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Abstract 

The common approach usually adopted in dynamic OD demand estimation and prediction 
consists in solving an optimization problem in which the distance between observed and 
simulated traffic conditions is minimized by assuming the relationship between OD flows and 
traffic observations independent of traffic conditions in the network. This approach has a sever 
shortcoming as it does not take into account the impact of demand flows variation on traffic 
observations in congested networks. 

This paper presents a modified bi-level optimization framework to solve the high-
dimensionality of nonlinear OD estimation problem by adding the recursive step to overcome 
the divergence of the optimization function performance. The recursive step involves 
evaluation of the marginal effects for the subset of significant OD pairs whose variation leads 
to high changes in link-flow proportions and traffic flows. In this way, we reduce the number of 
optimization function evaluations that allows the modeller to control the trade-off between 
simplicity of the model and the level of realism for large-scale, congested networks. Several 
state-of-the-art, bi-level optimization solution approaches, are used in the performance 
assessment study. All the approaches are implemented in a mesoscopic traffic simulation tool, 
Aimsun, to perform the traffic network loading on the large-scale network: the Vitoria urban 
network with 3249 OD pairs, 389 detectors, and 600km road network. The results demonstrate 
the applicability of the proposed solution approach to efficiently obtain dynamic OD demand 
estimates for large-scale, congested networks and that, computationally, this approach 
outperforms existing methods.  

1. Introduction 
Transport authorities and practitioners have long been concerned about the unavailability of 
reliable dynamic OD demand estimates which limits the potential for dynamic traffic 
assignment (DTA) deployments to analyse and alleviate traffic congestion as part of the 
Intelligent Transportation Systems (ITS). In congested networks, changes in the demand 
affect travel times. In turn, travel times affect the route choices and travel times from trip origin 
nodes to traffic observation detectors that determine the link-flow proportions or the 
relationship between OD flows and traffic observations. Modelling of non-linear relationship 
between traffic observations and OD flows, and its dependency on variations in OD flows has 
been identified by many researchers as a key challenge in the estimation and prediction of a 
high-quality OD matrices. For example, the dependence of link-flow proportions on the 
demand flows in assignment matrix should be explicitly included in the DTA process. Finding 
derivatives of link-flow proportions and traffic observation with respect to demand flows can 
be cumbersome task, often judged not feasible in terms of computation time. 
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From a modelling point of view, the most distinguishing difference between the OD demand 
estimation approaches, is how the relationship between state variables (e.g., OD flows, OD 
proportions) and any available traffic data (e.g., link traffic counts, speeds) is defined, 
calculated and re-calculated throughout the estimation process. An accurate description of 
this relationship leads to an accurate description of traffic state reality in the network, but to 
more complexity as well. In the past decades, a rich body of literature, stressed the need of 
relaxing the fixed relationship assumptions in mapping demand flows to traffic observations 
through estimation process when the congestion occurs in the network. Researchers have 
been devoted to development of the methods to capture the impact of demand variation on 
traffic observations, that can be categorized in analytical derivation, simulation-, numerical- 
and heuristic-based approximation methods.  

Typically, to calculate the weights between OD flows and link traffic counts (usually measured 
by loop detectors in the form of sensor counts), dynamic link-flow proportions, expressed in 
the assignment matrix form, are commonly used. Theoretically, these link-flow proportions can 
be analytically derived using network topology, path choice set, current route choice model 
and equilibrium travel times (Ashok and Ben-Akiva 2002). However, it is recognised that the 
complexity of the problem at hand can quickly lead to intractable situations (Ashok and Ben-
Akiva 2002). Further sophisticated analytical derivations are required to capture the 
relationship between parameters with less direct impact and non-linear relationship. 

The simulation-based approximation of the relationship between demand flows and traffic 
observations uses traffic simulator to uncover this relationship without the direct derivation of 
the assignment matrix. The most studied assignment matrix-free method is the Simultaneous 
Perturbation Stochastic Approximation (SPSA) method (Balakrishna and Ben-Akiva 2007; 
Ben-Akiva, Koutsopoulos and Mukundan 1994; Cipriani et al. 2011; Cipriani, Gemma and 
Nigro 2013; Cantelmo et al. 2014; Antoniou et al. 2015) which allows one to approximate a 
descent gradient direction with significantly lower computational resources than through the 
explicit calculation. Antoniou et al. (2015) proposed the Weighted-SPSA (W-SPSA) algorithm 
to overcome the deteriorated performance of the gradient calculated by SPSA algorithm. 
Although, the main advantage of such method is that the complex relationship between 
demand flows and traffic observations, not only traffic counts, is estimated by simulation 
model, the high number of simulation runs for large-scale networks where the DTA is 
computationally intensive still remains to be resolved. For example, due to stochasticity of the 
simulation model, for each perturbation of the SPSA or W-SPSA where gradient needs to be 
determined, the DTA has to be replicated R times, leading to 2R runs (Antoniou et al. 2015). 

Recent studies by (Toledo and Kolechkina 2013; Frederix, Viti and Tampére 2013; Shafiei et 
al. 2017) rely on linear approximation of the assignment matrix with non-separable response 
in every iteration, which relaxes the assumption of constant link-flow proportions and explicitly 
accounts the congestion effects. This definition requires the computation of the marginal 
effects of demand flow change on the link-flow proportions at the current solution of each 
iteration. It is possible to use the finite differences approach to numerically approximate the 
Jacobian matrix by using traffic simulator, but it would require in every iteration of the gradient 
solution to perturb each element in the OD demand vector, one at a time, leading to 2RDK 
runs, where D the number of OD pairs in the network and K the number of time intervals for 
the simulation period. To overcome computational overhead, authors proposed heuristic-
based approaches. Toledo and Kolechkina (2013) neglected the effect of changes in one OD 
pair over the other OD pairs in the assignment matrix, Frederix, Viti and Tampére (2013) 
implemented space decomposition of the network in the congested and non-congested sub-
networks, where derivatives were computed only for congested area. Shafiei et al. (2017) 
reduces computation costs through iterations progress and computing derivatives on OD pairs 
whose flows have higher tendency to vary during dynamic OD demand estimation process. 
However, all these approaches rely on strong heuristic assumptions such as ignoring the effect 
of OD demand changes outside of congested area or have been tested on relatively small and 
medium sized networks. Further research is necessary to develop solution approach for 
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nonlinear OD estimation problem that will guaranty its reliability and computational efficiency 
in the large-scale networks. 

Here we extend the previous work by proposing the modified bi-level optimization solution 
approach to estimate dynamic OD demand for large-scale networks that accounts non-linear 
relationship between traffic observations and OD flows. Non-linear relationship has been 
computed for the subset of the OD pairs when performance of the objective function has been 
deteriorated. Reducing the problem dimensionality through selection of the most significant 
OD pairs replaces the conventional approach of computing derivatives for all OD pairs, 
whether through all the iteration steps or in the initial step. The importance of this approach 
lies in the possibility to capture the most important effects of congestion by relaxing 
assumption of constant link-flow proportions without loss of accuracy and considerable 
decreasing the model dimensionality and computational complexity. In this study, mesoscopic 
traffic simulation model in Aimsun is employed as a DTA traffic simulation tool which 
realistically captures the congestion phenomena that is more adequate in developing dynamic 
OD estimation algorithms. 

The paper is organized as follows. In the first part of the paper, we summarize the main 
challenges in defining the non-linear relationship between traffic observations and OD demand 
in dynamic OD demand estimation problem. In the second part of the paper, we present the 
modified bi-level optimization framework of the OD demand estimation model with additional 
recursive step to overcome the divergence of the optimization function performance. Next, we 
explore the properties of reducing the number of optimization function evaluations by defining 
the subset of significant OD pairs whose variation leads to high changes in link-flow 
proportions and traffic flows. In the third part of this paper, we demonstrate the performance 
of the proposed OD estimation model on a large-scale network, Vitoria, Spain. The paper 
closes with a discussion on further application perspectives of the OD demand estimation 
model and further research directions. 

2. The problem formulation 
This section describes the most critical issue in OD matrix estimation, whether static or 
dynamic, the relationship (mapping) of the observed traffic condition data with unobserved OD 
flows. From a modelling point of view, the most distinguishing difference between the OD 
demand estimation approaches presented in the literature, is how the relationship between 
OD flows and any available traffic data (e.g. link traffic counts, speeds, densities, etc.) is 
defined, calculated and re-calculated throughout the estimation process. This relationship is 
often accomplished by means of an assignment matrix. In the dynamic problem, the 
assignment matrix depends on link and path travel times and traveller route choice fractions - 
all of which are time-varying, and the result of dynamic network loading models and route 
choice models. These dynamics are reflected in travel times between each origin and 
destination trips on a network, influenced by traffic link flow. While a vast body of literature has 
been developed in this area over the past two decades, this section focuses on some of the 
efforts that highlight the basic problem dimensions. 

The general OD estimation problem is to find an estimate of OD demand matrix by effectively 
utilizing traffic and demand observations. Let Ω ⊆ 𝑁×𝑁 be set of all 𝑛 OD pairs in the network, 
and L' ⊆ 𝐿 be the set of 𝑙 links where traffic data observations are available. The time horizon 
under consideration is discretised into 𝑅 time intervals of equal duration, indexed by 𝑟 =
1, 2, . . . , 𝑅. The OD matrix, 𝑋 = {𝑥45}, defines the demand for each OD pair 𝑛	 ∈ 𝑁 with 
departure time interval 𝑟 ∈ 𝑅. Prior information on the OD matrix is defined by 𝑋 = {𝑥45}. The 
vector 𝑦 = {𝑦:;} defines traffic flow observations for time interval 𝑡 = 1, 2, . . . , 𝑇, for each link in 
𝐿'. Here the dynamic OD demand is represented by a vector, rather than a matrix. It is also 
assumed that 𝑇 and 𝑅 describe the same length of time interval, but their decomposition to 
time intervals can be different.  
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The dynamic OD estimation problem can be formulated as a constraint optimization problem 
(Cascetta 1984) as: 

Regardless of the function 𝑓 used, the purpose is to obtain an OD demand that yields OD 
flows and traffic data as closely as possible to their observed values. When solving the OD 
problem in Equation (1) the relationship between traffic observations and OD demand has to 
be defined, implicitly or explicitly. Most dynamic OD demand estimation methods, define this 
relationship implicitly by the traffic assignment model that can be expressed as: 

There are two main drawbacks of relationship defined in Equation (2): 

1. Separability of traffic count observations: it assumes that the traffic flow observed at 
the link 𝑙 during time interval 𝑡 can always and only be changed by changing one of 
the OD flows that passes link 𝑙 in time interval ℎ when 𝑥@ is assigned in the network. 
This assumption of separability is incompatible with some typical phenomena in 
congested networks, such as congestion spillback between links and time lags due to 
the delay during congestion. In these cases, it is very likely that increasing an OD 
flow will cause delays to other flows that do not pass that time-space interval, hereby 
altering the amount of flow passing the link in the considered time interval. This issue 
has been addressed in past studies (Yang and Zhou 1998; Tavana and Mahmassani 
2001; Lundgren and Peterson 2008). Frederix, Viti and Tampére (2013) suggested 
using the Taylor approximation to specify the linear approximation of Equation (2) 
using non-separable response function, given by 

 

2. Limited only to one data source: formulation of relationship by assignment matrix in 
Equation (2) and Equation (3)	restricts dynamic OD demand estimation problem to 
use of traffic count data only, which can potentially over-fit to counts at the expense 
of traffic dynamics. Relationship between traffic condition data, such as speeds and 
densities, and OD flows are expected to be non-linear and approximations similar to 
the assignment matrix cannot be justify (Balakrishna and Koutsopoulos 2008). This 
issue has been addressed in the past studies (Balakrishna and Koutsopoulos 2008; 
Cipriani et al. 2011; Cantelmo et al. 2014; Antoniou et al. 2015) who proposed use of 
traffic simulation models to capture the nonlinear relationship between OD flows and 
traffic observations instead of the assignment matrix. 

 

Although presented solutions significantly contributed to quality improvement of dynamic OD 
demand estimates, they still share a common challenge to overcome high computational 
costs. A complicating factor in utilizing these methods for estimation or prediction purposes, 
is that OD matrices are very large data structures, that grows rapidly in large networks. Even 
in case such high-dimensional OD flows can be reduced (see e.g. (Djukic et al. 2012) and this 
is not entirely unlikely, there are serious methodological difficulties in finding optimal solutions 
(e.g. getting stuck in local minima, slow convergence, high number of simulation runs, etc.), 
aside from the computational and memory requirements for such a procedure on the basis of 
thousands (to millions) of traffic observations. For example, computing the exact Jacobian 
vector in the second term of Equation (3) with respect to changes in OD flows for each OD 
pair remains intractable even when efficient, well calibrated, DTA model is used.  

𝑚𝑖𝑛	𝑍 𝑥 =	
DEF

𝛼𝑓 x, x + 1 − 𝛼 𝑓 y, y   ( 1 ) 

𝑦; = 𝐴;M𝑥5

5

MN5OP

  ( 2 ) 

𝑦; = 𝐴;M(𝑥F)𝑥5 + 𝑥M − 𝑥F
𝑑(𝐴;M

T(𝑥MT))
𝑑𝑥MT

5

MTN5OPT
	𝑥MT

5

MN5OPT

5

MN5OP

  ( 3 ) 
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In the next section, we propose a different solution approach for exploring the relationship 
between OD flows and traffic observations by applying modified bi-level optimization 
framework. We relax assumption to rely on the assignment matrix from DTA by evaluating 
marginal effect of demand flow changes on traffic conditions in the network for the subset of 
the OD pairs. 

3. Methodology 
Solution algorithms proposed in literature, to solve the problem given in Equation (1), 
incorporate computing the marginal effects of demand changes on traffic observations that 
lead to high computational costs for medium- or large-scale networks. In this situation, 
dimensionality reduction of simulation runs required to capture these marginal effects is 
necessary, leading to improve computational performance. 

In order to overcome problem related to dimensionality of OD demand problem, we propose 
the following heuristic approach. First of all, we propose the use of Equation (3) to capture 
marginal effects with respect to changes in OD flows, rather than using a more conventional 
approach with constant assignment proportions given by Equation (2). Secondly, we propose 
to use Equation (3) on the subset of the OD pairs, whose variation in demand creates the 
divergence of the cost function given by the objective function defined by Equation (1). Thirdly, 
we suggest using an initial OD matrix that produces the same congestion pattern as is 
observed in reality, i.e. that allows one to start with correct traffic regime.  

It is convenient to start the presentation of the proposed solution approach with reference to 
the idea of OD demand estimation problem formulation, as a bi-level optimization framework. 
Then, we provide a modified bi-level optimization framework, with recursive step to account 
the marginal effects of the link-flow proportions for a selected set of OD pairs. 

3.1 Standard OD model formulation in bi-level optimization 
framework 

The dynamic OD demand estimation problem can be defined as a bi-level optimization 
framework. The main advantage of using the bi-level formulation is the ability to capture the 
network congestion effects in the dynamic OD demand estimation problem, as the traffic 
assignment model can be defined as an optimization problem in itself. The upper level is 
formulated as an ordinary least square (OLS) problem, which estimates the dynamic OD 
demand based on the given link-flow proportions. Assuming that errors are independently and 
identically normally distributed, the objective function aims to minimize the square distance 
between computed and observed traffic flows, as well as the estimated and prior OD demand 
matrix, defined in Equation (4) as follows: 

min
DEF

𝑍(𝑥) = 𝐴(𝑥)𝑥 − y X + 	𝛼 𝑥 − 𝑥 X                                (4) 

subject to 

𝑦 = 𝐷𝑇𝐴(𝑥) 

The lower level is formulated as DTA problem which estimates the elements of the assignment 
matrix. These elements are a function of the OD flows, and they represent both the 
propagation of the OD flows, the departure time and the route choice decisions related to an 
OD flow. The link-flow proportions are, in turn, generated from the dynamic traffic network 
loading problem at the lower level, which can be solved through a simulation-based DTA 
procedure. In this paper, simulation based DTA model in Aimsun software TSS-Transport 
Simulation Systems (2015) has been used. Route choice set is a result of the dynamic user 
equilibrium. The dynamic network loading has been performed at the mesoscopic level in 
Aimsun, synthesizing microscopic and macroscopic traffic flow propagation modelling 
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concepts. Here we assume that the entire set of link traffic counts for the analysis period, 𝐿'×𝑇, 
is used to simultaneously estimate OD demand for all time intervals,	𝑁×𝑅. 

In general terms, all dynamic OD demand estimation methods defined as a bi-level 
optimization problem aim to find the most probable OD matrix by iteratively solving problems 
defined at upper and lower-level. The iterative solution algorithm is given as follows: 

Step 1. Initialization. Initiate prior OD demand matrix, set 𝑘 = 0. 

Step 2. Assignment. Assign the demand to the network to obtain assignment matrix, 𝐴@M and 
estimated link traffic counts on the links with traffic observations, by Equation (2) or Equation 
(3). 

Step 3. Convergence test. Check objective function value convergence. If objective function 
value has converged, stop and accept the current demand. Otherwise, proceed to step 4. 

Step 4. Update OD demand. Estimate OD demand with link flows obtained from DTA, as given 
by Equation (2). Go to step 2, 𝑘 = 𝑘 + 1.  

When non-separability of traffic observations is considered, as we shown in the previous 
section, Equation (3) has to be applied in Step 2 to capture the marginal effects of the demand 
variation on the changes in traffic flow observations. Traffic assignment relationship given in 
Equation (3) can be solved by computing the numerical derivatives using finite or central 
differences method of the traffic link flows with respect to changes in all OD pairs. This requires 
perturbing each OD pair in the OD demand two times, one at the time, resulting in 2𝑁𝑅 traffic 
simulation runs and objective function evaluations per iteration step. It is obvious that such 
solution approach will result in computationally expensive tasks, that has to be overcome. 

3.2 Modified bi-level optimization framework 
The bi-level optimization framework presented in the previous section is modified to meet the 
following requirements for congested, large-scale networks: 

• Relax assumption on fixed link-flow proportions from assignment matrix derived by 
DTA procedure by computing the marginal effects of the demand deviations on link 
flows given by Equation (3); 

• Reduce number of OD variables in Equation (3) through the inclusion of only the OD 
pairs whose change in demand values cause significant deviations in the link flows; 

• Keep the computational costs lower. 
 

These requirements are implemented through the following modified iterative solution 
algorithm with recursive step: 

Step 1. Initialization. Initiate prior OD demand matrix, set 𝑘 = 0, 	𝐼' = {},  

Step 2. Assignment. Assign the demand through DTA to the network to obtain assignment 
matrix, 𝐴@M and simulated link traffic counts on the links with traffic observations 

Step 3. Convergence test. Check the objective function value with traffic flows and demand 
for convergence. If objective function value has converged, stop and accept the current 
demand. Otherwise, proceed to step 4. 

Step 4. OF performance test. Check performance of the objective function value. If objective 
function decreases proceed to step 5. Otherwise, proceed to step 6, 𝑘 = 𝑘 − 1. 

Step 5. Update OD demand. Estimate OD demand with link flows obtained from DTA, as given 
by Equation (2). Go to step 2, 𝑘 = 𝑘 + 1.  

Step 6. Select OD pairs. Determine OD pairs whose variation has a considerable impact on 
link flows variation in the previous iteration and insert them in	𝐼'. 
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Step 7. Update assignment. Update the link-flow proportions in the assignment matrix, 𝐴@O] , 
with values obtained from Equation (3) for the selected OD pairs in 	𝐼'.  

Step 8. Update OD demand. Estimate OD demand with link flows obtained from Equation (3). 
Go to step 2,	𝑘 = 𝑘 + 1.  

The common and modified bi-level optimization framework with inputs and outputs for OD 
demand estimation is illustrated in Figure 1. 

Figure 1. Generic algorithm based on the proposed solution 

 
Note that the proposed solution algorithm in Steps 6 and 7 uses a demand with one iteration 
step latency because the updated demand at iteration step 𝑘 caused the increase of the 
objective function value. Therefore, following the modified bi-level framework, Step 8 denotes 
correction of the state variable for iteration 𝑘, using the information from the link-flow 
proportions and link flows for iteration 𝑘 = 𝑘 − 1, obtained in Steps 6 and 7. In step 6, we 
analyse the change in the link flows obtained with demand assigned in iteration step 𝑘 and 
𝑘 = 𝑘 − 1 and determine the link flows with the highest variation. Using the information from 
the link flow proportions matrix, we can identify which OD flows are crossing these links with 
the highest flow variation and set them in 	𝐼'. Then, in step 7 the elements of the link-flow 
proportion matrix are corrected for these OD pairs using the Equation (3). The upper-level 
problem in steps 5 and 8 is solved using the gradient decent method. The OD demand 
estimation results are evaluated in step 3 against termination criteria and the procedure would 
continue if termination criteria is not met.  

Finally, the steps 6-8 reflect our corrected knowledge on the OD demand state at iteration 𝑘 =
𝑘 − 1 to improve the performance of the solution algorithm. Reducing the problem 
dimensionality through selection of the most significant OD pairs replaces the generic 
approach of computing derivatives for all OD pairs. The importance of this approach lies in the 
possibility to capture the most important effects of congestion by relaxing assumption of 
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constant link-flow proportions without loss of accuracy and considerable decreasing the model 
dimensionality and computational complexity.  

3.3 Method for solving the upper-level problem 
Let 𝑥@ be the demand at step 𝑘, and 𝐴@ and 𝑦@ the assignment matrix and simulated counts 
given by this demand. As an approximation to the OD estimation objective function given in 
Equation (4) that we want to minimize, we consider the auxiliary objective function 

𝑍@ 𝑥 = 	 𝑦 − 𝑦@ − 𝐴@(𝑥 − 𝑥@) X + 𝛼 𝑥 − 𝑥M X                                 (5) 

 

There are different types of exact and heuristic methods proposed in the literature that can be 
employed to solve the optimization problem defined in Equation (5) with nonnegative variable 
constraints. At every external iteration, the gradient descent method is selected to minimize 
the above function, which uses the gradient as the search direction: 

𝑑 = 	−	∇𝑍@                                                       (6) 

where 

∇𝑍@ 𝑥 = 2	𝛼	(𝑥 − 𝑥) + 2(𝐴@_𝐴@𝑥 − 𝐴@_𝑦 + 𝐴@_𝑦@ − 𝐴@_𝐴@𝑥@)                       (7) 

To perform this gradient method, we start at 𝑥 = 	 𝑥@ and we perform 𝑁 gradient steps, the 
direction of them being given by the latter equation. At internal step 𝑛 ≤ 𝑁, let us denote the 
estimated demand by 𝑥@4. After determining the search direction, which is given by ∇𝑍(𝑥@4), 
the optimal step length, 𝜃4 needs to be obtained in each iteration. To obtain it, we use the 
following criterion: 

𝜃4 = min
bc

𝑍(𝑥@4 − 𝜃4∇𝑍(𝑥@4))                                            (8) 

The exact line search procedure proposed by Cauchy (1847) is used to compute the step 
size. In the case where 𝑍 is a quadratic function, the optimal step can be computed 
analytically. In our case, the optimal step size is computed using the following expression: 

𝜃4 = ∇d(De
c) f

∇d(De
c) fg he∇d(De

c) f                                            (9) 

 

4. Numerical experiment design 
In this section, we will first describe the input data used by method, e.g. historical OD demand 
generation and DTA traffic assignment procedure. We consider two assessment scenarios in 
terms of link-flow proportions derivation (i.e. with and without computation of derivatives). 
Furthermore, we have selected complementary method proposed by (Shafiei et al. 2017) that 
is based on heuristic approach to solve high computational costs for computing derivatives for 
the subset of the OD pairs. These scenarios will be discussed in more detail below. Numerical 
experiments are performed on large-scale network, (Vitoria, Basque Country, Spain) with real 
data to evaluate the performance of the proposed solution approach.  

4.1 DTA with mesoscopic simulation model 
In the experiments, we use the mesoscopic event-based demand and supply models in 
Aimsun, each synthesizing microscopic and macroscopic modelling concept. They couple the 
detailed behaviour of individual drivers' route choice behaviours with more macroscopic 
models of traffic dynamics. The travel demand in Aimsun is represented by dynamic OD 
demand matrices. Vehicle generation is done for each OD pair separately with arrival times 
that follow an exponential distribution. The iterative interaction between demand and supply 
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models allows the system to update the set of routes and the travel times after each iteration 
leading to robust estimation and prediction of traffic conditions in the network. 

For this study, a route choice set will be pre-computed in Aimsun and used as fixed for all the 
simulation runs in the experiments. In this way, dependence of re-routing effects on the 
changes in the OD demand is ignored. Here we focus to investigate effects of travel time 
variation and congestion spill-back on traffic observations in the network. 

4.2 Network and traffic data 
The proposed OD estimation approach is evaluated for large-scale network in Vitoria, 
consisting of 57 centroids, 3249 OD pairs with a 600km road network, 2800 intersections and 
389 detectors, presented as black dots in Figure 2. This network is available in the mesoscopic 
version of the Aimsun traffic simulation model for the reproduction of traffic propagation over 
the network. Vitoria network has been selected due to availability of the well calibrated model, 
its availability to various researchers as a benchmark network, and authors familiarity with the 
model. The true OD demand is available for this network, which allows analysts to assess the 
performance of the proposed method. The true assignment matrix and traffic counts on 
detectors are derived from the assignment of true OD matrix in Aimsun for the evening period 
from 19:00 to 20:00 reflecting a congested state of the network. The simulation period is 
divided into 15 minute time intervals with an additional warm-up time interval, R = 5. The link 
flows resulting from the assignment of the true OD demand are used to obtain the real traffic 
count data per observation time interval. 

The historical OD demand flows are derived by adding a uniform normal component in the 
range of ± 40% to the real OD demand to produce uncertainty in the historical demand and 
congestion in the network. 

Figure 2. The Vitoria network, Basque Country, Spain 

 
 

4.3. Assessment scenario 
Here we present a choice of dynamic OD demand estimation methods used within today’s 
dynamic traffic management systems for the performance assessment of the proposed 
solution approach. Since the main goal of this task is to evaluate the expected improvements 
due to implementation of nonlinear relationship, in this performance evaluation task we will 
focus on dynamic OD estimation methods that share same performance measure and solution 
framework, i.e. least square error measure defined in bi-level solution framework. The 
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selection of least square objective function indicates that considered methods belong to the 
common ”family” and ensures to get a better grasp of the algorithms performance and 
improvements due to application of various solution approaches. Further, the benchmark 
approach has been selected due to its ability to capture the non-linear relationship and 
designed heuristic solution approach to deal with high-dimensionality issue of the non-linear 
problem. As such, it shares the common solution properties of the proposed solution in this 
paper. For that purpose, in this evaluation task, we consider the following methods: 

1. Conventional approach: ordinary least square solved by standard bi-level solution 
approach without explicit non-linear relationship formulation; 

2. Benchmark approach: Ordinary least square solved by heuristic bi-level solution 
approach, where the impact of the OD demand variation on traffic counts have been 
evaluated for the subset of the OD pairs. For the more detail explanation of this 
algorithm we refer to the reference paper (Shafiei et al. 2017). 

A point of interest now is finding out to which extent the estimation accuracy and computational 
time are improved. To get a better grasp of the algorithms real world performance, results are 
presented in following section. 

5. Results 
The performance of the objective function values for all three methods are presented in Figure 
3. For the purpose of this study, convergence was defined as reaching an objective function 
value that is three times lower than initial value obtained (by any of the algorithms) within 20 
iterations. The performance of the proposed modified bi-level solution approach demonstrates 
satisfying results, since it is able to maintain the decrease of the objective function value 
through iteration steps.  

Figure 3. Comparison of the objective function performance 

 
The modified bi-level and benchmark approaches demonstrate convergence trend to a local 
minimum, very similar to a conventional bi-level optimization framework. Although 
conventional bi-level approach had a tendency to convergence already in iteration step 8, the 
convergence trend indicates that the search directions that the algorithm produces are 
increasingly inefficient as the algorithm progresses. For the purpose of the results 
visualisation, we have shown results for conventional bi-level approach till iteration step 13, 
and stored the results for further analysis from the iteration step 8, when method reached the 
best solution. One may observe that objective values of the proposed approach increased in 
the iteration steps 12 and 13. Even the recursive step was performed to update the elements 



ATRF 2017 Proceedings 

11 

of link flow proportions based on computed derivatives. This effect can be explained by 
definition of the recursive step in a modified approach, where derivatives have been computed 
for the subset of the OD pairs, as a result of the trade-off between computational time and 
performance accuracy. However, this effect can be overcome by extending the list of the OD 
pairs involved in the computation of the first Taylor approximation given by Equation (3).  

Figure 4 shows the estimated total OD demand per departure time interval for tested OD 
demand solution approaches. We have included the real OD demand in the figure as a point 
of reference. All three methods demonstrate tendency to slightly overestimate demand as a 
consequence of wrong data interpretation from loop detectors when congestion level increase 
in departure time intervals 2 and 3, i.e. 19:15 and 19:30 respectively. However, performance 
of the proposed modified bi-level approach demonstrates capacity to recognize overestimation 
trend and improves demand estimation using the first order approximation given by Equation 
(3) to update elements of the assignment matrix in congested interval. Further, results indicate 
unstable performance of the conventional bi-level approach, while benchmark method keeps 
more stable tendency to overestimate the demand.  
Figure 4. Estimated OD demand per departure time interval 

 
 

Next, it is important to investigate how these estimated OD demands once assigned to network 
can produce traffic flows close to their real observations. Figure 5 provides a performance 
overview of solution approaches in terms of relationship between simulated and observed 
traffic flows. It appears clearly from Figure 5 that all the methods show R-squared value 
increase and significant reductions in RMSE and RMSN error. Results in Figure 5b) indicate 
that proposed modified bi-level approach has the best performance with the improvement of 
52,29% compared to initial value before OD demand estimation. It is interesting to observe 
from Figure 5 c) and d) that conventional bi-level and benchmark approach demonstrate 
slightly lower reduction of the RMSE value, for 48,73% and 45,19% respectively. However, 
note that results presented here for the conventional bi-level approach are obtained from 
iteration step 8, since the method was the closest to the convergence in this step as discussed 
above. In turn, performance results of conventional bi-level approach should be considered 
with caution. 
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Figure 5. R2 for real and simulated traffic flows. 

 
a) Initial state from prior OD demand  b) Modified bi-level framework 

 
c) Benchmark method    d) Conventional bi-level framework 

Note that initial idea in our work is to solve the computational complexity of the OD demand 
estimation problem for real time applications while maintaining reliable estimation results in 
the congested networks. Therefore, in Table 1 we show the run time and number of Aimsun 
simulation runs for each of the tested methods (e.g. constant and computed elements of the 
assignment matrix) on Vitoria network. 
Table 1. CPU computation time and the number of the DTA simulations 

CPU time No. of assignment 
simulations 

Aimsun simulation 
time 

Demand estimation 
time (Python) 

Conventional bi-level 
method 

13 26min 31 min 

Modified bi-level 
method 

92 3h 4min 1h 16min 

Benchmark method 366 12h 12min 14h 32min 

  

Table 1 reports that conventional bi-level method requires the least number of simulation runs. 
This can be explained by conventional algorithm based on the linear approximation of the 
assignment matrix requires one Aismun simulation evaluation in each iteration, compared to 
other two methods that require three simulation evaluations for each OD pair within one 
iteration step to compute the numerical derivatives of the first Taylor approximation as defined 
by Equation (3). As a result, the gain in terms of run times obtained by the use of a linear 
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assignment matrix approximation is large but with trade off on the lower quality of estimation 
results. However, we can observe significant CPU computation time reduction of the proposed 
modified bi-level solution approach compared to the benchmark method. This effect can be 
explained by definition of solution approaches. The proposed modified bi-level approach 
calculates derivatives for the subset of the OD pairs when deterioration of the objective 
function is observed in contrasted to the benchmark method that requires in the second 
iteration step evaluation of the derivatives for all the OD pairs. Furthermore, this computational 
time gain is expected to increase for larger and more complex networks. These times have 
been obtained by running Aimsun and Python on DELL Latitude E6430 with processor Intel 
Core i5-3320M, and 2.6 GHz memory. 

6. Conclusions 
The common approach usually adopted in dynamic OD demand estimation and prediction 
consists in solving an optimization problem in which the distance between observed and 
simulated traffic conditions is minimized by assuming the relationship between OD flows and 
traffic observations independent of traffic conditions in the network. This approach has a sever 
shortcoming as it does not take into account the impact of demand flows variation on traffic 
observations in congested networks. Modelling of non-linear relationship between traffic 
observations and OD flows, and its dependency on variations in OD flows has been identified 
by many researchers as a key challenge in the estimation and prediction of an OD matrices. 

In this paper, we proposed a modified bi-level optimization framework to solve the high-
dimensionality of nonlinear OD estimation problem by computing the derivatives only for the 
most significant OD pairs with respect to traffic observations that allows the modeller to control 
the trade-off between simplicity of the model and the level of realism. The proposed algorithm 
is used to address an estimation with real traffic observations for large scale network: the 
Vitoria urban network with 3249 OD pairs, 389 detectors, and 2800 nodes. Several specific 
solution approaches that differ in the assumptions on the link-flow proportions derivation and 
solution algorithms were used in the performance evaluation study. From the results presented 
in this contribution we can conclude that proposed approach captured the effect of congestion 
in the network resulting in the improvement of 52,29% in the estimation of the link flows 
compared to the initial one. Furthermore, the proposed solution approach significantly 
decreases the computation time compared to the benchmark method. This result has been 
achieved by computing the derivatives for the subset of the OD pairs when deterioration of the 
objective function is observed in contrasted to the benchmark method that requires in the 
second iteration step evaluation of the derivatives for all the OD pairs. We have also observed 
that the conventional method can also provide a good solution in a computationally faster 
manner compared to the other methods. This can be explained by the nature of the Vitoria 
network selected in the experiments; it is well calibrated network model, especially route 
choice that has a significant impact on the relationship between demand and supply side. 
Also, the prior OD matrix has been generated as a random error from the ground true and 
total demand is very close to the real demand on the network. Further investigation is required, 
especially if we challenge the model’s performance against more bias prior OD demand and 
even more larger networks over longer demand time intervals of three to four hours, such that 
methods needs to capture the demand when congestion is building up and resolving. 

In this paper we show that deriving non-linear relationship between OD demand and traffic 
counts for the subset of the OD pairs in proposed solution approach to estimate dynamic OD 
demand for large-scale networks will lead to computational efficiency with a guaranteed 
improvement in result’s accuracy. An improvement of the algorithm presented in this paper 
can been seen in two directions: 1) identification and definition of the optimal number of OD 
pairs to compute the first Taylor approximation such that the computational efficiency, results 
accuracy and state observability are satisfied; 2) adaptation of the model when additional data 
(i.e., speeds, density, demand derived from floating car data) can be considered to improve 
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the quality of the estimated OD demand; 3) explore alternative gradient solution approaches 
to avoid convergence in local minima. 
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