (3) 

 
where Πi are (n×n) coefficient matrices, c is the intercept, t = 1, … , T and εt is the error term. 

The detailed explanation of the VAR model is provided in the study of Hasan and Kim (2016). 

 
Model selection criteria such as the Akaike Information Criterion (AIC) and Schwarz-Bayesian 
Information Criterion (BIC) are used to determine the time lag order p. In order to find the 
suitable time lag order, at first, the VAR model is fitted with each of the lag orders p = 0, … , p𝑚𝑎𝑥 
and the corresponding value of the model selection criterion is calculated. Then, the actual time 
lag order can be computed by the scores of BIC and AIC which are computed as: 
 

BIC = −2 l(θ̂)  +  m log n         (4) 

 

AIC = −2 l(θ̂)  +  2m          (5) 
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where l(θ̂)is the maximum log-likelihood as a function of the vector of parameter 

estimates(θ̂), 𝑚 is the number of parameters in the model, and n is the number of observations. 
BIC or AIC score decreases as the likelihood increases and the number of parameter 
decreases. The lag order with the lowest AIC or BIC score is considered as the actual lag order 
for modelling (Cottrell and Lucchetti, 2016). Since one of the objectives of this study is to reduce 
the number of parameters in the model, the lowest lag order between AIC and BIC is selected 
for the study.  
 
After developing the VAR model, the Granger causality test is performed by hypothesis testing 
of F test with zero restriction. In this test, a given time series is considered as Granger cause of 
another time series if at least one value in the coefficient vector is found to be non-zero by 
statistical significance test (Bahadori and Liu, 2012). The F test statistic is computed as  
 

F0  =

SSRr−SSRur
q

SSRur
n−(k + 1)

          (6) 

where  SSRr is the sum of the squared residuals of the restricted model (model excluding testing 
predictor) and SSRur is the sum of the squared residuals of the unrestricted model (model 
including all predictors), q is the number of restrictions or the number of coefficients being jointly 
tested,𝑛 is the number of observations, and k is the number of independent variables in the 
unrestricted model (Blackwell, 2008). 
 
Then F0value is compared with the critical value of F with significance value 0.01. If the F0 value 
is higher than the critical value (obtained from the F distribution table), then it rejects the null 
hypothesis and hence the testing time series does not Granger-cause target time series. 
Otherwise, the alternative hypothesis prevails and this means that the testing time series 
Granger causes the target time series. 
 

2.2. Elastic net based model 
 
For a massive dataset, it is essential to select the number of relevant variables before 
developing the model. This can be done by adopting regularization techniques such as ridge, 
lasso and elastic net. As the performance of elastic net is better than the other two 
regularization techniques in context of high dimensional data analysis and correlated group of 
predictors selection (Zou and Hastie, 2005; Zou and Zhang, 2009, Li and Lin, 2010), elastic net 
is selected for this study.  Elastic net is performed by the following process.  
 
Consider a linear regression model, y = β0+βX with n observations and p predictors. Let y= (y1, 
y2,…..,yn)T be the response and X= (x1, x2,…, xp) be the model matrix, where x1, x2 and xp are the 
predictors. Each of these predictors includes n number of observation value. This can be written 
as xj= (x1j, x2j …..,xnj)T  where j=1, 2,…,p.  It is assumed that the predictors are standardized. 
 
∑ 𝑥𝑖𝑗 = 0,    ∑ 𝑥2

𝑖𝑗 = 1𝑛
𝑖=1

𝑛
𝑖=1  , where j=1, 2,…,p      (7) 

 

For any fixed non-negative penalty parameters λ1 and λ2, the elastic net loss function is  
 

L(λ1 ,λ2 , β) = |𝑦 − β0 − 𝑋𝛽|2 + λ2|𝛽|2 + λ1|𝛽|1       (8) 
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Where,  

 

|𝛽|2 = ∑ 𝛽𝑗
2𝑝

𝑗=1  , |𝛽|1 = ∑ |𝛽𝑗|𝑝
𝑗=1   

The elastic net estimator 𝛽⏞ is the minimizer of the equation 

𝛽⏞ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  {L(λ1 , λ2 , β)}         (9) 

 
This procedure can be written as a penalised least squares method.  
 

Let 𝛼 =
λ2

λ1+λ2
  and  1 − 𝛼 =

λ1

λ1+λ2
 then equation 8 can be written as 

 

L(λ1 ,λ2 , β) = |𝑦 − β0 − 𝑋𝛽|2 + (λ
1

+ λ2)[𝛼|𝛽|2 + (1 − 𝛼)|𝛽|1]                         (10)                            

 
Let (λ

1
+ λ2) = λ, then equation 10 can be written as     

 

L(λ1,λ2 , β) = |𝑦 − β0 − 𝑋𝛽|2 + λ(𝛼|𝛽|2 + (1 − 𝛼)|𝛽|1)                                                (11)              
 

Solving 𝛽⏞ in equation 9 is equivalent to the following optimization problem: 
 

𝛽⏞ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  | 𝑦 − β0 − 𝑋𝛽 |2, subject to λ(𝛼|𝛽|2 + (1 − 𝛼)|𝛽|1)<= t             (12) 

 

We call the function λ(1-𝛼)|𝛽|1 + 𝛼|𝛽|2 the elastic net penalty which is a convex combination of 
the lasso and ridge penalty (Zou and Hastie, 2005). Elastic net penalty is controlled by two 
tunning parameters, α and λ .  α value can vary between 0 and 1 where 0 corresponds to the 
lasso and 1 corresponds to the ridge regression. If the predictors are correlated in groups, α=0.5 
tends to select the group in or out of the model (Hastie and Qian, 2014). We select the value of 
α is 0.5 in order to avoid the proximity to both criteria and emphasise the correlated group 
selection. On the other hand, λ value is selected by cross validation. In order to avoid intensive 
computation, a grid of values for λ is first specified (Li and Lin, 2010).  The grid of λ values can 
be (0, 0.001, 0.1, 1, 10, 100, 1000, 10000). By using α and each of the λ values, equation 13 
can be solved by using cyclical coordinate descent algorithm (Friedman and Hastie, 2008). 
Cyclical coordinate descent algorithm successively optimizes the objective function over each 
parameter by keeping other parameters fixed, and cycles repeatedly until convergence (Hastie 
and Qian, 2014). For each of the combination of α and λ, mean squared error of argminβ |y - 

β0 −Xβ|2 is computed. Then, over the range λ values, two values of λ i.e.  λ(min) and λ(1se) are 
found out. λ(min) and λ(1se)  provide minimum mean cross-validated error and 1-standard error 
of the minimum mean cross-validated error respectively (Hastie and Qian, 2014). Any value 
between the range of λ(min) and λ(1se) can be used as the value of tunning parameter λ.  
 
After the regularization, a number of predictors whose coefficients are reduced to 0 are removed 
from the model. On the other hand, correlated predictors with a reduced coefficients’ value stay 
in the model. Through this process, the elastic net can provide a parsimonious model. As the 
selected predictors are highly correlated with response variable, the result can be used for the 
development of a new approach of spatial dependency model.  
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3. Time-series model for short term traffic prediction 

Based on the assumption that the prediction accuracy of the traffic parameter of a particular 
target link is improved by including only those links that are statistically related to the target link, 
this study proposes a Granger causality method and an elastic net method that aim to 
automatically identify a set of predictor links for each target link.  
 
In order to evaluate the effectiveness of predictor selection of the proposed methods, a simple 
traffic prediction model is built by using multiple linear regression. The prediction model is 
developed on the basis of short term prediction, specifically next time interval ahead. So, the 
relevant predictors are in 1-lagged time interval than response variable. From the Granger 
causality and the elastic net based models, the correlated and most relevant predictors for each 
target link can be found. By using these predictors, we can develop multiple linear regression for 
each target link. The prediction model can be written as: 
 

Yt =  c +  ß1x1,t−1 +  ß2x2,t−1 + ß3x3,t−1+. . … … . + ßnxn,t−1        (13) 

 
where 𝑌𝑡 is the response variable, x1,t−1, x2,t−1, x3,t−1 … . xn,t−1 are the relevant predictors at 1- 

lagged time than response variable and ß1, ß2, ß3 … ßn are the coefficients.  
 
For the estimation and validation of the prediction model, traffic data is separated into a training 
and a testing dataset. In this study, first 80% of total data are taken as a training set and the 
remaining 20% of the total data are considered as a testing dataset. The multiple linear 
regression based prediction model is developed on the training dataset and the model accuracy 
is evaluated on the testing dataset.  
 

 

4. Case Study 

4.1. Study area 

For this study, the urban road network in Brisbane, Australia, is selected as the test-bed. The 
study site has 454 road links that include freeways, highways, arterials and minor road links. 
Figure 1 shows the study site. The dot points in the following figures represent the road links in 
the selected network.  
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Figure 1: Selected test bed and road links 

       
      (a) Google Maps view   (b) GIS shape file view 

 

 

4.2. Data 

In this study, traffic flow and average speed are selected as traffic parameters. Traffic data of 
Brisbane are obtained from Queensland Department of Transport and Main Road (DTMR) 
through the Public Traffic Data System (PTDS). Data were collected from loop detectors 
installed on state-controlled roads. Traffic data contains 15-minute interval traffic flow, average 
speed and occupancy data of 1659 road links in South-East Queensland for the duration of 365 
days from January 1, 2014 to December 31, 2014. The road network selected for this study 
includes 454 road links out of total 1659 road links of entire South-East Queensland. Therefore, 
this study is based on traffic flow and speed of 454 road links of the road network. The total 
number of observations of the continuous time series data of each road link is 35,040. It is noted 
that sometimes the detectors are not working properly or sometimes there are missing values. 
For these missing values, a multiple imputation technique (Sterne et al., 2009) is applied to fill 
out the data used for modelling.  
 

4.3. Model building and estimation 

 

4.3.1. Granger causality based spatial dependency model 
 
This study develops the VAR based Granger causality model for two traffic parameters: flow 
and speed. This model is built by using the software package Gretl (Cottrell and Lucchetti, 
2016). The traffic parameter value of each road link is considered as a target variable once and 
the lagged value of the remaining variables along with the lagged value of the target are taken 
as predictors. As 15-minute interval traffic data is used in this study, data has four lags in an 
hour. Thus, the maximum time lag order is equal to 4. The actual lag order selection by AIC and 
BIC can be different. It is found that both AIC and BIC provide 1 lag order for flow cases. 
However, in speed cases, AIC provide 3 lag order and BIC provide 1 lag order. Since one of the 
objectives of this study is to reduce the number of parameters in the model, the lowest lag order 
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between AIC and BIC is selected for the study. Therefore, BIC score based lag order is selected 
as it provides the lowest lag order for both flow and speed cases.  
 
Residual vs. Time series plots of traffic flow and speed based VAR represent that errors are not 
in the form of positive or negative correlation rather these are independent. Figure 2 shows the 
Residual vs. Time series plot of one road link as an example. No trend can be identified from 
Figure 2 which means residuals are not auto correlated. After building the VAR model, we have 
total 454 regression models, namely one for each target link with their 1- lagged predictors. 
Then the F statistics is applied in each of the regression models to find out a set of Granger 
causal links for each target link.  

 
Figure 2: Residuals vs. Time series for (a) flow and (b) speed based VAR  
 

               
      
    

   (a)               (b) 
 

 
4.3.2. Elastic net based spatial dependency model 
 
This case study develops the elastic net based spatial dependent model for two traffic 
parameters i.e. flow and speed. Like for the VAR model, the traffic parameter value of each road 
link is considered as a target variable once and the lagged value of the remaining variables 
along with the lagged value of the target are taken as predictors in elastic net. So we have total 
454 models to be regularized by elastic net in each traffic parameter analysis. This model is built 
and regularized by using the ‘glmnet’ package (Hastie and Qian, 2014) of the software R. The 
time lag order selection is same as used in the VAR based Granger causality model which is 1 
lag order for both flow and speed based model. According to equation 13, two tuning 
parameters need to be considered for elastic net which are α and λ. As mentioned before, we 
selected the value of α as 0.5. We considered λ(1se) value as other tuning parameter since it 
offers more regularized model i.e. less number of predictors. Figure 3 shows the effect of λ(min) 
and  λ(1se) to shrink the coefficients and select the correlated variables. Here, one link has 
been taken as an example to show the concept. 
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Figure 3: Selection of correlated predictors by elastic net for (a) flow and (b) speed based model 
  

  

    
 

 

   

 

 
 

 

 

 
 

 

 

 

 

 

 
 
 

 

  
 

    

  (a) Flow based model            (b) Speed based model 
 
After the regularization, the coefficients of a number of predictors are reduced to zero whereas 
coefficients of some predictors are found to be non-zero. The variables which have zero 
coefficients value are considered as uncorrelated with the target link whereas the variables 
which have non-zero coefficients are taken as relevant predictors of the target link. Hence, 
these variables are removed as the irrelevant variables. The rest other variables are taken as 
the correlated with target link and   thus they stay in the model. By this way, a set of predictors 
for each target links are found which are considered as elastic net links for the target link.   

4.3.3. Time-series models for short term traffic prediction 
 
In this case study, a time-series model is developed by taking each link as the target link and its 
1-lagged value of relevant predictors. The predictors are based on three different scenarios in 
order to find the most accurate methods of variable selection for short term (i.e. 15 minute 
ahead) traffic prediction. Therefore, we have total 454 regression models for each scenario. 
Given a target link,  
 

• Scenario 1: Prediction model includes those links identified by the Granger causality. 

• Scenario 2: Prediction model includes those links identified by the elastic net. 

• Scenario 3: Prediction model includes all links of the selected road network. 
 

λ(min)  λ(1se) λ(1se) λ(min) 

 

Number of non-zero coefficients 

Number of non-zero coefficients 

Number of non-zero coefficients 

Number of non-zero coefficients 
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Each of these scenarios is tested for two traffic measures i.e. flow and speed separately for 
each target link. Prediction accuracies of these three scenarios are evaluated by the root mean 
square error (RMSE). RMSE is calculated as:   
 

RMSE=   √∑ (𝑥𝑡 − 𝑥𝑡
^)2𝑛

𝑖=1          (14) 

Where 𝑥𝑡 is the observed value of traffic parameter of target link at time t, 𝑥𝑡
^ is the predicted 

valueof traffic parameter of target link at time t and N is the number of observations (Clark, 
2003). 

At each scenario, RMSE for each target link prediction is computed. Then, RMSE value of all 
predicted target links are summed up and averaged. The average value is then used to 
compare the prediction accuracies of three scenarios. The scenario which produces lowest 
RMSE is considered as better prediction model.  
 

4.4. Results and discussion 

The Granger causality and elastic net are used to minimise the irrelevant predictors and only 

select the relevant predictors for a given target link in a road network in order to build accurate 

traffic forecast model. Therefore, a number of predictors are expected to be reduced by both 

methods. In the context of reduction of the number of predictors for forecast model, it can be 

seen from Figure 4 that the Granger causality and elastic net act differently when flow and 

speed are the variables considered. When looking at flow, on average, elastic net requires less 

predictor than the Granger causality, whereas when looking at speed, the Granger causality 

reduces the number of relevant predictors more than the elastic net. However, both methods 

are capable to reduce more than 75% of the total number of predictors when looking at both 

flow and speed.  

Figure 4: Reduction of number of predictors by Granger causality and elastic net  

 

 
To understand spatial patterns of predictor links, the locations of the predictor links identified by 
each method for a single target link are presented in Figure 5. One observation is that some 
predictor links are located far from the target link. This indicates that a link can provide 
information that improves the prediction of a target link even if the link is not physically 
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connected to the target link and, thus, the traditional approach of only including the upstream 
and downstream links as predictors may not be the best way of constructing prediction models. 
 
Figure 5: Spatial pattern of target link and the selected predictors by Granger causality and elastic 

net 

           
(a)  Flow based Granger causal links         (b) Flow based Elastic net links 

      
(c)  Speed based Granger causal links      (d) Speed based Elastic net links            

The following histograms (Figure 6) show the distribution of the selected predictors into different 
categories. The number of relevant predictors selected by a spatial model is divided into 19 
categories where each category consists of 25 predictors. It can be said that all histograms 
show right skewness because of significant reduction of predictors obtained by both variable 
selection methods. For flow based elastic net and speed based Granger causality model, it can 
be observed that the number of selected predictors are mostly into 50-99 range per link. 
However, these are the cases where more reductions of predictors are observed in Figure 4. On 
the other hand, very high frequency of any category cannot be observed in flow based Granger 
causality and speed based elastic net model. The average selected predictors of flow based 
Granger causality are higher than speed based Granger causality model. On the other hand, the 
average selected predictors of speed based elastic net models are higher than flow based 
elastic net model. 

  

 Target link   Target link 

 Target link     Target link 
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Figure 6: Distribution of number of selected predictors by Granger causality and elastic net 
 

  
 (a)  Flow based Granger causal links     (b) Flow based Elastic net 

  

 (c)  Speed based Granger causal links                  (d) Speed based Elastic net links           

 

This study also analysed the importance of each road link as a predictor, which is defined as the 
number of time the road link is selected as the relevant predictor by the proposed spatial model. 
Results are presented according to six categories (0-10%, 11-20%, 21-30%, 31-40%, 41-50%, 
51%-more) corresponding to the percentage of times that each link is selected as the predictor. 
Figure 7 illustrates the locations of the links which are selected more than 20% times (i.e. four 
categories: 21-30%, 31-40%, 41-50%, 51%-more). It can be observed that the links of each 
category are different in Granger causality and elastic net based spatial model. This means that 
the importance of a link as a predictor varies with the type of spatial models and the parameters 
that were considered (i.e., flow or speed).  The histograms in Figure 8 represent the distribution 
of the number of links in each category. It can be said that in most models, variables are tend to 
be selected less than 30% time and most frequently 11-20% times as the predictors. The 
information obtained from both figures is useful to understand where the important predictors 
are located for developing a short term traffic flow prediction model.  
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Figure 7: Locations of the links which are selected as the relevant predictors more than 20% times  
 

                     
 (a) Flow based Granger causal links                  (b) Flow based Elastic net links     

                     

 (c)  Speed based Granger causal links          (d) Speed based Elastic net links           
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Figure 8: Distribution of number of times (in percentage) the links are selected as the relevant 
predictors in different spatial dependent models 
 

    

        (a)  Flow based Granger causal links       (b) Flow based Elastic net links   
   

   
 (c)  Speed based Granger causal links                  (d) Speed based Elastic net links           

 

Figure 9 shows the root mean square error of six different models. It can be observed that the 

prediction model based on all the links of the road network provides a higher RMSE, which 

means a higher prediction error when compared to the Granger causal links and elastic net links 

based prediction models. Therefore, the selected relevant predictors have the potential to 

forecast accurately the traffic parameters of the target link. Moreover, the exclusion of irrelevant 

variables in the prediction model is effective.  

Furthermore, compared to the Elastic net links based prediction model, the Granger causal links 

based prediction model provides better results when considering either traffic flow or speed as 

the traffic parameter to be measured. Interestingly, according to Figure 9, the Granger causality 

model selects more accurate predictors which can reduce RMSE value approximately three 

times less than that of elastic net links and more than five times less than that of all links based 

model.     

0

50

100

150

200

250
0

-1
0

1
1

-2
0

2
1

-3
0

3
1

-4
0

4
1

-5
0

5
0

-m
o

re

Fr
eq

u
en

cy

Percent time as the predictor

0

50

100

150

200

250

0
-1

0

1
1

-2
0

2
1

-3
0

3
1

-4
0

4
1

-5
0

5
0

-m
o

re

Fr
eq

u
en

cy

Percent time as the predictor

0

50

100

150

200

250

0
-1

0

1
1

-2
0

2
1

-3
0

3
1

-4
0

4
1

-5
0

5
0

-m
o

re

Fr
eq

u
en

cy

percent time as the predictor

0

50

100

150

200

250

0
-1

0

1
1

-2
0

2
1

-3
0

3
1

-4
0

4
1

-5
0

5
0

-m
o

re

Fr
eq

u
en

cy

Percent time as the predictor



Spatial variable selection methods for network-wide short term traffic prediction 
 
 

 
 
Figure 9: Comparison of average RMSE of (a) flow (b) speed based models 

 
  (a) 

  
      (b)               
 
From the figure above, we can only see the average value of RMSE. The following figure 
(Figure 10) illustrates an overview of the variation of RMSE value for 454 predictors in each six 
models. It can be said that in both flow and speed cases, Granger causal links based model has 
less variation compared to other two models. However, the maximum value is much higher in all 
models because of having much higher RMSE value in some road links. These outlier values of 
RMSE also increase the average RMSE value in each model. 
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Figure 10: Overview of the distribution of RMSE for (a) Flow based (b) speed based models.  

 
 

 

 
 
5. Conclusion 
 
This study proposes statistical methods such as Granger causality and elastic net to identify a 
set of road links that are correlated or functionally related to a given target road link in an urban 
road network. Both Granger causality and elastic net significantly reduce the number of 
predictors for forecasting traffic parameter value of a target link. Short term traffic prediction 
models are developed by using the predictors obtained by these two methods. The prediction 
accuracies of these models are evaluated and compared with another traffic prediction model 
which has been built using all variables as the predictors. The comparison shows that both 
Granger causality and elastic net links based prediction models provide better accuracy than the 
model with all predictors. Also, in both flow and speed cases, model developed by Granger 
causal links shows less prediction error than model developed by elastic net links. These 
findings show that Granger causality method is efficient in reducing the irrelevant variables by 
systematically identifying the most relevant variables for short term traffic prediction model. In 
our future research, an approach to combining these two methods will be considered to 
implement the combined effect of Granger causality and elastic net on identifying predictors for 
short term traffic prediction. This paper also identifies the hierarchy of the importance of road 
links as the predictors as well as the location of these important predictors. This can be useful if 
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all road links cannot be considered to build the prediction model due to having unavailable or 
malfunctioned detectors at many locations in the road network. If the target location has 
malfunctioning detector, importance predictors in the network can be used to predict traffic 
parameter in the target location.  
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