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Abstract 

This study aims to improve the understanding of the underlying mechanism of passenger 
boarding and alighting processes, as well as its potential influence on train dwell time. The 
study examines if the interference between different passenger movements (boarding, 
alighting, and standing) affects the length of passenger service time. This study also 
postulates that the level of interference can be related to the position of the train door in terms 
of its proximity to platform entries. We collected passenger service time data from one of 
busiest metro stations in Seoul, Korea, and analysed the empirical data to identify the spatial 
and temporal variation in the passenger service rate (number of passengers serviced at each 
door per unit time). This study introduces the Dynamic Time Warping technique for similarity 
measures and clustering of the time series data. The analysis revealed four distinct shapes of 
the temporal service rate curve. Each curve represents a unique temporal service pattern that 
is attributed to varying levels of interference and passenger demand. A new passenger service 
time model is presented to include the cluster variable in a categorical form. The significance 
of the cluster variable is demonstrated by comparing the prediction capability of the model with 
and without the variable. 

Keywords: train dwell time, passenger service time, dynamic time warping 

1. Introduction 

Train dwell time is composed of two components: function time and passenger service time. 
Function time is a buffer to allow for door opening, safety check before door closing, and door 
closing. Passenger service time refers to the period from the door opening to the completion 
of passenger service. Passenger service time varies from one train door to another, and the 
dwell time of a train is determined by the longest passenger service time. Passenger service 
time is exposed to a broad range of variations. The number of boarding passengers and the 
number of and alighting passengers are the dominant factors in determining the length of 
passenger service time (Szplett, 1984; Lam et al., 1998; Wiggenraad, 2001). Weston (1989), 
Lin and Wilson (1992), Puong (2000), and Douglas (2012) included an interference factor in 
various terms to account for the disruption to passenger boarding and alighting. Other studies 
take into account the variation in train vehicle and station types by including door width and 
train length factors (Harris, 1994; Li et al., 2015).  

The majority of train dwell time studies in the literature assume the static passenger service 
rate—in other words, the numbers of boarding and alighting passengers per unit time are 
constant over the whole passenger service time. Harris (2006) argued against this common 
assumption. His empirical study of the London metro data shows substantial variations in the 
passenger service rate over time and among train door locations. Several factors may be 
responsible for these variations. In particular, passengers are unequally loaded onto train cars. 
Waiting passengers tend to position themselves near the platform entrances (e.g., stairs or 
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escalators) rather than being distributed equally (Szplett and Wirasinghe, 1984; Krstanoski, 
2014). Unevenly distributed passengers contribute to varying levels of interference both 
spatially and temporally. 

This study is premised on the hypothesis that the passenger service rate varies over time and 
among train doors, and that the position of train doors in terms of its proximity to platform 
entrances is a major influence on the variation. Empirical data were collected through a field 
study of the busiest metro stations in Seoul, Korea. The data are essentially a time series 
representing the passenger service rate (i.e., the number of boarding and alighting passengers 
in every 5-second interval) at each door location. The empirical data are analysed to 
demonstrate the heterogeneity in the service rate and to identify potential sources of the 
interference. This study introduces the Dynamic Time Warping (DTW) technique for the 
similarity assessment and clustering of train doors by their temporal service pattern. A 
passenger service time model is presented to include the cluster information as a categorical 
variable. The significance of the temporal service pattern and its effect on the passenger 
service time are tested by comparing the prediction capability of the model with and without 
the cluster variable. 

The next section reviews the literature on train dwell time and passenger service time models. 
The following section describes the study site and the empirical data collected for the study. 
The data are analysed to reveal spatial and temporal variation for similarity measures and 
clustering using DTW. The clustering results are presented with discussions. The last section 
presents a passenger service time model to test the significance of the cluster variable. The 
modelling results are discussed, as well the main findings of the study and their implications 
on railway operation. 

2. Train dwell time models 

The literature on train dwell time or service time has been scarce, with few advances since 
the 1980s. Recently, passenger behaviour is receiving attention to address the overcrowding 
issue of urban metros. Some studies examined passenger behaviours to better understand 
temporal boarding and alighting processes (Krstanoski, 2014), as well as passengers’ choice 
of waiting position on the platform (Kim, 2014) or a specific train car (Liu et al., 2016). Ahn et 
al. (2016) proposed that passenger concentration on the platform could be reduced by 
providing passengers real-time train arrival and occupancy information. Coxon et al. (2013) 
also suggested that train performance could be improved by refining the interior design and 
seat configuration to allow smooth and stable passenger movements in train cars.  

Train dwell time may be defined as the time duration from the moment of train arrival at the 
station to the moment of departure, or, in other words, the time duration while a train stops in 
the station. The literature defines train dwell time as the sum of two components: function time 
and passenger service time (Lam et al., 1998). Passenger service time is the period of 
passenger boarding and alighting. The dwell time models in the literature attempt to estimate 
the passenger service time component. 

Earlier dwell time models include only the most dominant determinants of passenger service 
time, namely the number of boarding passengers and number of alighting passengers. 
Wirasinghe and Szplett (1984) proposed a linear regression model using the empirical data 
collected from two Light Rail Transit (LRT) stations in Calgary, Canada. Their model was 
designed to estimate the passenger service time for each train door. The maximum serivce 
time out of all the doors was then added to the function time to compute a train’s dwell time. 
A similar model was proposed by Lam et al. (1998) for passenger service times at Mass Transit 
Railway stations in Hong Kong. The model assumed spatially uniform distribution of boarding 
and alighting passengers across the train doors. More recently, Jong and Chang (2011) 
proposed two regression models for the commuting and express train lines at the Taipei Main 
station in Taiwan to reflect the impact of different train types. 
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The majority of existing dwell time or passenger service time models assume that passenger 
boarding and alighting rates are constant over the whole passenger service time. Harris (2006) 
challenged this common assumption and demonstrated that the rates of boarding and alighting 
vary widely through a cohort of passengers. His empirical study showed that, in general, the 
alighting rate is fastest immediately after doors open and that the fastest boarding rate is found 
with the middle third of passengers; early boarders can be impeded by those alighting, and 
late boarders may be impeded by the congestion in the train and station terminal.  

The spatial distribution of waiting passengers along the station platform is a major factor 
contributing to passenger service interference and service time variation. Szplett and 
Wirasinghe (1984) and Wiggenraad (2001) showed that train passengers unevenly distribute 
themselves along the platform and found that the spatial distribution of waiting passengers is 
highly related to the position of the platform access points. More recently, a number of models 
were proposed to explain the spatial distribution of passengers across the station platform. 
Kim (2014) used a logit model to determine the factors affecting the selection of a waiting 
position on the platform. Krstanoski (2014) suggested multinomial distribution to describe the 
passenger boarding and alighting process over time. This study also found a clear 
dependence of the spatial distribution of passengers on the position of the platform entrances. 
Liu et al. (2016) proposed a utility-based model to describe the choice of a specific car on a 
train. Different modelling approaches are discussed in the literature to explain the positioning 
and distribution pattern of passengers. However, the consequences and impact of the spatial 
and temporal distribution of passengers on passenger service time has been unexplored and 
represents a gap in the current literature. 

3. Study site and data 

To collect passenger service time and associated data, a field study was conducted using a 
video camera to capture passenger boarding and alighting activities. The Gasan Digital 
Complex (GDC) station in Seoul, Korea, was selected for the study. The GDC station is one 
of busiest metro stations in Seoul; more than 50,000 passengers accessed the station per day 
in 2015. Severe dwell time delays are seen in this station that substantially exceeds the 
scheduled dwell time, especially during the afternoon peak hours. This study uses train car 
weight data as a proxy measure of the crowd level in a train car. Seoul Metro currently 
operates a weighing scale system at every metro station, which enables the collection of the 
weight data of each train car on the real-time basis.  

The GDC Station has a side platform structure (Figure 1) providing two separated platforms: 
one towards Bu-pyeong station (north platform) and the other towards Jang-am station (south 
platform). This study uses only the north platform data, which is the main travel direction during 
the afternoon peak-hours. The metro line serving this station operates eight car trains, and 
there are four entry/exit doors on each side of every train car. Figure 1 illustrates the 
designated positions of the 32 train doors and the location of passenger access points—stairs, 
escalators, and elevators. 

 

Figure 1: GDC station layout
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The data collection took place on April 29, 2015, from 6 to 8 p.m. on north platforms. A total 
of 16 on the north platform were installed so that each camera could capture passenger 
boarding and alighting movements and associated activities at each door location. The 
following data were derived from the video recordings and also from the weighing scale 
system: 

 Weight of train cars – The weight measurements of each train car after completion of 
passenger service between door closing and train departure were recorded.  

 Function time – Function time is defined as the time period from train arrival to door 
opening and the time period from door closing to train departure. The function time is 
uniform for all the train doors. 

 Passenger service time – Passenger service time is defined as the time period from 
the instance of the door opening to the instance of the last passenger’s boarding or 
alighting. The passenger service time was measured at each train door location.  

 Number of boarding and alighting passengers – The number of boarding and alighting 
passengers was counted separately in 5-second intervals at each train door location. 

 Arrival and departure time of trains – The arrival time and departure time of trains were 
recorded for every train arriving at GDC station. Train arrival time was recorded when 
the train stops completely. Train departure time was recorded when the train begins to 
move away from the station. 

The passenger service time data were collected from a total of 27 northbound trains during 
the study period. Out of those 27 trains, the scale system failed weighing one train. 
Additionally, one video camera installed on the north platform to capture door #13 and #14 
failed to record. Therefore, the service time data were collected from 26 northbound trains at 
30 door locations. 

Table 1 presents descriptive statistics of the variables of interest. The average gross weight 
of the northbound train cars is 9.95 tons. The tare weight of a train car is approximately 0.5 
tons. These measurements of average gross weight indicate that the average passenger 
occupancy for the northbound train cars is approximately 155 passengers. The maximum 
occupancy in a car is about 240 passengers, assuming the average weight of male and female 
adults is 71.5 kg and 57.0 kg, respectively (KOSIS, 2013).  

On average, there are 12.11 boarding passengers and 3.97 alighting passengers per door per 
dwell. The number of boarding passengers is relatively consistent, with less variation 
compared to the alighting passengers. The mean passenger service time is 15.27 seconds 
with a standard deviation of 7.54 seconds. The average function time is 13.74 seconds. The 
function time includes the pre-service function time (time period from train arrival to door 
opening) and the post-service function time (time period from door closing to train departure). 
The post-service function time is typically longer than the pre-service function time because it 
involves the safety check by the train operators to ensure that all the train doors are safely 
closed before departure. The post-service function time was also found to be more variable 
compared to the pre-service function time. 

Table 1: Descriptive Statistics 

Type of Data   N % Mean Std. Dev. 
Coeff. of 
Variation 

Train car 
weight (WT) 

0-5 tons 7 0.97% 

9.95 3.32 0.33 
5-10 tons 405 56.41% 

10-15 tons 237 33.01% 

over 15 tons 69 9.61% 

Number of  
boarding  
passengers 
per door 

0-5 135 18.80% 

12.11 6.85 0.57 
6-10 192 26.74% 

11-15 185 25.77% 

over 16 206 28.69% 
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Type of Data   N % Mean Std. Dev. 
Coeff. of 
Variation 

Number of 
alighting  
passengers 
per door 

0-5 547 76.18% 

3.97 3.33 0.84 
6-10 135 18.80% 

11-15 30 4.18% 

over 16 6 0.84% 

Passenger  
Service 
time (sec) 

0-5 65 9.05% 

15.27 7.54 0.49 
6-10 155 21.59% 

11-15 168 23.40% 

over 16 330 45.96% 

Function time 
(sec) 

Pre-passenger 
service 

27 N/A 5 0.73 0.15 

Post-passenger 
service 

27 N/A 8.74 2.8 0.32 

 

4. Passenger service time analysis 

The service time data is analysed in this section to demonstrate spatial and temporal variation 
in association with the level of passenger flow. Figure 2 illustrates the average passenger 
service rate, which was counted at each train door location during the study period. Note that 
the service rate is expressed in terms of the number of boarding and alighting passengers 
serviced at each door location in 5-second intervals. The overall height of the bars indicates 
the total number of passengers serviced per passenger service time. 

 

Figure 2: Passenger service rate in 5-second intervals by train door 

 

 

The spatial variation of the passenger load is substantially large among the door locations. An 
average of 29.6 passengers used door #17 per passenger service time, whereas only 8.2 
passengers used door #32. Figure 2 shows that passengers tend to cluster around certain 
designated locations rather than evenly spread along the platform. Two cluster locations were 
found at each platform—around door #17 and #9. The cluster locations are close to the 
platform entry points (Figure 1).  

Figure 2 shows the passenger service rate in 5-second intervals. The service rate in the first 
5-second interval varies substantially, ranging from the lowest service rate of 3.1 passengers 
(door #32) to the highest service rate of 6.1 passengers (door #16).   
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Table 2: Passenger service rate variation 

 Number of serviced passengers 

Time Interval 
(sec) 

Mean Std. Dev. 
Coeff. Of 
Variation 

0~5s 4.67 0.80 0.17 

5~10s 4.55 1.02 0.22 

10~15s 3.41 1.50 0.44 

15~20s 2.13 1.34 0.63 

20~25s 1.09 0.88 0.81 

25~30s 0.50 0.49 0.98 

30~35s 0.23 0.22 0.93 

35~40s 0.09 0.02 0.23 

 

As shown in Table 2, passenger service rates are relatively high and less varied in the first 
and second intervals. Afterwards, the variation becomes larger—most of the waiting 
passengers have boarded the train already at some door locations, but the passenger queue 
was also still present at other door locations. The service rate should gradually decline as 
waiting passengers board the train, but an interesting trend was found at some door locations, 
in which the passenger service rate further increased in subsequent time intervals. For 
instance, the service rate at door #17 continues to increase from 4.6 passengers in the first 
interval to 6.1 passengers in the second interval, and then to 6.7 passengers in the third 
interval.  

Figure 3 shows some examples of the temporal passenger service rate pattern (door #1, #10, 
#15, and #26). The profiles show a general agreement in the trends, but the peak service rate 
point varies by the door location. The highest service rates are seen in the first 5 seconds at 
door #1 and #26, whereas the service rate is at its peak in the second interval at door #10 and 
in the third interval at door #15. 

Figure 3: Temporal passenger service rate patterns (door #1, 10, 15 & 26) 

 

The temporal service rate patterns illustrated in Figure 3 are consistent with the discussions 
in the literature in that passenger movements at the beginning of service time can be 
substantially disrupted by interaction among passengers (Weston, 1989; Lin and Wilson, 
1992; Parkinson and Fisher, 1996; Puong, 2000; Douglas, 2012).  Initial passenger boarding 
and alighting can be drastically slowed or impeded by standing passengers in the train and 
waiting passengers on the platform (Krstanoski, 2014). This interference can be more severe 
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when conjoined with loaded train cars and a concentration of waiting passengers. The service 
rate rebounds after the interference becomes less obtrusive. The level of interference can be 
associated with the occupancy level of the train vehicle and the position of stairs and elevators, 
as waiting passengers tend to cluster near the platform entry points. 

5. Time series clustering 

5.1. Dynamic time warping algorithm 

The passenger service rate data are further examined for similarity assessment and clustering 
in this section. In this paper, we introduce DTW to compute the degree of similarity in the 
service rate pattern between door locations. For time series clustering and similarity 
assessments, the Euclidean norm was widely used in spite of its sensitivity to distortion in the 
time axis (Keogh and Kasetty, 2002). DTW allows a non-linear warping of the time axis to find 
an optimal alignment between X and Y with the least cumulative cost, called the warp path 
(Keogh and Pazzani, 2001). DTW was originally proposed for automatic speech recognition 
(Rabiner and Juang, 1993), but it has been applied to a wide range of applications for data 
mining (Berndt and Clifford, 1994), information retrieval (Chu et al., 2002; Keogh and 
Ratanamahatana, 2005), bioinformatics (Gavrila and Davis, 1995; Munich and Perona, 1999; 
Kovacs-Vajna, 2000; Aach and Church, 2001), chemical engineering (Gollmer and Posten, 
1995), robotics (Schmill et al., 1999), and computer graphics (Caiani et al., 1998).  

The empirical data are presented as time series with different lengths. Passenger service time 
data were aggregated into a time sequence for a two-hour interval for the analysis. Figure 4 
illustrates two samples of aggregated data showing different temporal patterns. Door location 
#9 is one of busiest waiting areas on the north platform, in which the number of passengers is 
substantially higher than those at door location #32. 

Figure 4: Sample aggregated service time sequences (door #9 & #32) 

 

Suppose that two service time datasets (each collected at a different door location) are given 
as X = {𝑥1, 𝑥2, … , 𝑥𝑛}  and Y = {𝑦1, 𝑦2, … , 𝑦𝑚} . Euclidean distance is simply the sum of 
|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|, … , and |𝑥𝑛 − 𝑦𝑚| by calculating the difference between two points occurred 
at the same time (i.e., local distance). The DTW algorithm starts by calculating the local 
distance between two parallel points (with the same time tag) 𝑥𝑖 and 𝑦𝑗. The local distance is 

calculated as follows:  

 

 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑦𝑗) = |𝑥𝑖 − 𝑦𝑗| (1) 

 

The local distance value between two points is small if x and y are closely positioned to each 
other, and the distance is large if 𝑥 and 𝑦 are far apart. A m-by-n cost matrix can be obtained 
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by computing the local distance between all elements of X and Y; the (ith, jth) element of the 
matrix contains the distance between the two points xi and yi. 

Once the calculations of local distance for sequences X and Y are obtained, the next process 
is to find the optimal alignment between X and Y to have the minimum overall distance. This 
process requires the calculation of the cumulative cost matrix 𝐷(𝑖, 𝑗). The naive approach for 
alignment is to try every possible warping path between X and Y, leading to extensive 
computational complexity. Instead, a dynamic programming algorithm is widely used to find 
the shortest warping path, which allows the algorithm to move to the next cell vertically, 
horizontally, or diagonally to minimise the accumulated cost (Rabiner and Juang, 1993). The 
accumulated cost can be calculated using the following (2): 

 

 𝐷(𝑖, 𝑗) = 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑦𝑗) + min(𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖, 𝑗 − 1)) (2) 

 

Next, the optimal path allocates the alignment for DTW distances between X and Y. The 
optimal path may be defined as sequence 𝑝 = {𝑝1, … , 𝑝𝑙 , … , 𝑝𝐿} with 𝑝𝑙 = (𝑛𝑙 , 𝑚𝑙) ∈ [1: 𝑁] ×
[1: 𝑀] satisfying the following three conditions: 

(i) Boundary condition: 𝑝1 = (1,1) and 𝑝𝐿 = (𝑁, 𝑀). This constraint simply defines that the 
warping path has to begin and to end in diagonally opposite corners of the matrix. For 
the alignment, this condition implies that the first and last points of the two time series 
have to be aligned to each other. 

(ii) Monotonicity condition: 𝑛1 ≤ 𝑛2 ≤ ⋯ ≤ 𝑛𝐿  and 𝑚1 ≤ 𝑚2 ≤ ⋯ ≤ 𝑚𝐿  which means that 

the path should move down or to the right from the 𝑝1 in the accumulated cost matrix. 
(iii)  Step size and continuity condition: 𝑝𝑙+1 − 𝑝𝑙 ∈ {(1,0), (0,1), (1,1)} for 𝑙 ∈ [1: 𝐿 − 1]. This 

constraint defines that only adjacent cells (vertical, horizontal, or diagonal) can be 
selected for the next step and also that the skipping of cells is not allowed.  

Finally, the DTW similarity measure is an accumulated cost of the last value of the optimal 
path. Comparing the two service time series of door locations #9 and #32 on the north platform, 

the DTW similarity measure (𝑝𝐿 ) was calculated as 85 (Figure 5). The smaller the DTW 
similarity measure is between two sequences, the more similar these sequences are. By using 
this DTW algorithm, this study endeavoured to calculate all DTW similarity measures between 
the time series data of all train doors for clustering. 

 

Figure 5: Cost matrix and optimal path (door #9 & #32) 
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5.2. Train doors clustering 

The cubic clustering criterion (CCC) was used to determine the number of clusters. The CCC 
is a function of the ratio between the R2 with a specific number of clusters and the expected R2 

with a uniformly distributed set of events (Sarle, 1983). Through an extensive Monte Carlo 
experiment, Sarle (1983) proposed that a CCC value greater than 2 or 3 would be sufficient 
evidence for the validity of the chosen number of clusters. In this study, the optimal number of 
clusters was chosen by plotting the CCC value against the number of clusters and finding a 
local maximum after the CCC rises above 2 and the rate of change becomes steady. Four 
clusters were created as a result of the clustering. 

Figure 6: Cubic clustering criterion plot 

 

The temporal passenger service pattern is illustrated in Figure 7 for each cluster group. The 
curves clearly demonstrate uneven temporal patterns by the location of train doors. The 
interference effect is most significant in the service pattern of cluster 4 (solid curve). The same 
effect is present in the curves of cluster 3, but the degree of interference is relatively small and 
the service rate only slightly increases compared to the cluster 3. The plots indicate that the 
level of passenger demand determined the temporal service pattern for cluster 1 and cluster 
2, in which the interference effect is not observed. 

Figure 7: Cluster dendrogram 

 

 

The clustering result is visualised on the station layout in Figure 8. The figure confirms that 
the location of doors is significantly related to the shape of the curves and the level of 
interference. Most train doors in cluster 4 are located closest to the platform entry points. 
Heavy boarding and alighting passenger volumes may have caused significant interference 
and disruption to passenger movements at those door locations. The doors in cluster 3 are 
mostly located next to the platform entry points. The walking distance to the entry points 
gradually increase from the doors in cluster 3 to cluster 2, and from cluster 2 to cluster 1. The 
train doors categorised in cluster 1 are located on the corner of the platforms. 
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Figure 8: Clustering result displayed on the station layout 

 

6. Passenger service time model 

To examine the validity of the temporal service rate pattern and its impact on passenger 
service time, a linear regression analysis was conducted. The temporal service pattern is 
included in the models as a categorical variable representing the cluster number. The 
proposed models consist of the passenger service time as a dependent variable and four 
explanatory variables, which includes the number of alighting passengers, the boarding of 
boarding passengers, the weight of train car, and the train door cluster variable. Three of the 
independent variables are continuous and quantitative variables, so they can be analysed 
without any modifications. The train door cluster variable is a categorical variable so it was 
transformed into dummy variables. 

Table 3 presents the modelling results with and without the cluster variable. The table includes 
unstandardised regression weights, their standard errors, and standardised beta weights (β). 
The model without the cluster information was statistically significant with adjusted R2 at .928. 
Including the cluster variable improved the prediction capacity of the model. The adjusted R2 
value improved when the clustering variable was included in the models, and all the 
explanatory variables were statistically significant with 99% confidence. The results suggest 
that the temporal service pattern has a significant impact on passenger service time, and the 
linear models explain the relationship reasonably well. 
 
Table 3: Regression Modelling Results 

 Without Clustering With Clustering 

Variables B SE B Beta (β) B SE B Beta (β) 

 
AdjustedR2=.928, 

F(3,714)=3077.14, p<.0001 
AdjustedR2=.937, 

F(6,711)=1782.31, p<.0001 

Constant -.302 .273  1.598*** .332  

No. of Alighting 
 Passengers 

.885*** .029 .346 .769*** .029 .301 

No. of Boarding 
 Passengers 

.900*** .015 .725 .857*** .015 .691 

Train Vehicle 
 Weight (Ton) 

.153*** .029 .060 .212*** .028 .083 

Cluster_1    -2.344*** .261 -.129 

Cluster_2    -2.207*** .252 -.117 

Culster_3    -.717*** .259 -.032 

Note: B = unstandardised regression weights; SE B= standard error for the unstandardised regression 
weights;***p<.001; **p<.01; *p<.05 
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The number of boarding passengers and the number of alighting passengers are the dominant 
factors determining the passenger service time. The passenger service time increases by 
0.769 with an additional alighting passenger and by 0.857 seconds with an additional boarding 
passenger on the north platform. The train car weight is the next significant variable, in which 
the value of β is .083. The unstandardised coefficients (B) of dummy variables imply the 
relative level of interference delaying passenger movement and service time. The interference 
is most crowded at the door locations in cluster 4, followed by cluster 3, cluster 2, and cluster 
1. These negative signs of dummy cluster parameters indicate that the door locations in cluster 
4 would take longer passenger service time than the door locations in the other clusters.  

 

7. Conclusions 

To better understand the underlying mechanism of passenger boarding and alighting, this 
study analysed the spatial and temporal variation in passenger service time. This paper 
introduced a time-series clustering approach, which uses the DTW algorithm for similarity 
measures and clustering of train doors by their temporal passenger service pattern. The 
analysis resulted in four distinct shapes of the passenger service rate curve from the north 
platform. For validation, a multivariate regression analysis was conducted, which included 
categorical dummy variables of the temporal service pattern cluster. Statistical tests proved 
the significance of the cluster variable. The validation results suggest that the spatial and 
temporal variation in passenger service time must be accounted for to accurately describe the 
relationship between passenger movements and the length of passenger service time.  

This study will contribute to the literature by providing a new technical approach to analyse 
and predict levels of interference and its effect on the passenger service time. Interference 
can be minimised by distributing passengers along the platform and among train cars. Real-
time passenger information may be an effective measure to guide passengers to less crowded 
train cars. Recently, Ahn et al. (2016) tested a strategy to provide the occupancy level of 
arriving train cars to passengers in order to assist their decision making for positioning and 
choice of a train car. The proposed approach may contribute to more sophisticated passenger 
information systems by deriving the optimal number of passengers to allocate to each 
designated door location to minimise interference and overall train dwell times.  

The presented passenger service time model performed reasonably well using only four 
explanatory variables. The cluster variable is a constant, which can be defined through an off-
line analysis of the historical passenger service time data. Train weighing scales are already 
in operation in many countries. The number of boarding passengers may be estimated through 
automatic fare collection information (Chan, 2007; Sun and Xu, 2012) or video surveillance 
(Liu et al., 2005; Zhang and Chen, 2007; Conte et al., 2010; Xu et al., 2010). Although more 
challenging, prediction of alighting passengers in reasonable accuracy will enable forecasting 
passenger service time and dwell time on the real-time basis. 
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