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Abstract 

The importance of physical activities and its impacts on health not only attracts the attention 
of practitioners, but it has also turned planners and policy makers towards achieving 
transportation sustainability through enhancing active travel behaviours. Although many 
studies have been conducted on active transportation modelling, the importance of 
accessibility in terms of availability of activities to pedestrians and cyclists has been 
neglected. Hence, this study used new approaches measuring cycling and walking 
accessibility measures against land use features in two separate Ordered Logistic 
Regression (OLR) models to examine how accessibility could affect active transportation. 
Data used in this study, has been obtained from Victorian Integrated Survey of Travel and 
Activity (VISTA, 2009). Key findings indicated that more accessible neighbourhoods had 
more walking and cycling trips; while the model using accessibility measurements showed 
higher accuracy. Therefore, the results of this study suggest that being aware of levels of 
accessibility in existing and developing neighbourhoods could provide a better perspective 
for planners and policy makers to promote active transportation. 
 

Keywords: Built environment, accessibility, active transportation, OLR models 

 

1. Introduction 

The recent mobility patterns favouring single-occupancy vehicles and sprawling metropolitan 
areas bring about many problems including longer unproductive hours spent in traffic, air 
pollution, and different sort of diseases due to sedentary travel behaviour (Ermagun and 
Samimi, 2015, Mercier et al., 2016). Sedentary travel behaviours not only affect the quality of 
citizen’s life, but also involves social and economic negative externalities (Mayeres, 2000, 
Hallgrimsdottir et al., 2016).  
The integration of transport and land use planning is extensively recognized as essential 
requirements of sustainable development, and the concept of accessibility is believed to 
provide a central framework for this integration (Bertolini et al., 2005, Wang et al., 2011, 
Silva et al., 2017). There is a variety of concepts and tools to address theoretical and 
methodological aspects around the definition, and measurement of accessibility (Iacono et 
al., 2010, Geurs et al., 2015, Shliselberg, 2015, Silva et al., 2017). However, these concepts 
and tools have not been extensively used in planning practice. 
Accessibility can be directly related to both the qualities of the transport system and the land 
use system such as functional densities and land use mixes. At the same time, it can be 
directly related to economic and social goals as well as environmental goals in terms of 
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resource-efficiency of the activities and mobility patterns. In other words, shifting from more 
accessible neighbourhoods to more auto-oriented suburban areas was found to decrease 
the use of more sustainable travel options such as walking and cycling (Bertolini et al., 
2005). 
Meanwhile, walking and cycling can make a considerable contribution to sustainable 
transport goals  from which accessibility is the most important one (Tight et al., 2011). 
According to Bertolini and Le Clercq (2003) accessibility is the basic reason for a transport 
system to exist. Walking and cycling are also known as ‘active transport’ which refers to 
human-powered forms of travel (Cole et al., 2010).  
The benefits of active transport, ranging from air quality and sustainability issues to tourism, 
access and equity, and crime prevention, are now widely acknowledged by researchers 
(Goodman and Tolley, 2003, Stewart and Wild, 2016). For this reason, the global concerns 
for issues relating to climate change, sustainability and transport challenges prompt political 
imperative for making efforts on active transport (Cole et al., 2010). One of the most effective 
ways to make physical activities into daily routines is through active travel, which not only 
benefits public health but also can help prevent climate change. Although it is widely agreed 
that walking and cycling are good for individuals’ health (Pucher and Buehler, 2010, Pucher 
et al., 2010), there is a lack of evidence about what works to promote active travel 
(McCartney et al., 2012). Besides, despite a noticeable focus on the importance of 
promoting walking and cycling in many transport related strategies, policies and plans, there 
is relatively little robust evidence regarding the relationship between accessibility and levels 
of walking and cycling. There is no single method to determine the success of sustainable 
transport systems; however, comparing results among different built environment measures 
can be helpful in finding out the importance of considering the accessibility measures in 
transport modelling.  
Therefore, this paper aims to contribute to the implementation of accessibility in practice, by 
innovatively integrating accessibility in active transportation modelling. Two new accessibility 
indexes, which have been developed for Melbourne metropolitan, are used to examine how 
accessibility could affect the active transportation. Furthermore, accessibility measures are 
compared to land use measures to explore the importance and applicability of them in 
transport modelling.  
The next section presents the methods of the study which describes dataset, study area and 
explanatory variables. This debate is followed by an analysis of the perspective of planning 
practitioners focussed on the usefulness of accessibility measures (Section 3). Thereafter, in 
Section 4, results of the analysis are discussed, while in the final section, conclusions and 
future directions of this study are outlined (Section 5).  

2. Methods 

This study used two new indexes measuring, walking and cycling accessibility along with 
other built environment measures to examine the importance of accessibility on active 
transportation. Following describes the data source and study area as well as the calculation 
process of independent variables.  

 

2.1. Datasets and Study Area 

Travel Data 
The travel dataset (Transport, 2009) has been provided from the Victorian Integrated Survey 
of Travel and Activity (VISTA). This was a cross sectional survey conducted from 2009 till 
2010. It covers the Melbourne Statistical Division (MSD) as defined by the Australian Bureau 
of Statistics (ABS), plus the regional cities of Geelong, Ballarat, Bendigo, Shepparton and 
Latrobe Valley. Data includes demographic, trip information and car ownership from 
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randomly selected residential properties. A total of 16,411 households, comprising 42,002 
individuals responded with a response rate of 47%. In this research, only residents within the 
MSD (22,201 individuals) have been considered. This study used walking and cycling trip 
stages which are one-way travel movements from an origin to a destination for a single 
purpose (including change of mode) and by a single mode. The reason behind using the trip 
stages for analysis is that walking/cycling trips are considered as the shortest trip; while 
covering all trip purposes even changing transport modes. VISTA dataset contains a total of 
18,405 numbers of walking and cycling trip stages.  

Spatial Data 
A database of Mesh Blocks from the 2011 Census for the Melbourne Region was accessible 
from Australian Bureau of Statistics (ABS). This data set contains the total usual resident 
population and total number of dwellings from the 2011 Census of Population and Housing 
for Mesh Blocks and all other statistical areas, including SA1s. According to the Australia 
Bureau of Statistics (ABS), the Melbourne region contains 53074 Mesh Blocks, 9510 SA1s, 
277 statistical area level 2 (SA2) and 31 local government areas (LGA). Fig. 1 presents the 
statistical geography areas of the Melbourne region. Mesh blocks are the smallest 
geographical unit released by the ABS and all other statistical areas are built up from or, 
approximated by whole Mesh Blocks. In this study, SA1s were chosen as geographical scale 
for analyses and calculating the built environment factors. SA1s are the second smallest 
geographic areas defined in the Australian Statistical Geography Standard. Besides, SA1s 
districts with an average area and population of roughly one km2 and 414, respectively, 
have the closest conformity to neighbourhood’s definition compared to other available 
geographical units for Melbourne region. 

 

Figure 1: Geographical Areas in Melbourne Region 
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2.2. Explanatory Variables 

Independent variables were mainly considered in two groups of socioeconomic 
characteristics and built environment measurements. Age, gender, car licence, dwelling type 
and ownership, work arrangement, household size, household structure, and number of cars 
as well as bikes in the household were employed as socioeconomic variables (Nilsson and 
Küller, 2000, Cao et al., 2009, Ewing and Cervero, 2010, Winters et al., 2010, Jun et al., 
2012, Lee et al., 2014).  
With respect to the built environment measurements, three dimensions of factors were 
examined: land use, design, and accessibility. Land use included population density and 
land use mix entropy index; and design covered connectivity and roadway measure while 
accessibility encompassed cycling accessibility index and walking access index. Using GIS 
techniques, all built environment measures were calculated for SA1s.  

2.2.1 Land use measures 

Land-use Mix Entropy Index (LUMIX) 

LUMIX is computed when the numerator is normalized by the natural logarithm of the 
number of land use types. Six developed uses are considered, including residential, 
commercial, Industrial, transport and infrastructure, community services and sport recreation 
centres. These categories are defined from ten main uses categories defined by Australian 
Valuation Property Classification Codes (AVPCC) (Morse-McNabb, 2011). The values vary 
from 0 to 1, while 1 indicates a perfect balance among different type of land uses and 0 
shows the homogeneity. Eq. 1 presents one of the most common approaches for measuring 
mixed used development within spatial extents (Nilsson and Küller, 2000, Cerin et al., 2007, 
Duncan et al., 2010, Song et al., 2013, Lee et al., 2014). 
               

        (∑
       

   

 
    )                                                                                                                                

where LUMIXi indicates the entropy index within a buffer i (SA1). Pj represents the 
proportion of a type of land use j and J is the number of land use categories. Six different 
Land use categories including residential, commercial, Industrial, transport and 
infrastructure, community services and sport and recreation centres, have been chosen to 
calculate LU mix index entropy.  

Population Density (PDSTY) 

Population density is one of the most important indicators of population distribution which is 
widely used in urban and transport research (Cole et al., 2010, Ewing and Cervero, 2010, 
Manaugh and Kreider, 2013, Ewing et al., 2014, Chakhtoura and Pojani, 2016). The concept 
of the measure is simple and it indicates the number of residents in a given area. It should 
be noted that, this study calculated the net population density within SA1s. 

2.2.2 Design measures 

Two design variables related to street patterns were measured in this study including 
connectivity and roadway measure. Other design measures were not considered mainly due 
to data unavailability. 

Roadway Measure (RDW)  
The roadway measure examines how long the network spreads over a buffer area, which is 
defined as SA1 in this study. It is quantified by total roadway length divided by total area 
where the distance is normalized by a unit area of 100m2 (Lee et al., 2014). 

Connectivity (CON) 
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The connectivity measure, also called internal connectivity, is defined as the number of 
intersections divided by total number of intersections and dead ends within a certain area 
(Song and Knaap, 2004, Knaap et al., 2007, Lee et al., 2014). The Australian Urban 
Research Infrastructure Network (AURIN) (Sinnott et al., 2011) has been developed the 
connectivity for areas within the Melbourne, as well. They provide a web-based environment 
for calculating connectivity for different statistical subdivisions in the Melbourne area. Hence, 
this study used the environment for calculating the connectivity for SA1s. 

2.2.3 Accessibility measures 

Cycling Accessibility Index (CAI) 

The CAI measures cycling for SA1s and reflects cycling catchments as well as travel 
impedances between origins and destinations. The weighted centroids of SA1s were defined 
as origins and distinct categories of activities considered as destination of trips. Destinations 
were categorized into four groups of activities, including education centres, health and care 
facilities, retail and recreation centres and community services. For each SA1, the CAI is 
calculated using the formula shown in Eq.2. The index is a combined measure of Area Ratio 
(ARi) and the exponential function of Xij given as: 

         ∑     
 

   

             (      )                                                                                                       

where, CAIi is the Cycling Accessibility Index for each SA1, ARi represents the ratio of 
cycling catchment areas to the area of the corresponding SA1, and Xij is the distance or 
travel time between origin i and destination j divided by the total length of bicycle paths 
within the corresponding SA1. Cycling catchment areas were calculated for each activity 
within each of four categories of destinations:  education centres, health and care facilities, 
retail and recreation centres, and community services. Cut-off values were defined as 
15min/4km for education centres, 15min/4km for health and care facilities, 10min/2.5km for 
retail and recreation centres and 20min/5.3km for community services. 

For areas with no bicycle network, the CAI is equal to ARi. The logic for this is that cyclists 
may share the roads with other modes within those areas. More details and an illustration of 
calculating the CAI is provided in a study by Saghapour et al. (2017b). The CAI ranges from 
0 to 44.7 with an average value of 2.98. 

Walking Access Index (WAI) 

The WAI is used to measure walkability within the 9510 SA1s in Melbourne (Saghapour et 
al., 2017a). WAI measures the walking distances to different destinations as one of the main 
barriers to active transport. Walking distances were calculated as the average distance from 
a SA1 weighed centroid to all available points of interest (POIs) or destinations within 
acceptable walking distances (cut-off values). The acceptable walking distances were 
defined as 1.6 km for primary and secondary schools, 2.4 km for tertiary institutions, 1.6 km 
for child care centres, 1.6 km for medical centres, 1.6 km for retail and recreation centres 
and 2.4 km for community services and libraries. These values have been adopted from the 
Austroads network operation planning framework (Espada et al., 2015, Espada and Luk, 
2011); while having consistency with the research conducted by Millward et al. in the United 
States (Millward et al., 2013), Rattan et al. in Canada (Rattan et al., 2012), Rendall et al. in 
New Zealand (Rendall et al., 2011). 
POIs were categorised into six groups of destinations, including primary and secondary 
schools, tertiary institutions, child care centres, medical centres, retail and recreation 
centres, and community services and libraries. The WAI reflects travel impedance in terms 
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of median desirable1 and maximum desirable2 travel time/distance. Eq. 3 presents the 
formula used to calculate the WAI for SA1s. For each SA1, the index is computed as: 

        ∑   (
  
     

 

  
 )                                                                                                                       

 

   

 

where, WAISA1 is the Walking Access Index, Ni is the number of destinations available 

within acceptable walking distance for origin i,   
  is the maximum desirable walking 

distance to destination j,   
  denotes the median desirable walking distance to destination j, 

and     
  represents the average walking distance from a SA1 weighted centroid i to 

destination j. The new index reflects both the diversity and intensity of land use, while 
considering the availability of destinations as well as the number of activities. A higher value 
of WAI indicates a higher level of accessibility. A value of 0 indicates no accessibility in 
terms of the availability of destinations within the acceptable distance (cut-off values). The 
WAI ranges from 0 to 222.43 with an average value of 24.08.  

3. Data Analyses and Results 

As mentioned in previous sections, this study aims at investigating the importance of walking 
and cycling accessibility on active transportation. For this purpose, two separate OLR 
models were specified with socioeconomic and built environment factors. M1 presents the 
results of the model considering all the predictor variables and accessibility measures; while 
M2 contain the entire variable used in the M1; however, accessibility measures were 
replaced by land use measures. Walking and cycling trips were defined as an ordered 
dependent variable. Age, gender, car licence, work arrangement, household size, household 
structure, number of cars and bicycles, type of dwelling, dwelling ownership, and years lived 
at address in the household were employed as socioeconomic variables (Ewing and 
Cervero, 2010, Winters et al., 2010, Jun et al., 2012, Lee et al., 2014). Three groups of 
variables including accessibility (CAI and WAI), land use measures (PDSTY and LUMIX) 
and design measures (roadway measure and connectivity), were considered as built 
environment measures.  

 

3.1. Descriptive Statistics 

The VISTA dataset contains trip records of 22,201 individuals within the Melbourne region. 
This study used walking and cycling trip stages which are one-way travel movements from 
an origin to a destination for a single purpose (including change of mode) and by a single 
mode. The reason behind using the trip stages for analysis is that walking/cycling trips are 
considered as the shortest one; while covering all trip purposes even changing transport 
modes.  
Being able to run the statistical analysis on the VISTA dataset, both the WAI as well as the 
CAI have combined with the VISTA dataset using the SA1 codes. VISTA dataset contains 
total number of 18405 walking and cycling trips, from which 17,089 are walking trips and 
1316 are reported as cycling trips. Table 1 shows the frequency of walking trips within SA1s 
which are categorised into 5 groups from very low to very high. Table 2 shows the list of 
independent variables and their description. 

Table 1 Frequency of walking and bike trips  

                                                           
1
 Median desirable walking distance is a value that satisfies half of the travellers.  

2
 The maximum desirable walking distance is defined as a value at which a significant percentage of people 

would find it unfeasible to regularly travel and they may be forced to relocate their residence closer to the 
destination or find a less suitable destination that is closer. 
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Walking Trips 
Categories 

Number of Walking 
& Cycling Trips 

Frequency Percentage 
Cumulative 
Percentage 

Very Low < 8 2261 12.3 12.3 

Low 8 - 14 3681 20.0 32.3 

Average 15 - 23 3246 17.6 49.9 

High 24 - 33 3084 16.8 66.7 

Very High 34 - 49 3052 16.6 83.3 

Excellent  > 50 3081 16.7 100.0 

N/A Total 18405 100.0 
 

 
Table 2: Independent variables and their description   

 
Variables Description 

Socioeconomic Characteristics 

Age Age of the respondent  

Sex Gender 

Licence Driver licence 

Car No. Number of vehicles in the household  

Bike No. Number of bicycles in the household 

HH Size Usual number of residents in the household 

HH Structure Demographic structure of household 

Dwelling Type Type of Dwelling 

Dwelling Ownership Dwelling Ownership 

Years Lived Years lived at address 

Work arrangement Arrangement of the work 

Built Environment Measurements 

Accessibility Measures  

CAI Cycling Accessibility Index 

WAI Walking Access Index 

Design Measures  

RDW Roadway Measure 

CON Connectivity 

Land use Measure  

LUMIX Land use mix entropy index 

PDSTY Population density 

Note: HH structure is converted to five dummy variables: sole person, couple no children, couple 
with children, one parent and other; work arrangement is converted into five dummy variables: fixed 
Hours, flexible Hours, rostered shifts, work from Home and other; dwelling type is converted into 
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three dummy variables: separate house, terrace/townhouse, and flat or apartment; dwelling 
ownership were converted to five category: owned, being purchased, rented, rent free and other, 
sex and driver licence are defined as binary variables. 

Table 3 suggests the descriptive statistics for the variable used in the OLR models. These 
statistics are calculated for 18,405 records of walking and cycling trip stages. In terms of 
socio-demographic characteristics, respondents were 37 years old on average and equally 
distributed according to gender. The average of HH Size shows that respondents were 
mostly from households with a usual number of about three residents. The average years 
lived at the address was 10 and households owned more than one car and bicycle.  

Table 3: Descriptive Statistics of variables 

Variable Mean S.D. Min Max 

Age 36.76 19.06 0.00 90.00 

Sex 1.52 0.50 1.00 2.00 

Licence 1.29 0.45 1.00 2.00 

Car No. 1.57 1.02 0.00 7.00 

Bike No. 1.85 1.91 0.00 13.00 

HH Size 3.00 1.37 1.00 6.00 

HH Structure 2.80 1.13 1.00 5.00 

Dwelling Type 1.52 0.80 1.00 3.00 

Dwelling Ownership 1.97 0.82 1.00 5.00 

Years Lived 9.95 11.21 0.00 77.00 

Work arrangement 2.86 1.78 1.00 5.00 

CAI 4.01 3.91 0.00 32.75 

WAI 32.63 21.63 0.00 212.02 

RDW  1.48 0.86 0.00 5.57 

CON 5.21 9.17 0.00 92.06 

LUMIX 0.45 0.16 0.00 0.87 

PDSTY  3706.77 4521.05 0.00 158817.12 

Walking & Cycling 
Trips 

28.81 21.91 1.00 110.00 

n=18,405 trip stages 

 

3.2.  Modelling and Interpretation 

Walking and cycling trips in SA1s are defined into six ordered levels from very low, coded as 
1, to excellent coded as 6. Having an ordered dependent variable, OLR models were used to 
explore the effects of socioeconomic characteristics as well as walking and cycling access 
indexes. OLR models estimate a single equation (regression coefficients) over the levels of 
the dependent variable. Estimates from the model denote the ordered log-odds (logit) 
regression coefficients. Interpretation of the ordered logit coefficient is that for a one-unit 
increase in the predictor, the response variable level is expected to change by its respective 
regression coefficient in the ordered log-odds scale while the other variables in the model 
are held constant. Interpretations of the ordered logit estimates are not dependent on 
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auxiliary parameters. Secondary parameters are used to differentiate the adjacent levels of 
the response variable. The Odds Ratio (OR) which is estimated in this model can be 
obtained by using the exponential function and the coefficient estimate (i.e. eCoef.). To 
interpret this, the people who are in groups greater than k are compared to those who are in 
groups less than or equal to k, where k is the number of the response variable’s levels 
(Andren et al., 1999). A typical model for the cumulative logits is shown in Eq. 6: 

     [ (   )]                          ́                                                                  

 
where, j = 1, . . ., c-1; c is the total number of categories; x1, x2, . . ., xn are n explanatory 
variables;   ,   , . . .,    are corresponding coefficients. 

An ordered logit regression models is generated for walking and cycling trips. As explained, 
walking and cycling trips are defined as an ordered dependent variable.  

Before running the model, the correlation analysis was applied to examine whether there is 
any association between the CAI, WAI and other built environment factors (see Table 4). As 
expected and also explained in previous sections, both defined accessibility measures 
reflect the diversity and intensity of land uses (land use mix) as well as population density. 
Hence, we run the two models once using the accessibility measure with design measures, 
and in the second run replacing accessibility measures by land use measures.   

Table 4: Correlation analysis between CAI, WAI and other built environment measures 

 LUMIX PDSTY RDW Connectivity 

CAI 0.420 0.149 0.142 0.144 

WAI 0.468 0.507 0.304 0.227 

 

In order to examine the importance of accessibility on the number of active transport trips 
two OLR models were estimated. Table 5 presents the results of the OLM models. The 
accessibility measures (CAI and WAI) along with other variables were employed to run the 
model M1, likewise, the land use measures in M2. The results indicated that all built 
environment measures in both models were statistically significant and the active transport 
was positively associated with built environment measures. However, based on Akaike 
Information Criterion (AIC) which is a measure of the relative quality of statistical models for 
a given set of data, M1 were found a better model. Given a series of models for the data, the 
AIC estimates the quality of each model, relative to each of the other models. Hence, the 
AIC provides a means for model selection (Aho et al., 2014, Hu, 2007, Boisbunon et al., 
2014). In terms of association, as presented in Table 5, number of cars in a household and 
living as a sole or single person negatively associated with walking and cycling trips. In 
terms of dwelling type, the log odds of being in a higher level of walking/cycling trips is 
higher for people who live in a terrace or townhouse rather than flats or apartments.   

Meanwhile, built environment features also had significant impacts on the number of walking 
and cycling trips. CAI, WAI, LUMIX and PDSTY were positively and RDW was negatively 
associated with walking and cycling trips. For instance, there is an expectation of a 0.31 
increase in the log odds of being in a higher level of walking and cycling trips for a unit 
increase of WAI. In contrast, while the RDW decreased for about 0.15 in M1, the log odds of 
being in a higher level of walking and cycling trips increased.  

Table 5: Outputs of the ordered logit model for walking and cycling trips 
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Parameter 
M1 M2 

Estimate S.E. OR Estimate S.E. OR 

Age -0.0003 0.0010 1.0000 0.0003 0.0010 1.0000 

Sex -0.1078*** 0.0275 0.8980 -0.1049*** 0.0267 0.9000 

Licence 0.0401 0.0393 1.0410 0.0129 0.0380 1.0130 

Car No. -0.1249*** 0.0171 0.8830 -0.1513*** 0.0166 0.8600 

Bike No. 0.0872*** 0.0089 1.0910 0.1066*** 0.0086 1.1130 

HH Size 0.0615 0.0183 1.0630 0.0605*** 0.0178 1.0620 

HH Structure       

Sole Person -0.1650** 0.0694 0.8480 -0.1972*** 0.0673 0.8210 

Couple no Kids 0.0862 0.0549 1.0900 -0.0011 0.0534 0.9990 

Couple with Kids -0.0170 0.0490 0.9830 -0.1322*** 0.0477 0.8760 

Single Parent -0.2876*** 0.0662 0.7500 -0.5126*** 0.0637 0.5990 

Dwelling Type       

Separate House -0.0289 0.0446 0.9710 -0.0488 0.0433 0.9520 

Terrace/Townhouse 0.5384*** 0.0508 1.7130 0.5285*** 0.0492 1.6960 

Dwelling Ownership       

Owned 0.5091** 0.2406 1.6640 0.5772** 0.2397 1.7810 

Being Purchased 0.4276* 0.2411 1.5340 0.5007** 0.2401 1.6500 

Rented 0.7373*** 0.2425 2.0900 0.7796*** 0.2414 2.1810 

Rent Free 0.7715*** 0.3042 2.1630 0.8772*** 0.3041 2.4040 

Years Lived 0.0055*** 0.0016 1.0060 0.0077*** 0.0015 1.0080 

Work arrangement       

Fixed Hours 0.2096*** 0.0374 1.2330 0.2568*** 0.0361 1.2930 

Flexible Hours 0.1855*** 0.0458 1.2040 0.2661*** 0.0442 1.3050 

Rostered Shifts 0.2463*** 0.0569 1.2790 0.3017*** 0.0547 1.3520 

Work from Home 0.4847*** 0.1061 1.6240 0.4682*** 0.1033 1.5970 

Design Measures       

RDW -0.1494*** 0.0254 0.8610 -0.1973*** 0.0248 0.8210 

CON 0.0145*** 0.0017 1.0150 0.0155*** 0.0016 1.0160 

Accessibility Measures 

CAI 0.1895*** 0.0131 1.2090 - - - 

WAI 0.3128*** 0.0101 1.3670 - - - 

Land use Measures       

LUMIX - - - 0.2433*** 0.0120 1.2750 
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PDSTY - - - 0.6143*** 0.0230 1.8480 

Note: (1) number of walking and cycling trips are converted to five dummy variables by using level 
1(very low): less than 10 trips, level 2 (low): 11-17 trips, level 3 (average): 18- 28 trips, level 4 (high): 
29-43 trips, and level 5 (very High): more than 44. Level one was the reference level. 
(2)Threshold coefficients for M1: 1|2 → -0.997, 2|3→ -1.981, 3|4→ -2.935; 4|5→ -4.088; for M2: 1|2 → 
-1.378, 2|3→ -2.402, 3|4→ -3.343; 4|5→ -4.459; 
(3) Significance codes: p < 0.001 ‘

***
’, 0.01 ‘

**
’, 0.1 ‘

*
’. 

(4) Overall goodness-of-fit: 
AICM1 = 52,666.49, -2 Log L = 52,891.58, SC = 52,608.49;  

AICM2= 56,377.44, -2 Log L = 56,604.23, SC= 56319.44. 

4. Discussions 

The current study aimed at investigating the impacts of accessibility on active transportation. 
For this purpose, three sets of built environmental measures including land use measures, 
design measure and accessibility measures used in two separate OLR models to examine 
their effectiveness as well as their importance. CAI and WAI were both developed for 
Melbourne’s 9510 statistical areas level one (SA1s). These new indexes formulated in a way 
that reflects the land use mix developments as well as population density (tested using 
correlation analysis, see Table 4). Hence, accessibility measures and land sue measures 
were not used simultaneously in a model. Conversely, accessibility measures along with 
design measures and socioeconomic characteristics were employed in OLR model 1 (M1); 
while M2 had the same variables except the accessibility measures which have been 
replaced by land use measures. Going through the figures of both models, results indicated 
that both land use measures and accessibility measures had statistical significant impacts on 
the walking and cycling trips. 
Coefficients estimated by models indicate that higher log odds of being in a higher level of 
walking and cycling trips are expected while there is a one-unit increase in the associated 
variable compared to its counterparts. Among the socioeconomic characteristics, age, car 
licence, household size, couples with/without kids, household living in a separate house had 
no statistical significant impacts on levels of walking and cycling trips. Regarding the built 
environment measures, although the OR values were estimated slightly higher for land use 
measure (ORLUMIX=1.28, ORDNSY=1.85; ORCAI=1.21, ORWAI=1.37) in M2; however, comparing 
AIC, M1 had the lowest AIC (AICM1 = 52,666 < AICM2 = 52,891) and showed a better fit for 
the data. 
The accessibility measures developed in this study can be used to compare 
neighbourhoods, which are within the same study area, in terms of their walkability and 
bikeability. Using this approach, planners and policy makers can compare and rank areas 
already built, and identify the new areas where investment might improve the walking and 
cycling accessibility. The way urban areas are configured can influence the pedestrian 
behaviour because it could make the built environment more attractive, safer and more 
accessible, by bringing together shops and services, and recreation centres (Peiravian et al., 
2014). CAI and WAI used in this study, not only reflect the diversity of different land uses, 
but also consider the intensity of population. Walkable, bikeable communities and active 
living are quite related to sustainable living. Changes in the physical environment affect 
urban mobility, particularly in metropolitan areas (Cubukcu, 2013). While, the promise of 
planning and policy actions to improve active travels is that walking and cycling can be 
encouraged, by enhancing the quality of the built environment which can affect travel 
distance, travel time and transport mode choice (Kim et al., 2014). As Randall and Baetz 
(2001) argue neighbourhoods should be constructed with sustainability concepts in mind. 
Those providing good pedestrian and cycling environments and more green space could 
enhance the level of physical activity. All across the urban and transport planning, much 
effort is currently being put into providing safe environments that encourage walking in cities.  
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5. Conclusions 

The literature commonly reports that built environment features such as density, diversity, 
and road connectivity could promote walking and cycling trips. This study hypothesised the 
impacts of accessibility measures on the level of walking and cycling trips; while introducing 
and using new accessibility measurements. The results of the analysis revealed the fact that 
people were more likely to walk and cycle when their desired destination is located within the 
distance thresholds.  
A major methodological challenge when working with accessibility measures in land use and 
transport planning is to find the right measure that is theoretically and empirically complete 
and it is adequately simple to be usefully employed in practice (Bertolini et al., 2005). The 
accessibility measures used in this study had simple and straightforward approaches to 
apply on different databases as well as different geographical scale. Furthermore, they were 
sufficiently comprehensive to be used in a transport modelling.  
In summary, going through the literature, there is a significant gap between the advances in 
scientific knowledge on accessibility and its application in planning practice. In comparison 
with the limited previous work on accessibility-based analyses, the analysis presented here 
is distinctive because it incorporates the impacts of both land-use and accessibility on active 
transportation. The measurements describe in this study are capable of being used by urban 
and transport planner as well as policy makers to any given proposed land-use 
development. Apart from ease of understanding of both measurements, without doubt one of 
the greatest strengths of these measures is that they reflect the land use features in terms of 
diversity and intensity of activities.     
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