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Abstract

The interplay between road infrastructure, traffic conditions and travel choices is in the core
of any infrastructure initiative, traffic control strategy or policy change. While the traditional
traffic analysis framework assumes full awareness of travel costs and relies on the definition
of user equilibrium state, there are few studies in the literature that test the existence of such
equilibrium state. This study evaluates the widely applied shortest path assumption and so
user equilibrium state from two aspects; (i) user perspective: similarity between actual and
shortest paths, (ii) network perspective: node loads that result from actual and shortest paths.
This study uses the GPS trajectory data set of approximately 20,000 taxis from Shenzhen,
China to estimate the travel costs and reveal the actual routes followed in the network. It
also considers two types of shortest paths that are based on free flow and estimated travel
time. User perspective analysis concludes that most travellers do not choose the shortest path
based on neither free flow nor estimated travel time. On the other hand, network perspective
examination demonstrates similar network-wide patterns with actual routes and shortest paths
based on estimated travel time.

INTRODUCTION
Understanding the complex interaction between road infrastructure, traffic conditions and travel
choices (e.g. route choice, departure time) has been a long-standing challenge to understand mo-
bility patterns in cities. The path travellers follow in the complex traffic networks has been arguably
the most influential decision that dynamically redefines the relation between the supply provided
by road infrastructure and the demand generated by travel plans of drivers. Nearly all techniques
that aim for congestion alleviation build on accurate estimations of travel demand and thus on
underlying route choices. The mainstream understanding of this complex interplay builds on the
definition of user equilibrium (UE) state, namely Wardrop’s first principle: "the journey times in all
routes actually used are equal and less than those which would be experienced by a single vehicle
on any unused route" (1).

While UE assumes that travellers have the perfect knowledge of travel costs along the net-
work, and choose the routes that minimize their travel costs, stochastic user equilibrium (SUE)
states that travellers might not be fully informed about network conditions, and therefore choose
the routes that minimize their perceived travel costs. Shortest path algorithm is the straightfor-
ward way to establish UE conditions; however, there is a vast literature of discrete choice models
that could be exploited to reach SUE conditions. The most appreciated models are Multinomial
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Logit, C-Logit (2), Path Size Logit (3), Link-Nested Logit (4), Multinomial Probit (5) and Error-
Component model (6). Route choice models are essential to estimate travel demand under hypo-
thetical scenarios and predict traffic conditions in real-time. Nevertheless, modelling route choice
is a challenging task given the complexity of human behaviour and uncertainty about travellers’
perceptions. Additionally, calibration of the above discrete choice models is questionable because
of computational complexity, lack of detailed data and occasionally over-fitting of the parameters.
These models also require explicit enumeration of all alternative routes (i.e. choice set). In route
choice analysis, alternative paths cannot be easily monitored, enumerated or extracted from the
complex networks where the routes are hidden. While the literature of route choice models is vast,
a detailed description is beyond the scope of this paper. The interested reader can refer to (7).

While congestion seems an unavoidable sign of a vibrant city with economic growth and
social interactions, drivers increasingly take advantage of real-time information through GPS de-
vices and smart phones. With everyone being easily monitored by the new sensors, researchers
can start testing the assumptions behind the equilibrium state on network traffic patterns. There are
few studies that test the empirical existence of Wardrop’s first principle. (8) evaluate the habitual
routes reported by 188 respondents. Assuming 90% overlapping is required to define two routes as
the same, 37% of respondents follow a shortest time path (travel times are estimated using a traffic
assignment model), and 22% follow a shortest distance path. Similarly, (9) design a Web-based
survey and evaluate 236 routes between 182 OD pairs. Again, assuming 90% threshold for two
routes to be considered the same, 26.7% of respondents choose the shortest distance path, while
17.8% choose the shortest time path. (10) collect GPS records from 143 participants and evaluate
their route choice decisions in a period of 13 weeks where there is a disruptive event of bridge
reopening. Their analysis concludes that about 40% of trips follow the shortest time path using a
10% overlapping threshold. Note that all studies are conducted with limited amount of data and
test the equilibrium assumptions from a user perspective, i.e. similarity between actual and shortest
path at the individual level.

In this work, we address this issue by coupling travel demand and traffic conditions, and
analyse whether actual vehicle movements across cities are in line with equilibrium assumptions.
To generate travel demand, we begin by mining massive GPS records from taxis. Using the taxi
trips with passengers, we identify the origin and the destination locations within the city. Addi-
tionally, we apply a map-matching algorithm to identify the paths that vehicles actually follow in
the network. We then parse the publicly available OpenStreetMap data and build the road network
graph. OpenStreetMap provides the physical distance across the network and the category of roads
which allows us to calculate free flow travel times. To determine actual traffic conditions, we pro-
cess the taxi trajectories and estimate link travel times. We then explore the relationship between
observed and shortest paths from two perspectives: (i) user perspective that compares individual
path similarities and (ii) network perspective that is focused on traffic loads at the nodes. The
findings from these two-layer comparison indicate a strong contrast; actual network state and equi-
librium conditions are quite dissimilar from user perspective, while network-level analysis presents
significant correspondence.

This paper is structured as follows. The next section describes the data set. The following
section introduces the major findings of the user perspective analysis, and the one after that presents
the results from network perspective inspection. The last section gives the discussion and the
conclusions of the study.
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DATA DESCRIPTION
The data set includes GPS tracks of around 20,000 taxis in a fast growing Chinese mega-city;
Shenzhen. The rapid investment created one of the fastest-growing cities in the world with a
population close to 11 million and, as expected, large congestion problems both in the urban and
freeway system of the city. The network structure includes 10065 nodes and 23351 links. The
data set consists of trips (on the same day) from taxis equipped with a GPS sensor that stores
its location every 10-40 seconds. For every GPS point, it is also known whether the taxi carries
a passenger or not, which allows us to distinguish between trips with and without passengers.
Assuming that taxi passengers follow routes similar to regular cars in the network, we only focus
on taxi trips with passengers. Even if taxi drivers might seek non-standard paths, we expect that
speed estimates based on taxis with passengers are a good representation of all vehicles and that
aggregated patterns are not influenced much by local low-level route choices.

In order to identify the paths that result from GPS records collected every 10-40 seconds,
we apply a map-matching algorithm (11). This procedure results in the removal of 25% of the
available trips due to the lack of feasible paths between successive pairs of GPS records, Despite
this loss, we have around 190,000 trips in the data set which offers a wide network coverage to
observe traffic conditions and travel patterns.

Figure 1 introduces the distribution of distance, average speed and duration for the suc-
cessfully map-matched trips. Note that we do not observe any significant difference between map-
matched and discarded trips in terms of distance and duration distribution, which implies that the
process of map-matching does not create an additional bias in our analysis. From Figure 1, we see
that most trips span a distance less than 10 km, and there are very few trips that cross more than
20 km. As this analysis only represents taxi trips with passengers, one can expect a different trip
distance distribution for all vehicles. In particular, there may be more trips with longer distance in
the actual distribution; however, as these long trips are expected to constitute a very small portion
among all trips, we do not expect significant changes in our results. Figure 1 also shows that the
average speed of a trip is distributed between 3km/h and 70 km/h. Considering the mixed nature of
the study network (i.e. signalised arterial roads and freeways), no trip is able to exceed the average
speed of 70 km/h. In addition, we see that most taxi trips take less than 15 min, and only few
exceed 30 min.
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FIGURE 1: Trip distance, speed and duration distribution
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In order to estimate the travel cost, we formally define the road network as a directed graph
G = (V,E) where V is the set of vertices or nodes, and E is the set of edges or links on the graph.
For each road link indexed by e ∈ E, we call Xe the travel time and le length of the link. We also
represent the set of link lengths as L. Denote N the number of GPS observations, and for each
observation n ∈ N , the travel time between the start point and the end point is denoted xn. We can
represent the trajectory of observation n as a vector wn of size E where we

n = 1, if the edge was
taken during this observation and 0 otherwise. We use two different definitions to compute link
travel times. The first definition of link travel time

Xff
e = le/ve (1)

is based on free flow traffic conditions where we set free flow speed limit ve = 100 km/h for
freeways and = 40 km/h for urban roads. In the second definition, we estimate link travel time
using the following formula.

Xest
e =

(∑
n∈N

wn · L

)
·

(∑
n∈N

le
wn · L

· xn

)−1
. (2)

The first term in Equation 2 refers to total distance travelled on link e, while the second term
presents total time spent assuming vehicles have a constant speed between two successive GPS
observations. This equation, therefore, provides an estimation of the space mean speed on link e.

USER PERSPECTIVE
In this section, we compare the actual routes and the shortest paths in terms of overlap percentages.
In order to determine the shortest path, we use two types of travel cost; free flow travel time Xff

e of
Equation 1 that results from speed limits in road classes and estimated travel time Xest

e that follows
Equation 2. Figure 2 presents route overlaps between the actual paths and the shortest paths based
on two travel costs defined above. If two routes completely overlap, the difference should be 0. If
they do not overlap at all, the difference should be 100%. Using the most strict overlap definition,
we observe that around 29% of paths are in full compliance with shortest paths that rely on either
one of the travel costs. Considering 5% threshold to consider two paths the same, this value goes
up to 33% and 35% for free flow and estimated travel time, respectively. More importantly, even
though estimated travel time consistently produces more paths with less than 30% difference, the
overall distribution of values does not seem to be largely affected by the travel cost definition.

The number of alternative routes, and thereby route choice behavior is not the same for all
origin and destination pairs. For example, when the trip covers a short distance, the entire path
could consist of one straight road and even the second shortest path would be much longer. On
the other hand, if the distance is very long, the common behavior would be to reach the nearest
freeway connection and get off at the nearest interchange to the destination point, which would
create a very high overlap percentage.

In order to investigate the relation between trip distance and overlap percentage, we have
divided the data set into groups with respect to euclidean distance between origin and destination
points. Figure 3 presents the percentage of routes that are equivalent to shortest paths based on
both free flow and estimated travel time. As Figure 2 shows, 5% could be a natural cut to define
two paths the same. Therefore, we classify routes that differentiate from the shortest path by less
than 5% in length as those following the shortest time path. As expected, travelers are more likely
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FIGURE 2: Difference between actual routes and shortest paths

to follow the shortest path when the trip is short. Interestingly, free flow travel time performs
slightly better than estimated travel time in the shortest distance group. With free flow travel
time, the percentage drops very fast as the trip distance increases; it reproduces only 5% of the
actual routes in the longest distance group. On the other hand, despite the significant decrease in
overlap percentage, estimated travel time seems to converge to a value around 17% with increasing
distance. Our expectation regarding long distance trips seems to be valid only for a small portion
of travelers and only for shortest paths that are based on estimated travel time.
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FIGURE 3: Percentage of same paths with respect to distance groups

In overall, the analysis from user perspective does not provide new insights into the empir-
ical existence of user equilibrium in traffic networks. Our findings are in line with previous studies
(8, 9, 10); even with an overlap tolerance, not more than 35% of trips follow the shortest path.
Nevertheless, this observation does not fully explain "How far is traffic from user equilibrium?".
There is a need for a novel approach from network perspective that investigates aggregated patterns
resulting from the equilibrium assumptions. The next section intends to address this gap.

NETWORK PERSPECTIVE
As a result of the complex organization of mobility patterns in relation to road infrastructure,
simple network representations of transportation systems are far from providing a comprehensive
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characterization of such systems within the framework of complex spatial networks (12). To disen-
tangle the network of traffic flows from the underlying road infrastucture, here we follow Ref. (13)
and use a two-layered network model with one physical and one logical layer. As illustrated in Fig-
ure 4(a), while the lower-layer physical graph Gφ = (V φ, Eφ) represents the physical road network
with nodes V φ ≡ V and edges Eφ ≡ E, the upper-layer logical graph Gλ = (V λ, Eλ) captures
the traffic over the physical graph with nodes V λ ≡ V φ and edges eλ = (u, v) pairing the origin u
and the destination v of traffic flows. In our case, both the physical and logical layers are directed
and weighted graphs. Figure 4(b) shows node degrees kφin and kφout associated with, respectively,
incoming and outgoing edges of the physical graph Gφ. Consistent with previous studies (14, 15),
we find that most nodes have a degree ≤ 4, with a cumulative probability P (kφ ≥ 5) < 0.01 and
the average degree 〈kφ〉 ≈ 2.32 both for incoming and outgoing edges. Figure 4(c) shows that the
distribution of node weights of the logical graph Gλ is highly right-skewed indicating that while a
large portion of nodes has low weights (< 100), few nodes bear very large weights (> 1000).
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FIGURE 4: Description of the multilayered network approach. (a) Illustration of the two-layer
network. (b) Node degree distribution of the physical layer. (c) Weight distribution of nodes in the
logical layer Gλ. (d) Weight distribution of edges obtained from the mapping Mµ using actual taxi
trajectories.

Each logical edge eλ is mapped onto the physical graph as a path Mµ(eλ) navigating the
traffic from u to v. This mapping may be given explicitly as the actual paths constructed from GPS
tracking or may be defined implicitly through shortest paths. Figure 4(d) shows that edge weights
obtained following the former scenario with actual paths obtained from GPS tracks have a right-
skewed distribution similar to the distribution of logical weights shown in Figure 4(c). Finally,
load l of a node uφ, corresponding to the amount of traffic flowing through uφ, is defined (13) as
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the sum of the weights of logical edges whose paths Mµ(eλ) cross uφ.

l(uφ) =
∑

eλ:uφ∈Mµ(eλ)

w(eλ). (3)

Figure 5(a) presents the node loads that result from actual routes as revealed by GPS tracks
and map-matching implementation (i.e. lact) and the node loads lff that are associated with shortest
paths based on free flow travel time Xff

e . There is a strong proportionality between two node load
types; Pearson’s linear correlation coefficient is 0.86. This is a very high score; however, we
notice that scatter in the plot becomes more evident with increasing lact, which indicates lower
estimation quality for high load carrying components. Additionally, we fit a linear function of the
form lact = a ∗ lff + b, where a and b are calculated as 0.75 and 88, respectively. Despite high
correlation, linear regression results (a being far from 1) point out consistent overestimation of lact
and indicate strong bias in the estimation of traffic loads with free flow travel times.
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FIGURE 5: Node loads with (a) free flow travel times, (b) estimated travel times.

Similarly, Figure 5(b) depicts the node loads from actual routes (i.e. lact) and the node loads
lest that are associated with shortest paths based on estimated travel time Xest

e . Pearson’s linear
correlation coefficient is significantly higher than the previous case; it is 0.95. More importantly,
scatter seems to be homogeneous over the range of actual node loads. Lastly, we fit a linear
function of the form lact = a ∗ lest + b, where a and b are calculated as 1.05 and 31, respectively.
This indicates a considerable improvement over the free flow travel time, as the value of a is much
closer to 1.

To have a better understanding of estimation quality, we calculate mean absolute error
(MAE) and root mean squared error (RMSE) with the following formulas.

MAEx =

[∑
V

(lact(v)− lx(v))

]
/|V | (4)

RMSEx =

[(∑
V

(lact(v)− lx(v))
2

)
/|V |

]1/2
(5)
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where lx(v) is the estimated load at node or vertice v with either free flow or estimated travel time.
With free flow travel times, MAE and RMSE are 149 and 405, respectively. Estimated travel times
lead to much smaller error values; 99 and 232 for MAE and RMSE, respectively. This represents
a 34% decrease in MAE and 43% reduction in RMSE. The findings of this analysis imply that
drivers anticipate traffic conditions across the alternative routes, they do not make decisions based
on free flow travel times, and equilibrium state provides a proper estimator of network-wide traffic
patterns.

Figures 5(a) and 5(b) provide an aggregated comparison of actual and estimated traffic
loads, while Figures 6 and 7 depict the distribution of estimation errors in the network and inves-
tigate the existence of hidden patterns that may lead to biased evaluations. To develop a relative
assessment measure, we define the percentage estimation error: (lact(v) − lx(v))/lact(v) ∗ 100.
Nevertheless, this approach may exaggerate the error measures for the nodes that carry low traffic
load. Therefore, we define a tolerance level of 500 veh and classify the nodes that remain within
the bounds. In other words, we choose the nodes for which the absolute difference between actual
and estimated load is less than 500 veh; gray points in Figures 6 and 7 represent them. For the
nodes outside the tolerance bounds, we calculate the percentage error. Green, yellow and red points
illustrate the nodes for which the estimation error is less than 50%, between 50% and 100% and
more than 100%, respectively. Most of the nodes remain in the tolerance bounds with both travel
cost definitions; however, lff produces significantly more points that lie outside the interval than
lest. More importantly, the coloured points in Figure 6 (yellow and red points in particular) seem
to compose major roadways that run along in the east-west axis, while the ones in Figure 7 are
scattered around the network and do not indicate a pattern. This comparative observation implies
that free flow travel times do not accurately represent the traffic conditions on these major roads,
and drivers anticipate the actual conditions to a certain extent and make choices accordingly. Note
that in both cases, most coloured points are located in the east of the city or CBD where there is a
denser network of low-load roadway links.
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FIGURE 6: Distribution of estimation errors with lff
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CONCLUSION
This study empirically tests equilibrium assumptions from user and network perspective and using
two travel cost definitions; free flow and estimated travel time. Free flow travel time is calculated
using the distance of links and associated speed limit, while estimated travel time is computed
with GPS observations and map-matching results. User perspective analysis does not indicate a
significant difference between two travel cost definitions, and in both cases, it strongly rejects the
assumption regarding widespread use of shortest paths. However, network perspective examination
focuses on node loads and reveals significant differences between the two types of shortest path.
Although free flow travel time does produce a strong correlation between actual and estimated node
loads, results are strongly scattered, and evaluations of major roadways are biased. On the other
hand, estimated travel time produces node loads that are very much in line with actual patterns.

Travellers clearly consider other alternatives when making route choice decisions, and all
the observed alternatives cannot be captured by shortest paths or even advanced choice set gener-
ation algorithms (10). However, it is not clear how network-wide traffic patterns are affected by
the mismatch of individual preferences. This paper is an attempt to fill this information gap. De-
spite the significant inconsistency of shortest paths at the individual level, the overall trend in the
network loads seems to be captured by user equilibrium assumptions. Obviously, user equilibrium
does not perfectly estimate the actual patterns observed in the network; estimations are not exactly
positioned along a proportionality curve. However, it is not clear if and how well discrete choice
models can estimate the network-wide patterns. This is a future research question to investigate.
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