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Peak spreading in the public transport system is a behavioural response to crowded 

trains and increased peak fares. Some passengers may shift their travel departure times 

to slightly before or after the peak period. Peak spreading is usually defined as a 

decrease in the proportion of 24-hour rail patronage during the peak hour. 

Understanding whether this proportion will remain constant or will change in response to 

these factors is critical to railway planning and timetable design. 

This study collected five years of Magnetic Stripe Ticket (MST) data from 2011 to 2016 

and Opal card data from its introduction to the Sydney network in 2013. The paper 

analyses time series Opal and MST data to identify trends in the ratio between peak and 

offpeak rail patronage. The analysis identified change in the proportion of 24-hour rail 

patronage during the AM Peak and, to a lesser extent, the PM Peak. Case studies of 

peak spreading patterns for two busy stations in the residential areas of Auburn and 

Chatswood suggest that departure time choice may be associated with socio-economic 

factors. The research also develops a dynamic regression model to predict peak 

spreading in the medium term. The results from this study could assist rail operators in 

policy development and planning new infrastructure. 

1. Introduction 

Peak spreading in the public transport system is a behavioural response to crowded 

trains and increased peak fares. Many commuters wishing to avoid the added delay and 

peak fares can choose the time they make the trip, given the trend to flexible work 

schedules and homeworking. Analysis of the temporal resolution of patronage on public 

transport services is relevant to the delivery of improved transport infrastructure and 

services for customers. 

The importance of studying peak spreading has been recognized for some time, 

especially in road traffic areas (Palm and Meulen, 2014, Barnes et al., 2012, Ben-Elia 

and Ettema, 2010, Nelson et al., 2010). It is well accepted that the increase of road 

congestion is usually accompanied by the spreading of demand to peak shoulders. Most 

of this research was focused on the investigation of the impact of peak avoidance, 

including congestion pricing, monetary rewards and new information services to reduce 

peak trips. 

Currie (2011) introduced a program in the context of public transport that aimed to 

encourage peak rail passengers to shift to pre-peak trains by using a free fare ticket that 
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was valid for CBD station exit before 7am in Melbourne, Australia. It was reported that 

after the free fare program was rolled out in 2008, train loads increased by 41% for trains 

arriving in the city before 7am. Liu and Charles (2013) reviewed the effects of differential 

fare policy on peak spreading in urban rail transit context. They carried out a 

comprehensive and systematic literature review of empirical evidence from national and 

regional data collected in the United Kingdom, the Netherlands and selected cities in 

Australia. A key finding was that multiple factors affect passengers’ willingness to shift 

transit mode or time. In the research reported by Daniels and Mulley (2013), a university 

in Sydney was selected to study the ‘paradox’ of public transport spreading. Their paper 

suggests that messages about travel demand should be communicated effectively to 

students and staff, who might be able to make better decisions in their choice of 

transport mode. 

With more diverse data becoming available in the past decade, a deeper understanding 

of peak spreading and its forecasting has become possible. The traditional four-step 

travel demand model and Logit modelling approaches have been widely used for 

modelling departure time choice (Transportation Research Center, The University of 

Florida, 2007, Fox et al., 2015, Tirachi, Hensher and Rose 2013). Regression based 

time series analysis has also been reported in the literature to predict peak spreading 

(Ivan and Allaire, 2001, Taylor et al., 2012). Recent studies increasingly sought novel 

rather than traditional methods with the help of machine learning tools. For example, 

Hofleitner et al. (2012) used a hybrid modelling framework to estimate and predict traffic 

conditions based on streaming GPS data; Chiang et al. (2011) compared neural 

networks and Autoregressive Integrated Moving average model (ARIMA); and Oztaysi et 

al. (2015) applied support vector machines. 

In this research we analyzed passenger peak spreading behavior using data collected 

from MST and Opal cards between 2011 and 2016, and 2013 and 2016 respectively. We 

identified the changes in peak and off-peak travel behavior and the impact of the 

introduction of the Opal card in the Sydney rail transit system. We selected two stations 

with different socio-economic profiles, namely, Auburn and Chatswood as case studies 

to investigate the potential causes of different peak spreading patterns. Results of the 

analysis were applied to peak spreading predictions, with peak spreading indicated as 

the change in offpeak proportions. The prediction model was developed based on a 

dynamic regression model by incorporating ARIMA and independent series. We 

estimated the model with a training dataset and tested it on a validation dataset. Error 

measures were calculated as validation metrics. The results demonstrate that the 

proposed model is a reliable tool for peak spreading prediction. 

The paper is organized as follows. Section 2 introduces the datasets used in the study; 

Sections 3 and 4 explain the nature of available data, and present two case studies and 

a comprehensive investigation into peak spreading behavior; Section 5 introduces a 

peak-spreading prediction model based on a dynamic regression model; and Section 6 

concludes the paper. 
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2. Data collection 

The NSW government launched Opal, a smartcard ticketing system, in June 2013. The 

Opal card is valid on all public transport in the Sydney metropolitan area. The new 

ticketing system was progressively rolled out from 2013. The take-up rate reached 95% 

by mid-2016. Over two million Opal transactions are collected on an average weekday. 

The dataset contains a wide range of public transport-related data, including journeys, 

sales and transactions. The implementation of the Opal card system provides a rich 

dataset from which to derive insights that can help inform improved delivery of 

infrastructure and services. 

The following data were used in the analysis for all stations with barriers in the Sydney 

Trains network: 

 MST entries and exits from March 2011 to February 2016 

 Opal card entries and exits from August 2013 to February 2016. 

Only stations with barriers were analyzed in this study for 24-hour reporting of patronage 

(48 out of more than 300 stations). Figure 1 shows the map of Sydney Trains gated 

stations, which represent the busiest stations across the Sydney Trains network. Opal 

card and MST entries and exits were aggregated into 15-minute time intervals. Median 

values of the proportions of time bands for each weekday in each calendar year were 

calculated using the following time band definitions for the AM and PM Peak: 

 4-hour AM Peak (6-10am) 

 Interpeak (10am -3pm) 

 4-hour PM Peak (3-7pm) 

 11-hour Night (7pm-6am) 
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Figure 1: Sydney Trains gated stations 

 

 

3. Peak spreading analysis  

This section presents the results of patronage data analysis to provide insights into the 
peak spreading behavior and travel patterns of rail passengers in Sydney. The share of 
each time band in weekdays was calculated by month and by year for all gated stations 
using MST and Opal card entry/exit data,. Figure 2 shows the proportions of entries and 
exits by time periods from 2011 to 2016. It can be seen that the share of growth in trips 
in the Interpeak remained relatively steady for both entries and exits. The share of the 
AM Peak dropped from 45% to 41% from 2011 to 2016 for passengers entering stations. 
Exits experienced a similar reduction in AM Peak share. There was a marginal decrease 
in the PM Peak share for entries, while the share remained steady at 27% for exits. It 
can also be seen that the share of Night-time travel grew faster off a low base. We then 
extended the AM Peak from 6 -10am to 5-10am. The analysis in Figure 2 shows that the 
share of adjusted Night-time in trips grew at a lower rate. 
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Figure 2: Proportion of time periods by entry and exit  
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We took a deeper dive into the proportions of entries for the peak hours and shoulder 

peaks from 2011 to 2016 to further investigate peak spreading behaviour. The results in 

Figure 3 show a 5% increase in the share of trips from 5-7am and a 7% decrease from 

7-9am. The PM Peak analysis showed a marginal increase in share of trips of 3% from 

6-8pm and a 2% decrease from 4-6pm. Despite the shift of patronage from peak hours 

to the peak shoulders, the busiest hours in the AM Peak and PM Peak were still 8-9am 

and 4-5pm respectively. The share of trips from 7-8am displayed the largest drop from 

2011 to 2016, especially after 2013. The Opal card system provided a 30% discount on 

train fares for journeys in the offpeak. Standard peak hours for the Sydney Trains 

network area were 7-9am and 4-6.30pm on weekdays. The cheaper fares appeared to 

be an incentive for train passengers to leave earlier for work. 

Figure 3: Proportion of entries for the AM and PM Peak by hour 
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Figure 4 compares the growth rate of trips in each time period from 2011 to 2015. It can 
be seen that the rate of growth in Night-time trips was highest relative to other time 
bands, increasing by more than 100% from 2011 to 2015 for passengers entering and 
exiting stations with barriers. Night-time trips increased around 70% from 2013 to 2015 
compared with an increase of 23% from 2011 to 2013 as a result of the rollout of the 
Opal system from 2013. The rate of growth in trips was lowest for the AM Peak relative 
to other time periods, an increase of 30% over five years. 
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Figure 4: Normalized growth rate by entry and exit 
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4. A case study 

 

The analysis in the preceding section was based on total entries/exits for all gated 

stations. This section analyses hourly shares in peak and peak shoulders for selected 

stations in the network to further explore peak spreading characteristics. Auburn and 

Chatswood stations were selected for the analysis because of their varying demographic 

characteristics. Figure 5 shows the locations of the two stations. Chatswood Station is 

located in the Lower North Shore of Sydney, while Auburn Station is located west of the 

Sydney Central Business District (CBD). According to Australian Bureau of Statistics 

(ABS) 2011 census data, the median weekly income of households with children in 

Auburn is $2,135 compared with $1,988 for households without children. In Chatswood, 

the median household income is $3,341 and $2,987 respectively for households with 

and without children. 

 

Figure 5: Maps of Auburn and Chatswood 

 

 

Table 1 shows the total median number of entries for Auburn and Chatswood stations 
between 5-10am in 2011 and 2015 on a weekday. Patronage of Chatswood Station in 
the study period grew at a faster rate than at Auburn Station between 2011 and 2015. 
The peak spreading patterns in Figure 6 show that the extent of peak spreading is not 
consistent across the network. From 2011 to 2015 there was a 15% increase in share of 
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trips from 5-7am for entries and a 14% decrease from 7-9am at Auburn Station. At 
Chatswood Station there was a 4% increase and a decrease in the share of trips from 5-
7am and 7-9am respectively for entries. These results indicate that departure time 
choice may be associated with socio-economic status. Further analysis found that 
spreading to the peak shoulder at Auburn Station grew significantly faster following the 
rollout of the Opal system in 2013. For example, the share of trips from 5-6 am at 
Auburn Station increased from 3% in 2014 to 13% in 2016. This suggests that 
commuters from catchment suburbs with lower household incomes are more likely to 
change their departure time in response to cheaper fares in the offpeak.  

 

Table 1: Total number of entries for Auburn and Chatswood stations in 2011 and 2015 
between 5-10am on a weekday (median) 

Station 2011 2015 

Auburn 3,381 4,063 

Chatswood 4,410 6,057 

 

 

Figure 6: Peak spreading pattern comparison between Auburn and Chatswood stations 
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5. Peak spreading forecasting methodology 

 

Reliable forecasts of train patronage by peak and offpeak periods are a key input for 
operators to plan services and allocate resources. This section introduces 
methodologies for forecasting peak spreading in rail patronage. Peak spreading is 
indicated as a change in offpeak proportions, with ‘offpeak’ defined as the time periods 
10am-3pm and 7pm-6am. Figure 7 shows the percentage growth in offpeak proportions 
across years for gated stations in the Sydney Trains network. The analysis suggests that 
the monthly offpeak share is impacted by seasonality, as the offpeak share is the highest 
in December, with other months remaining relatively flat. This might be partially 
explained by the holiday effect, in which passengers are more likely to have flexible work 
arrangements during the holiday season. Figure 7 also shows that the offpeak share 
grew faster after the rollout of the Opal card system because of cheaper fares in the 
offpeak period. 

 

Figure 7: Percentage growth in offpeak proportion (de-seasonalised) 

 

    

 

Table 2 shows the correlations of the de-seasonalised offpeak shares with past values at 
different lags. It indicates there is a strong correlation between the current and previous 
values of peak spreading. The autocorrelation factor decays very slowly, as can be 
observed from the results in Table 2, which suggest that the series is not stationary. The 
correlation test also confirms that the rate of growth in the offpeak trip share is strongly 
correlated with the Opal take-up rate (0.96). These results suggest that a time series 
model which allows for the inclusion of other relevant independent variables could be 
used to predict peak spreading. This kind of model is a dynamic regression model that 
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combines an Autoregressive Integrated Moving Average Model (ARIMA) and a general 
regression model. It analyses the correlations between current and lagged values of 
responses, independent series and errors to accurately make predictions. 

 

Table 2: Autocorrelations 

Lag 0 1 2 3 4 5 6 

Correlation 1 0.94 0.89 0.83 0.77 0.72 0.67 

 

  

The basic model can be written as follows: 

     ∑               
        

  …        
                                    

(5.1) 

Where:     = Differenced series from non-stationary series   for stationarity 

               = Mean term 

               = Independent series, in this case, Opal take-up rate 

               = The order of the autoregressive part 

               = Error term 

               = The order of the moving average process 

It should be noted that the independent series,   in Equation 5.1, can also be lagged 
and differenced. 

 

Simple differencing can be made using the following equation: 

 

  
                               (5.2)                                      

 

Where   is the order of differencing and   is the backshift operator; that is     =     . 

               

In applying the dynamic regression model in Equation 5.1 to the observed offpeak 
spreading, the time series was differenced at lag 1 and 12 because the series was not 
stationary and showed strong seasonality. That is, instead of modelling the offpeak 
share series itself, the change in offpeak share was modelled from one period to the 
next and the change 12 periods before. A total of 60 observations were available for this 
study. We used 50 observations for the training dataset and 10 observations for the 
validation set. Candidate models were compared and the final model structure was 
identified based on the Goodness-of-Fit statistics. The model was developed according 
to the following steps: 

1. The dependent peak spreading series,  , was differenced at lag 1 and lag 12. 
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2. The independent peak spreading series,  , was differenced at lag 1. 

3. The following processes were used to fit the twice-differenced predictor series: (i) a 
first-order autoregression process combined with a seasonal autoregression 
process with lag 12; (ii) a first-order moving average model combined with a 
seasonal moving average model with lag 12 (ARMA (1,1)(1,1)12); and (iii) the 
differenced independent series. 

 

Figure 8 compares the observed and estimated offpeak shares. The pattern shows that 
the proposed model appears to fit the observed offpeak shares quite well. We also 
quantitatively evaluated the prediction results using measure of mean absolute error 
(MAE) and mean absolute relative error (MARE). The MAE value of 0.007 and MARE 
value of 2.2% also suggest that the proposed dynamic regression model is a reliable tool 
to predict peak spreading. 

 

Figure 8: Observed and estimated offpeak shares 

 

 

 

6. Conclusion 

Peak spreading forecasting has proved a popular research topic for many years. In the 
literature different methodologies were reportedly applied on wide range of data for 
transport modes in different regions around the world. This study provides insights into 
train passenger peak spreading behavior in Sydney by synthesizing MST and Opal card 
entry/exit data over approximately five years. The analysis shows that the gradual 
discontinuation of MST and rollout of the Opal card introduced a noticeable trend to 
passenger peak spreading. We then formulated a dynamic regression model to predict 
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the peak spreading by incorporating the Opal card take-up rate series and the ARIMA 
process. The results demonstrated the reliability and effectiveness of the developed 
model. 
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