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Abstract 

Skyrocketing oil prices in the mid-2000s have prompted increased academic and policy 
attention on oil vulnerability. Concerns remain about the continued use of oil due to energy, 
security and environmental grounds. High per-capita transport energy use remains an issue. 
Urban transport has been seen as highly oil vulnerable due to urban forms that promote 
automobile dependence. Due to reduced refinery capacity, risks in main oil supply chains 
are increasing, suggesting oil vulnerability remains an important research area for transport. 
Recent studies in Australia have been focused on mapping intra-urban household oil 
vulnerability by car ownership using journey-to-work data. Yet few studies have looked at the 
overall fuel use of transport at the metropolitan level. Datasets used in this paper include 
census, household energy consumption surveys and energy datasets. This paper aims to 
develop a new methodological framework which integrates a wider range of urban transport 
data, including average household fuel expenditure at the city level. The intent is to help 
facilitate policy transfer between cities and to identify best practices to help improve energy 
efficiency and sustainability in urban transport. The new approach involves the adaptation of 
data envelopment analysis (DEA) to benchmark the ‘efficiency’ of cities in causing oil-related 
impacts and also the resilience thanks to less oil intensive modes (public and active 
transport). The results show the differences across the largest cities in Australia, with 
particular vulnerabilities are affected by local conditions of fuel price, socio-economic 
condition and the usage of sustainable modes. This framework should assist in showing the 
different levels of oil vulnerability of Australian capital cities. The DEA method has the 
potential to be expanded to consider more variables and/or applied to a wider set of global 
cities for comparative purposes.  
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1. Background and Introduction 

Despite recent decreases in oil prices due to global overproduction and the economic 
slowdown, cities with high car ownership and car usage should remain vigilant in preventing 
the potential impacts of sudden oil supply shortfall and oil price increases. Currently, 
Australia has modest (but declining) domestic crude oil production, alongside plentiful 
reserves of other energy resources ranging from coal, gas, uranium, solar and wind. 
However, these are unlikely to help address the ‘liquid-fuel problem’ in the short-term as the 
majority of the automobile fleet remains petroleum based. Australia still imports up to 80% of 
crude oil and about half of its refined petroleum products to meet its liquid fuel demand 
(Australian Commonwealth Government, Department of Industry and Science, 2015). Figure 
1 describes Australia’s petroleum energy flows in 2012-13. Most of the petroleum demand in 
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Australia is used in transport. This makes Australia’s transport system highly vulnerable to 
global oil supply chain disruptions, with the nation exposed to geopolitical, natural disaster 
and price volatility threats. Recent closures of domestic refineries are leading to higher 
dependence on imported refined oil products. As Australia has no mandated government 
strategic liquid fuel stockholding requirement and with limited retail fuel stockholdings, oil 
supply shortfalls may cause wide ranging effects. Oil fuels are not only used for passenger 
transport, but also for distribution of vital supplies such as food and pharmaceutical products  
to end-users (Blackburn, 2013).  

 
Figure 1: Australia’s oil flows (in petajoules), 2012–13 
(Bureau of Resources and Energy Economics, 2014) 

During the period of the historically higher levels of oil prices in 2008 and 2011-2014, 
concern about ‘Peak Oil’ and higher fuel costs have sparked debate and attention in 
Australasian transport policy and research. Higher oil prices have also been a social issue 
that has attracted widespread attention due to increased fuel expenditure to households. 
The notion of transport disadvantage has been raised, concerning the lack of transport 
options at outer or impoverished suburbs or districts of a city due to the impacts of increased 
fuel price. Research are drawing connections between transport disadvantage and fuel 
prices, for example, fuel price increases are likely to cause greater impact on those who are 
forced to drive more due to lack of transport alternatives and with less financial resources 
(Currie et al., 2010; Dodson et al., 2004; Murray et al., 1998). The term ‘oil vulnerability’ 
emerged after a method was developed to use census variables to map small areas of 
census tracts within a city (Dodson and Sipe, 2007, 2008) (the Vulnerability Assessment for 
Mortgage, Petrol and Inflation Risks and Expenditure (VAMPIRE) approach). This method 
remained popular in assessing oil vulnerability due to relative ease and availability of data. It 
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has been adapted by a number of other researchers, within and outside Australasian 
jurisdictions, showing oil vulnerability mapping results for Melbourne (Fishman and Brennan, 
2009), South-East Queensland (Leung et al., 2015), New Zealand (Smith et al., 2012) and 
North American cities (Akbari and Habib, 2014; Sipe and Dodson, 2013). Oil vulnerability, 
however, is not the only concept used to denote energy-related transport stress. While the 
term varies in the European context, with similar terms such as terms such as ‘transport 
poverty’ (Lucas, 2012) from the UK, ‘energy precarity (précarité énergétique)’ from France 
and ‘energy poverty (energiearmut)’ from Germany. Mattioli (2014, 2015) suggests a more 
compassing term of ‘energy-related economic stress’ instead. Such diversity of terms shows 
the concern of urban scholars on social disadvantage related to transport, urban form and 
energy price increases or uncertainty. 

In this paper, we use the term ‘oil vulnerability’ as it is the more widely used in the 
Australasian region to describe energy-related economic stress in transport. In terms of 
methodology, European researchers have been able to assess the actual energy costs of 
households due to detailed data collected from statistical authorities in both household travel 
and energy surveys (Mayer et al., 2014; Motte-Baumvol et al., 2009). Australasian 
researchers often resort to using proxy variables from the census to depict fuel expenditure, 
such as car ownership, the mode of journey-to-work (JTW) and commuting distance. Yet 
detailed investigation on vehicle fuel-efficiency and socio-spatial dimension has also been 
explored by matching motor vehicle registration data and the Commonwealth Government’s 
“Green Vehicle Guide” (Li et al., 2015). While this can give reasonable estimates of essential 
fuel use, the actual fuel cost of motor vehicles for non-work commuting remains inadequately 
represented. Another issue of oil vulnerability research is the limited focus of geographical 
extent. Most studies look at a particular city alone, such as the VAMPIRE-inspired studies. 
Limited work has been done to meaningfully compare the situation of oil vulnerability across 
different cities. This is possibly due to the difficulty to establish comparable datasets as the 
typical census data based methods are only internally comparing smaller areas within the 
same city. To address these research gaps, this research intends to ‘stocktake’ all the 
available data in Australia and propose to use the city-region as a unit of analysis.  

The paper is structured as follows: Section 2 outlines the data available for researchers to 
conduct transport and energy-expenditure stress research at a city-wide level. Section 3 
proposes and reviews the use of data envelope analysis (DEA) as a method to measure 
vulnerability in other fields, such as hazards and disaster reduction. Section 4 describes the 
methodology of DEA in measuring oil vulnerability and resilience. Section 5 shows the 
results and discusses the findings and limitations. Section 6 concludes the paper and 
outlines some limitations and the possible future research directions. 

 

2. Oil Vulnerability and Energy Transition in Urban 
Transport of Australian capital cities 

Capital city areas are defined by the Australian Bureau of Statistics (ABS) (2010) as the 
Greater Capital City Statistical Area (GCCSA) classification. The advantage of this is the 
areas defined for capital cities provide a larger range of available data, including fuel 
expenditure and price, a variable that has been neglected. The GCCSA area allows a wider 
range of oil vulnerability variables to be used. It is also possible to aggregate smaller spatial 
scales to fit in the ABS-defined GCCSA structure. Table 1 lists the data source of the 
variables used in this paper. The majority of the data used in this study is obtained from the 
ABS. The Energy Consumption Survey data provides fuel expenditure data of each capital 
that has not been explored in previous oil vulnerability research. Due to privacy and 
confidentiality concerns, ABS has not been providing this dataset with a geographic scale 
smaller than the GCCSA. Unless using micro-simulation techniques, as demonstrated by 
Lovelace and Philips (2014), it would not be possible to estimate fuel expenditure in 
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Australia at sub-city level in the meantime. It should be noted that State governments have 
conducted household travel surveys for capital cities. While comparing Australia’s diverse 
household travel surveys may produce a more accurate mode share or fuel use estimation, 
especially including non-work related trips, the issue of inconsistent methodologies and 
survey timing would cause some problems for inter-city comparison. The ABS’s motor 
vehicle registration data and the roof-top photovoltaic (PV) installation data are at postcode 
level which can be aggregated into GCCSA geography. As postcodes are not ABS 
maintained geographies, some boundaries do not provide an exact fit. For the borders of 
postcodes that are inconsistent with GCCSA, the differences were approximated by the 
proportion of area size. Most of the inconsistent areas are located on the outer fringes of 
GCCSA and the data losses caused by approximation are expected to be small. In addition 
to conventional governmental datasets, the electrical vehicle (EV) charging point counts are 
obtained by crowd-sourced information from an online application PlugShareTM that allows 
users to share the location charging points (Recargo, Inc., 2016). 

Using the oil vulnerability conceptual framework proposed by Leung et al. (2015), these 
variables are classified according to three oil vulnerability components namely exposure, 
sensitivity and adaptive capacity. The full list of variables is provided in Table 2 for an overall 
view of the Australian capital cities of all states except the Northern Territory. Darwin is not 
included because of its small population and being similar to Canberra as a city with a 
disproportionately larger public service sector and also with higher incomes, social 
advantage levels and also automobile use. For population density, we used the data of a 
more recent concept - population-weighted density (PWD), which is measured by 
aggregating smaller blocks in a city instead of a gross divided population to the total area. 
The PWD shown in here is obtained from Loader (2013) based on ABS kilometre population 
grids from the 2011 census. It should be noted the GCCSA often includes a larger area 
beyond prevailing urban administrative boundaries of Australian capital cities. Therefore, the 
PWD deemed to be more accurate and appropriate.  

A brief observation of the data is provided in the following section based on the oil 
vulnerability components. 

Exposure 

Exposure refers to what extent energy-related factors that are able to affect the population of 
a city. Car ownership, usage and fuel price data are listed in this section. For car ownership, 
generally the larger the PWD, the lower the car ownership and passenger VKT, which is 
generally consistent with Newman & Kenworthy et al’s (1989; 1999) global observation of 
cities that lower population density is correlated with higher car VKT per capita. This is not 
the case for Adelaide which has modest PWD (18.2 persons by km2) with lowest VKT per 
capita. This shows higher PWD does not necessarily resulting in less car use. Urban size 
also shows mixed correlation with VKT per capita. Adelaide and Hobart both are observed 
with the lowest passenger VKT per capita in Australian cities, while Canberra with similar 
size, has the highest VKT per capita. Such high VKT in Canberra is possibly due to better 
socio-economic standing. In contrast, Adelaide and Hobart are relatively disadvantaged due 
to their weaker economic performance and a higher incidence of older or populations that 
‘require assistance for core activity’ (an indicator of disability), which is a sensitivity variable 
that is explained in the following section. Another issue that affects oil vulnerability is the 
variation in fuel prices between the capital cities. Adelaide (141.77 cents per litre (cpl)) and 
Sydney (142.82cpl) being the lowest while Canberra (146.95cpl) and Brisbane (146.68cpl) 
being the most expensive. Further work to investigate this disparity of fuel prices might be 
able to help to understand the underlying factors of oil vulnerability. For the journey-to-work 
mode share, Adelaide appears to be the city with highest private-owned LOV mode share, 
followed by Hobart and Canberra. This relates to public transport usage or active travel, 
which will be covered in the Adaptive Capacity section. 
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Sensitivity 

Sensitivity represents the degree cities are affected by both energy and non-energy drivers. 
It is often measured by social variables, such as income or socio-economic wellbeing. 
Canberra has the highest average weekly household disposable income, followed by 
Sydney, Melbourne and Perth; Hobart has the lowest. Conversely for social disadvantage 
indicators, it is largely opposite with subtle differences for the rankings in between. Hobart 
and Adelaide are the most socio-economically disadvantaged capital cities. Yet the level of 
socio-economic wellbeing alone could not provide an estimate of the potential impact of oil 
price increase. These sensitivity indicators need to work with other oil vulnerability 
components in order to estimate oil vulnerability. 

 

Adaptive Capacity 

Adaptive capacity represents the ability to adapt to change in a way that makes it better 
equipped to manage its future exposure and/or sensitivity to oil price influences. The mode 
share of journey to work by HOV, which is predominately public transport, and activity are 
compared across the capital cities. Sydney has the highest public transport mode share to 
work, followed by Melbourne and then Brisbane while Hobart and Canberra are the lowest. 
This measure is also consistent with the share of public transport VKT. Yet, public transport 
usage rates do not necessarily show the maximum capacity of the urban transport system in 
an event of a sudden oil supply shortfall, causing fuel price hikes and a possible upsurge of 
public transport use (Stone and Mees, 2010). Hence, the consideration that active transport 
(cycle or walk) is important. Conversely, Hobart and Canberra have a significantly higher 
share of active mode shares to work. This is probably due to their smaller urban footprint, 
with shorter commuting distance which makes walking and cycling to work more feasible. 
Working at home is also tabled for analysis and it should be read in conjunction with the 
percentage of dwellings having broadband internet connection. It appears despite having the 
highest penetration of broadband at home, Canberra has the lowest work at home share 
compared to other capitals. Brisbane has the highest work at home percentage and ranks 
the second in broadband penetration at home. Still, the relationship between working at 
home and information communication technology (ICT) remain unclear. This could be 
related to the nature of jobs as Canberra having very high public sector employment which 
may not encourage working at home. Moreover, cities with higher time and/or monetary 
costs of commuting may make working at home more attractive. Despite growing academic 
attention (Aguiléra et al., 2012; Alizadeh, 2012), further study  on working at home and its 
relation with information communication technology (ICT) is needed to uncover the reasons 
behind this.  

A fresh and comprehensive look at electric vehicles (EV) in Australian capital cities is offered 
in Table 2. It shows Canberra is having extraordinarily high levels of EVs ownership (4.16 
per 1000 persons) while other cities were still under 1 per 1000 persons and with Brisbane 
being the worst performer (0.06 per 1000 persons). EV ownership does not appear to 
correlate with the availability of charging points. Perth has the highest EV charging point 
provision (30.6 per 1 million persons, 56 charging points within the Perth GCCSA area) with 
initiatives of charger provision by the motoring association and universities since 2012 
(Speidel et al., 2012). Yet the EV ownership of Perth in 2015 remains modest (0.29 per 1000 
persons). As EV vehicles are still a novelty and are significantly more expensive, perhaps 
only those with higher incomes can afford them. It should also be noted that Canberra’s EV 
registration number could be boosted by government-owned cars as the Australian Capital 
Territory (ACT) Government initiated a policy to reduce carbon emissions by acquiring EVs 
in their fleet (ACT Department of Environment and Sustainable Development, 2012). While 
EV ownership may not have immediate oil reduction implications, another aspect that might 
affect electric vehicle uptake is the proliferation of residential photovoltaic solar panels. EVs 
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has been seen as a potential form of electricity storage for solar panels as both could 
complement each other (Adepetu and Keshav, 2015; CSIRO, 2013). Solar panel registration 
data from the Australian Government clean energy regulator, the Australian Renewable 
Energy Agency (AREA) shows Brisbane and Adelaide have the highest uptake of rooftop 
panels in terms of both dwelling density and capacity. Brisbane’s high uptake could be 
associated with long sun availability; Adelaide has benefited by South Australian 
government’s favourable feed-in tariffs being able to outset of costs of installation. This inter-
city comparison offers some insights on the performance of energy transition in Australian 
capitals. It seems residential solar panel uptake patterns not relate well with EV registration 
at this moment. As solar panels are still relatively new in Australia, further research in this 
area would be needed as the beneficial synergetic effect with EVs are currently not well 
understood (Cao et al., 2015). Due to small uptake numbers at the moment, the impact of 
EVs and solar panels to reduce oil vulnerability, both numbers are not considered in the 
subsequent section in which a more detailed estimation of oil vulnerability of Australian 
capitals. In fact, only small number of the variables listed above could be selected for further 
analysis by a mathematical modelling tool - DEA. 

Table 1: Data source for variables used 
Provider Data Source Variable Remarks/Reference 

Australian Bureau of 
Statistics (ABS) 

Census 2011 

Usual Resident Population 

(persons) 
 

Population-Weighted 

Density (persons/km) 

Figures from Loader 

(2013), based on 

ABS’s  (2014) 

Population Grid data 

Mode Share to Work 

- LOV (Low 
Occupancy 
Vehicles) 

- Public Transport 
modes 

- Non-Motorised 
(Walking or 
cycling) 

- Work at home 

 

Disability (Core assistant 

needed for activities) 
 

Motor vehicle numbers in 

each dwelling 
 

Socio-Economic Indexes 
for Areas (SEIFA) 

 (Derived from Census 
2011 data) 

Index of Relative Socio-

economic Advantage and 

Disadvantage (IRSAD)  

The Decile 1 (Most 

disadvantaged) is used 

Australian Bureau of 
Statistics (ABS) 

Motor Vehicle Survey 
2014 

Vehicles registered by fuel 
type 

- Petrol 
- Diesel 
- Dual-fuel (LPG) 
- Electric 
- Other 

Postcode-level data 
aggregated into 
GCCSA 

Energy Consumption 
Survey 2012 

Total and Disposable 
Household Income and 
Fuel Expenditure  

Weekly 
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Table 1: Data Source for Variables (Continued) 
Provider Data Source Variable Remarks/Reference 

Bureau of Infrastructure, 
Transport and Regional 

Economics (BITRE) 

Traffic and congestion 
cost trends for Australian 

capital cities (IS-074) 
VKT of different modes  

Australian Institute of 
Petroleum (AIP) 

Weekly Price Update  
2011-2012 

Metropolitan Average 
Retail Fuel Price 

6  weekly average 
sample points approx. 

every 2-months to 
reduce fluctuation 

effects 

Compiled by the Australian 
Photovoltaic Institute 

(APVI) 
Original data from the 
Australian Renewable 

Energy Agency (AREA)  

Photovoltaic (PV) 
Installations Mapping data 

2016 March 

PV installation density and 
capacity 

Postcode-level data 
aggregated into 

GCCSA 

Plugshare.com 
Crowd-sourced data, 

2016 May 
Locations and counts for 

EV charging points 
 

 

 

Table 2: Descriptive statistics and oil vulnerability data of Australian capital cities, 
[ ] brackets denote ranking, 1 is highest and 7 for the smallest 

  Sydney Melbourne Brisbane Adelaide Perth Hobart Canberra 

Usual Resident Population 

(persons) 

4,391,674 

[1] 

3,999,981 

[2] 

2,065,998 

[3] 

1,225,235 

[5] 

1,728,865 

[4] 

211,656 

[7] 

356,586 

[6] 

Population-Weighted Density 

(persons/km) 

34.40 

[1] 

24.90 

[2] 

18.10 

[4] 

18.20 

[3] 

17.60 

[5] 

12.00 

[7] 

15.70 

[6] 

Exposure        

Registered Vehicles per 

capita (per 1000 persons) 

692.16 

[7] 

806.08 

[5] 

844.58 

[3] 

902.75 

[2] 

920.66 

[1] 

792.34 

[6] 

833.81 

[4] 

Dwellings with more than 2 

vehicles (%) 

41.23 

[1] 

46.43 

[4] 

48.44 

[3] 

45.14 

[6] 

50.37 

[1] 

44.75 

[7] 

49.41 

[2] 

Proportion of method to work 

is only by private low 

occupancy vehicles only 

(LOVs) (%)* 

67.04 

[7] 

74.64 

[6] 

75.42 

[5] 

81.34 

[1] 

78.50 

[4] 

81.19 

[2] 

80.92 

[3] 

Total annual VKT of private 

vehicles (car and 

motorcycles) (billions km)  

31.22 

[1] 

30.62 

[2] 

14.67 

[3] 

8.19 

[5] 

12.98 

[4] 

1.46 

[7] 

3.06 

[6] 

Metropolitan Average Retail 

Fuel Prices (cents per litre, 

cpl) 

142.82 

[6] 

142.87 

[5] 

146.68 

[3] 

141.77 

[7] 

143.65 

[4] 

150.28 

[1] 

146.95 

[2] 

Mean weekly expenditure for 

vehicle fuel (AU$) 

61.17 

[5] 

63.89 

[2] 

62.54 

[4] 

51.71 

[7] 

64.04 

[1] 

52.98 

[6] 

63.44 

[3] 

Sensitivity        

Average weekly disposable 

household income (AU$) 

1,727.52 

[2] 

1,715.6 

[3] 

1,538.6 

[5] 

1,413.84 

[6] 

1,690.15 

[4] 

1,360.24 

[7] 

1,971.09 

[1] 

Proportion of population, core 

activity needs assistance (%) 

4.38 

[4] 

4.48 

[3] 

4.18 

[5] 

5.37 

[2] 

3.56 

[6] 

5.44 

[1] 

3.35 

[7] 

Proportion of population with 

lowest SEIFA decile (%) 

8.55 

[3] 

6.52 

[5] 

7.74 

[4] 

11.03 

[2] 

3.14 

[6] 

17.11 

[1] 

0.56 

[7] 
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Table 2 (continued): Descriptive statistics and oil vulnerability data of Australian capital cities, 
[ ] brackets denote ranking, 1 is highest and 7 for the smallest 

  Sydney Melbourne Brisbane Adelaide Perth Hobart Canberra 

Adaptive Capacity        

Proportion of method to work 

is by at least one trip by 

public transport # (%)  

19.47 

[1] 

13.09 

[2] 

11.68 

[3] 

8.38 

[5] 

9.49 

[4] 

5.69 

[7] 

6.80 

[6] 

Proportion of method to work 

is by active transport (%) 

5.41 

[3] 

4.80 

[4] 

4.67 

[5] 

4.13 

[6] 

3.89 

[7] 

7.37 

[2] 

7.43 

[1] 

Proportion of work at home 

(%) 

4.41 

[2] 

4.14 

[3] 

4.56 

[1] 

3.68 

[6] 

3.92 

[5] 

4.09 

[4] 

3.08 

[7] 

Proportion of dwellings with 

broadband connection (%) 

65.62 

[3] 

63.87 

[4] 

66.94 

[2] 

60.40 

[6] 

63.62 

[5] 

56.96 

[7] 

70.48 

[1] 

Electric vehicle registered 

(per 1000 persons) 

0.12 

[6] 

0.39 

[3] 

0.06 

[7] 

0.13 

[5] 

0.29 

[4] 

0.61 

[2] 

4.16 

[1] 

Electric vehicle charging 

points (per 1 million persons) 

7.74 

[5] 

9.75 

[4] 

7.74 

[5] 

5.71 

[6] 

30.66 

[1] 

28.35 

[2] 

16.83 

[3] 

Solar panel installation 

density (per 100 dwellings) 

8.55 

[7] 

10.76 

[5] 

28.26 

[1] 

25.63 

[2] 

22.41 

[3] 

10.29 

[6] 

11.97 

[4] 

Solar panel installation 

capacity (kW per capita) 

96.00 

[7] 

133.15 

[6] 

348.58 

[2] 

360.63 

[1] 

253.81 

[3] 

148.06 

[5] 

158.25 

[4] 

* Private LOV refers to low occupancy vehicles including car as drivers/passengers, motorcycle, truck. 
# Public transport includes rail, tram/light rail, bus, ferry and taxi. Transfer using more than one mode including 

Private LOVs are included in this category. 

 

3. Using Data Envelopment Analysis (DEA) to Measure Oil 
Vulnerability and Resilience 

To address the shortcomings of previous oil vulnerability assessment in Australian research, 
an inter-city oil vulnerability benchmarking method is developed. In this section, the concept 
of DEA is briefly outlined, followed by a review of DEA methods. The DEA method was 
originally developed by Charnes, Cooper and Rhodes (1978) (hence is often referred to as 
the CCR model). DEA is a method to measure the relative efficiency of an organisation, 
often referred as a Decision Making Unit (DMU) in the DEA literature. The analysis method 
is based on a mathematical linear programming method to estimate relative efficiency based 
on a mathematically derived weighted ratio of outputs to inputs with the following simplified 
equation:  

inputsweightedofsum

outputsweightedofsum
Efficiency   

This can be visualised as a diagram in Figure 2, for example, the DMUs that are using the 
least input to produce the most output are the best amongst the peers, which can be seen as 
located on the ‘best practice frontier’. The CCR is also assuming the return of scale is 
constant.  

The advantage of DEA is that it is completely ‘data-driven’ and does not require prior 
knowledge or assumption of the relationship between the inputs and outputs. It can also 
generate ‘slack’ values to predict how optimal efficiency be achieved by adjusting the 
combination of inputs. Therefore, DEA has been widely used in operations research, 
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management and economic fields with evolving variations (Seiford, 1996). For transport, 
there is a wide range of DEA applications worldwide, including  public transport (Chiou et al., 
2012; Hilmola, 2011; Lan et al., 2014; Pina and Torres, 2001; Sampaio et al., 2008), ports or 
airport operations (Tongzon, 2001; Yoshida and Fujimoto, 2004) and even property value 
uplifting effects  from public transport (Yen et al., 2014). There are also innovative uses of 
adapting DEA to measure undesirable outputs such as pollution or CO2 emissions (Daraio et 
al., 2016; Ha et al., 2011; Lin et al., 2015; Song et al., 2015). This demonstrates DEA is 
highly adaptive to different situations, a strength as it offers a wide range of variants 
available for researchers (Chen, 2004; Cook and Seiford, 2009).  

 
Figure 2: The basic concept of DEA and the CCR input and output oriented models 

 

In the field of vulnerability research, vulnerability indices were typically based on mean-
adjusted ranking, or expert-adjusted weights to determine vulnerability scores as a reference 
measure of the level, or the risk of a potential impact (Cutter et al., 2008; Dwyer et al., 2004; 
Esty et al., 2005). However, it is often difficult to ascertain the weights to be given on the 
indices. To address this, there is a growing trend to treat ‘vulnerability’ as the ‘efficiency of 
baseline factors in causing damage’ in hazards reduction and vulnerability literature.  
Whereas the exposure to impacts or background levels can be seen as inputs and the 
resultant damage or loss as outputs. A societal system, such as a city, can be seen as a 
DMU. The types of hazards or disasters used this way to assess vulnerability include floods 
(Rygel et al., 2006; Wei et al., 2004), droughts (Yuan et al., 2015), exposure to pollutants 
(Ratick and Osleeb, 2013) and war (Benini, 2015). Conversely, DMUs with higher levels of 
resilience or adaptive capacity could reduce the propensity of loss from hazards or negative 
effects can be assessed by DEA. Examples of DEA-based resilience studies such as coastal 
hazards resilience at country level (Zou and Wei, 2009) and earthquake resilience (Ü stün, 
2016). This paper incorporate both vulnerable and resilience analysis by DEA benchmarking. 
The following section describes the methodology used in this study. 

 

4. Methodology 

This study attempts to adapt DEA approaches from the hazards or vulnerability literature to 
urban transport oil vulnerability assessment. Two DEA models are used in this paper to 
measure oil vulnerability and resilience, respectively, as illustrated in Figure 3. The first DEA 
model (OV-DEA) measures oil vulnerability, which includes city-wide and household 
exposure and sensitivity components. The capital city area population and mean weekly 
household income are seen as inputs, whereas VKT and fuel expenditure are treated as 
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outputs. A more vulnerable city is more ‘efficient’ in having fewer inputs (population and 
income) to produce more outputs (total VKT of private vehicles and fuel expenditure). The 
second DEA model (OR-DEA) takes account of resilience to oil price increases. The input is 
a combined measure of household fuel stress, calculated by the percentage of weekly 
household fuel expenditure to weekly household income. The output is the mode share of 
less oil-intensive modes, including public and active transport. This measures how efficient a 
city adapting to fuel stress by not driving. 

 

 
Figure 3: Conceptual DEA model for assessing oil vulnerability and resilience 

in urban transport 

This research appears to be the first in using DEA method to evaluate oil vulnerability and 
resilience. The proposed DEA structure progresses from previous oil vulnerability 
assessments (e.g.: the VAMPIRE approach) that used subjective ranking method (i.e.: equal 
weighting for all variables). The proposed DEA models incorporate not only exposure 
components, also sensitivity and adaptive capacity. This is an advancement to prevailing oil 
vulnerability methods, as it considers household fuel expenditure and adaptive capacity at 
city level. The classical input-oriented CCR DEA model is applied for the OV-DEA. The 
mathematical equation is as follows: 
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Suppose we have a set of n DMUs. Each DMUj (j = 1,…n), produces s different outputs rjy  

 (r =1,…,s) utilising m different inputs ijx  (i = 1,…,m). Where   is the vulnerability score,   is 

the non-Archimedean infinitesimal, iox and roy  refers to the i th input and r th output of the city; 



ri ss , are the input and output slack value. Slack refers to which the excess input or missing 

output that exists after the proportional change in the input or the outputs to reach the 
efficiency frontier. In other words, it is the difference of input levels between the inferior 
performer and the best performer. The purpose of slacks analysis is to predict how optimal 

efficiency can be achieved by adjusting the combination of inputs. j refers to the weight 

given to the DMUj in an effort to ‘outperform’ DMUo. This weight is used to determine the 

relative efficiency based on the inputs and outputs values. The classical CCR model limits 
the efficiency value to be under 1 (or 100%). Likewise, the output-oriented model can be 
formulated for the OR-DEA as follows: 

[CCR-O]           Max 
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This restriction can be relaxed to allow comparison of scores beyond 1 (i.e.: beyond the 
efficiency frontier) by the following condition: 

                        


is , 0

rs  

                        0j 0j nj ,,2,1   

This relaxed model is known as super-efficiency model which permits more precise ranking 
of the DMUs while the inefficient DMUs remains the same as classical DEA model 
(Andersen and Petersen, 1993; Wu et al., 2014; Zhu, 2001). Table 3 shows the basic 
descriptive statistics of the variables used in the DEA models.  Table 4 shows the correlation 
coefficients among input and output variables. Note that the correlation coefficients between 
input and output variables of the OV-DEA are positive, while the OR-DEA are negative. To 
test the relevance of the selected input and output variables, regression analyses are further 
conducted and Table 5 presents the results. The variables for OV-DEA are statistically 
significant, but not for OR-DEA. As the aim of this study is to use DEA to create a 
vulnerability and resilience index, not to identify the actual efficiency of a DMU in typical DEA 
studies. Hence, a negative correlation and non-significant relationship between inputs and 
outputs are acceptable. 
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Table 3: Descriptive Statistics of the inputs and outputs for the DEA models used 

Variables Minimum Maximum Mean 
Standard 
Deviation 

OV-DEA 

Input 

Population 211,656.00 43,91,674.00 1,997,142.14 1,648,084.00 

Weekly Disposable 
Income ($) 

1360.24 1971.09 1690.15 210.02 

Output 

VKT of private 
vehicles (billion) 

1.46 31.22 14.60 12.13 

Weekly Fuel 
Expenditure ($) 

51.71 64.04 59.97 5.31 

OR-DEA 

Input Fuel Stress (%) 2.65 3.41 3.08 0.26 

Output 

Public Transport 
Mode Share (%) 

6.64 22.60 12.84 5.45 

Active Transport 
Mode Share (%) 

3.89 7.43 5.39 1.46 

 
Table 4: Correlation coefficients among input and output variables of the DEA models 

 
OV-DEA 

 Inputs Outputs 

Variable Population Weekly Income Total VKT of 

Private 

Vehicles 

Weekly Fuel 

Expenditure 

Population 1    

Weekly Income 0.23 1   

Total VKT of Private Vehicles 0.99 0.25 1  

Weekly Fuel Expenditure 0.44 0.80 0.47 1 

 
OR-DEA 

 Input Outputs 

Variable 
Household 

Fuel Stress 

Public 

Transport (PT) 

Mode Share to 

Work 

Active 

Transport 

Mode Share to 

Work 

Household Fuel Stress 1   

PT Mode Share -0.1 1  

Active Transport Mode Share -0.23 -0.44 1 

 

Table 5: Regression results for input and output variables 
 

OV-DEA 

Dependent variables 
Independent variables 

Population Weekly Income 

Total VKT of Private Vehicles 

0.99 0.03 

(32.75)  (0.96)  

  
2R =0.997 

   

Weekly Fuel Expenditure 

0.27 0.73 

(0.97)  (2.61)  

 2R =0.701 
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Table 5 (Continued): Regression results for input and output variables 
 

OR-DEA 

Dependent variables 

Independent 

variables 

Household Fuel 

Stress 

PT Mode Share to Work 

-0.10 

(-0.23)  

 
2R =0.01 

  

Active Transport Mode Share to 

Work 

-0.23 

(-0.52)  

2R =0.051 

 

5. Results and Discussion 

The two DEA models outlined in Section 4 are used to evaluate the city-level oil vulnerability 
and resilience. For a classical CCR DEA assessment, a value of 1 means it is the most 
‘efficient’ and is located at the ‘efficiency frontier’. To allow more meaningful benchmarking, 
the super-efficiency model is used in both models. The results of OV-DEA in measuring oil 
vulnerability is shown in Table 6.   

Table 6: Oil Vulnerability Scores calculated from OV-DEA Model 
(1 is the most vulnerable; 7 the least vulnerable) 

Ranking Capital Cities 

Classical CCR 

Oil Vulnerability 

(CRS) 

Super-efficient 

Oil Vulnerability 

(CRS) 

1 Hobart 1 1.407 

2 Canberra 1 1.187 

3 Melbourne 1 1.073 

4 Brisbane 1 1.066 

5 Sydney 1 1.013 

6 Perth 0.990 0.990 

7 Adelaide 0.926 0.926 

 Average 0.988 1.094 

 

The result shows most cities are quite close to the ‘efficient’ frontier of oil vulnerability. It can 
be said Hobart, Canberra, Melbourne, Brisbane and Sydney, with the oil vulnerable score of 
1 in the classical CCR OV-DEA model, are the more oil vulnerable capitals. Conversely, 
Adelaide achieved the lowest score and it is the least oil vulnerable as it has on average the 
lowest fuel expenditure and VKT in relation to its population size. The results show Hobart 
(1.407) and Canberra (1.187) are the most oil vulnerable capitals. For the case of Hobart, 
this is because of high fuel prices and high private car VKT in relation to its lower income 
levels and smaller population. For the case of Canberra, it is attributed to very high private 
car VKT, despite Canberra’s relatively higher income levels that can cushion the impact. 
Adelaide has the lowest fuel price among the capital cities, whereas Hobart and Canberra 
has the highest (Table 2). Fuel price in the capital cities could be an external factor 
explaining oil vulnerability and this could be considered in future studies. The ability to use 
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less oil-intensive modes, such as public or active transport, are also examined in the OR-
DEA model and the results are shown in Table 7.  

Table 7: Oil resilience calculated from OR-DEA Model 
(1 is the most resilient; 7 the least resilient) 

Ranking Capital Cities 

Classical CCR 

Oil Resilience 

(CRS) 

Super-efficient 

Oil Resilience 

(CRS) 

1 Sydney 1 1.498 

2 Canberra 1 1.233 

3 Hobart 0.821 0.821 

4 Melbourne 0.764 0.764 

5 Brisbane 0.668 0.668 

6 Adelaide 0.599 0.599 

7 Perth 0.598 0.598 

 Average 0.788 0.883 

 

Sydney and Canberra are seen as ‘best practice’ cities in terms of oil resilience with 
resilience values above 1. It could be useful if both OV-DEA and OR-DEA can be plotted 
together for comparing both vulnerability and resilience of the capital cities analysed. As 
shown in Figure 4, the mean value of the score of both DEA models is used as cut-off levels 
to create four quadrants. Most Australian capitals fall into the quadrant of “Less Vulnerable; 
Less Resilient”. For the worst case, Adelaide has the lowest OR-DEA efficiency value, which 
means the city is the least able to utilise public or active transport to reduce oil-related fuel 
cost impacts and it is also the least oil vulnerable according to the OV-DEA. Melbourne is 
straddling nearer the mean value of both DEA scores. Hobart is the most vulnerable and 
close to mean level resilience, whereas Canberra is quite vulnerable but also the most 
resilient. Sydney is the only city that is less vulnerable and more resilient, which means the 
capital will be least impacted by higher oil prices in Australia. Fortunately, no cities are falls 
into the quadrant of ‘More Vulnerable; Less Resilient’ which is an undesirable position. In 
order to understand how each can improve its efficient, Table 8 demonstrates the slack 
analysis from OR-DEA model. The slack analysis shows how much each city needs to 
improve to become more resilient (or the efficiency in using public transport or active 
transport in relation to fuel stress). For example, it assumes Melbourne can be as oil resilient 
as its closest peer, Sydney, if it can improve its active transport mode share by 31.94% (i.e., 
Increasing from its current active transport mode share from 4.79% to 5.41%, to reach the 
level of Sydney’s). The slack analysis shows except for Hobart, all other non-optimum cities 
could gain resilience by improving active transport mode share so as to reach the efficiency 
of the best performer. It should be noted the two input slack values cannot be separated to 
create the overall improvement. Hence for Hobart, it has to improve both the public transport 
and active transport as specified in Table 8 in order to be as ‘resilient’ as Canberra. Larger 
capital cities such as Melbourne and Brisbane had to improve from 30-40% in active 
transport to reach ‘best practice'. However, for Adelaide and Perth, even more drastic 
measures of up to 70% active transport mode share improvements are needed to reach the 
resilience levels of Sydney or Canberra. These sets of analysis show the importance of 
evaluating the oil vulnerability and resilience performance for the cities at the same time. It 
would facilitate the urban transport or land use policy makers to address oil vulnerability of 
the Australian capital cities evaluated. The proposed DEA models offer an objective and 
data-driven benchmark ranking method of oil vulnerability and resilience for Australian 
capital cities. This DEA approach could be useful for Federal level policy makers to 
determine the priority of public transport infrastructure of Australian cities in relation to oil 
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vulnerability. This method can also be used in conjunction with the other intra-city mapping 
approaches, if a smaller level data are available. 

 

 

Figure 4: Cross analysis of OV-DEA and OR-DEA scores of the Australian capital cities 
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Table 8: Slack values (Improvements strategies) for the transport mode share of capital cities 
to be as good as the ‘peers’ 

Code 
Capital 

City 
Best Practice Peers 

Public 

Transport 

Active 

Transport 

1 Sydney - 0% 0% 

2 Melbourne Sydney, Canberra 0% 31.94% 

3 Brisbane Sydney, Canberra 0% 39.07% 

4 Adelaide Sydney, Canberra 0% 72.55% 

5 Perth Sydney, Canberra 0% 75.35% 

6 Hobart Canberra 18.54% 0.71% 

7 Canberra - 0% 0% 

 

6. Concluding Remarks and Further Research 

Inter-city assessment is useful to provide insights on how cities perform in terms of oil 
vulnerability and transport energy sustainability. This study proposes two DEA models to 
measure oil vulnerability (OV-DEA) and oil resilience (OR-DEA). These models adopting a 
new set of data regarding oil vulnerability and energy transition looking at all major 
Australian capital cities. The data itself shows exposure, sensitivity and adaptive capacity 
differs greatly amongst the capitals. Generally speaking, larger cities appear to be better in 
coping with oil vulnerability due to better public transport systems and driving being less 
prevalent. However, as oil prices and living standards differ greatly, the actual propensity of 
the impact caused by higher oil prices also are mixed and complicated. By the use of DEA 
modelling, it is possible to consider the interplay of factors in a data-driven and objective way. 
Moreover, slack analysis provides further improvement strategies to understand how to be 
more resilient. 

Further research would be needed to understand this aspect in greater detail. Many DEA 
studies also incorporate second stage analysis, using Tobit regression models to investigate 
the contribution of external factors (Chiou et al., 2012; Chiou and Chen, 2006; Hilmola, 2011; 
Pina and Torres, 2001). It is worthy to add more cities in the proposed DEA approach to 
examine model applicability. For example, cities beyond Australia in the Asia Pacific region 
can be included in further analysis. Aggregated city data is widely available in many urban 
jurisdictions. Alternatively, using sub-city scales of larger areas (e.g.: Statistical Area 4 (SA4) 
of ABS’s census geography) with State conducted household travel survey with fuel 
expenditure data with DEA is also feasible if data availability permits. Using DEA in the 
traditional way, that is, to measure efficiency can also be conducted with the same datasets 
presented in this paper. For instance, to measure efficiency of public transport or electric 
vehicle uptake using the same set of data presented here. There are many ways to make 
use of the DEA method and hence, there is ample opportunity for further research. It is also 
hoped this approach can be applied to transport infrastructure priority and fund allocation at 
a higher governmental level, for instance, at Federal government level. 
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