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ABSTRACT
This paper observes aggregated route choice patterns (i.e. vehicle distance traveled in different
roadway classes, regional split ratios and average trip lengths) in a large scale mixed urban/freeway
system through an extensive data set of 20,000 taxis in Shenzhen, China. It also reconstructs the ag-
gregated patterns through shortest path algorithm that is based on various travel cost functions. We
replace each observed trajectory with a shortest path that connects the same origin and destination
points, and reproduce aggregated variables. We observe that link-level and regional interpreta-
tion of travel cost results in similar aggregated patterns. These results can enhance parsimonious
network models and lead to better traffic predictions for large-scale congested networks.

INTRODUCTION
Large-scale traffic modeling and macro-scale management strategies remain a big challenge partly
due to unpredictability of choices of travelers (e.g. route, departure time and mode choice). While
there is strong understanding and vast literature of route choice modeling, there is no rigorous
efforts, to the authors’ knowledge, that investigates aggregated patterns (e.g. traffic load on freeway
and urban subnetworks) that result from such modeling. Most of the analysis at the network level is
based on simplistic models or simulations, (i) which are difficult to calibrate and (ii) require a large
number of input variables/parameters, that might not be observable with the current available data.
In addition, there is not enough explanation on if and how people adapt their choices with respect
to dynamic traffic conditions in the network, and how all this changes network traffic properties.

Route choice models are essential to forecast travelers’ behavior under hypothetical sce-
narios, and most importantly to predict traffic conditions in transportation networks. Although
modeling route choice is quite challenging, given the complexity of human behavior and uncer-
tainty about travelers’ perceptions, they are essential part of dynamic traffic assignment (DTA)
models that are expected to accurately predict traffic conditions in transportation networks. For
instance, dynamic user equilibrium (DUE) assumes that travelers have the perfect knowledge of
travel costs along the network, and choose the routes that minimize their travel costs. DUE state
can be reached through the repeated implementation of shortest path algorithm over the itera-
tions particularly in simulation-based DTA models (1). On the other hand, in dynamic stochastic
user equilibrium (DSUE), travelers are assumed to have imperfect knowledge of travel costs, and
choose the routes that minimize their perceived travel costs. While shortest path algorithm would
be the straightforward way to establish DUE conditions, there is a vast literature of discrete choice
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models that could be exploited to reach DSUE conditions. The most appreciated models are Multi-
nomial Logit, C-Logit (2), Path Size Logit (3), Link-Nested Logit (4), Multinomial Probit (5) and
Error-Component model (6). Calibration of the above models is a challenging task because of
computational complexity, lack of detailed data and occasionally overfitting of the parameters.
Nevertheless, nowadays massive real-time data from multiple sources allow us to revisit and refor-
mulate previous models to describe more accurately realistic congested traffic conditions.

The objective of this work is dual. On the one side, we utilize a unique dataset from a large
number of probe vehicles that provide GPS location every few seconds in a megacity in China.
We investigate if consistent empirical observations for dynamic route choice patterns can be made.
Secondly we investigate how well the network level aggregated patterns can be estimated through
shortest path or DUE assumptions. Obviously, not all travelers choose the shortest path to go from
the origin to the destination point due to either lack of information or uncertainty of perception.
However, the question is; what is the cost of using shortest path assumption when we aggregate
the results from many origin-destination pairs? Transportation networks, by design, consist of
urban motorways, expressways, large arterials, local streets, etc. Normally, long trips are expected
to be bound to higher category roads, while short trips may use the local, finer-meshed network
that can be continuously approximated. In this work, we exploit a very detailed GPS dataset of
20,000 taxis from Shenzhen, China, and we aim at exploring traffic load in different components
of the transportation network. Aggregated route choice patterns could also be employed in order
to improve predictive power of network traffic models.

The literature on parsimonious network traffic models is quite recent due to lack of de-
tailed data (simulation efforts or empirical data at the static level have been assessed in the past).
It was observed from empirical data in downtown Yokohama (7) that by spatially aggregating
the highly scattered plots of flow vs. density from individual detectors, the scatter almost dis-
appeared and a well-defined Macroscopic Fundamental Diagram (MFD) exists between space-
mean flow and density. Real-time large-scale traffic management strategies, e.g. perimeter control
(8, 9, 10, 11, 12, 13); gating (14, 15) that benefit from parsimonious models with aggregated net-
work dynamics, provide promising results towards a new generation of smart hierarchical strate-
gies. However, control strategies that require prediction of future traffic conditions face certain lim-
itations regarding the route choice behavior in the multi-region urban network; travelers’ reaction
and adaptation to new management strategies is not considered in the control design. Yildirimoglu
and Geroliminis (16) tackle this problem and establish equilibrium conditions in a multi-region
urban network with MFD dynamics. They assume travelers have the knowledge of average traffic
conditions in the subnetworks (e.g. city center, periphery roads, etc.), and choose the routes that
minimize their approximate travel cost. In that respect, they establish DSUE conditions in the
traffic network. Yildirimoglu et al. (17) extends this work to a route guidance strategy where trav-
elers are forced to cooperate with each other in order to reach system optimum conditions. This
paper aims for providing physical evidence from real data and exploiting aggregated route choice
patterns in a large scale mixed urban/freeway network.

The remainder of the paper is organized as follows; in the next section, we introduce the
GPS dataset from 20,000 taxis in Shenzhen. In the following section, the methodological frame-
work for estimating aggregated dynamic route choice patterns is elaborated, and the results are
presented. Finally, last section concludes the paper with future work directions.
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DATA ANALYSIS
The data set consists of GPS tracks of around 20,000 taxis in a fast growing Chinese mega-city;
Shenzhen. The rapid investment created one of the fastest-growing cities in the world with a
population close to 11 million and, as expected, large congestion problems both in the urban and
freeway system of the city. The network structure includes 28647 nodes and 35099 links, out of
which 3354 are freeway links. The data set consists of trips (on the same day) from taxis equipped
with a GPS sensor that stores its location every 10-40 seconds. For every GPS point, it is also
known whether the taxi carries a passenger or not, which allows us to distinguish between trips with
and without passengers. Assuming that taxi passengers follow routes similar to regular cars in the
network, we only focus on taxi trips with passengers. Even if taxi drivers might seek non-standard
paths, we expect that speed estimates based on taxis with passengers are a good representation of
all vehicles and that aggregated patterns are not influenced much by local low-level route choices.

In order to identify traffic conditions in the network, we first map-match GPS observation
with the closest link in the network, and estimate the link speeds. To make a similar analogy with
(16), we also aggregate the GPS observations that are matched with urban links inside the 1x1 km
regions and compute the average speed for the urban components inside them. Following equations
present the estimated space-mean link and region speed, respectively.

υl(t) =
∑
j∈J

sj(l, t)/
∑
j∈J

hj(l, t) (1)

υr(t) =
∑
j∈J

sj(r, t)/
∑
j∈J

hj(r, t) (2)

where J is the set of all journeys, sj(l, t)/sj(r, t) and hj(l, t)/hj(r, t) are respectively the distance
traveled and the time spent by journey j in link l / in urban region r at time period t. Note that in
case there is no GPS observation on a link, the corresponding value is replaced with the average
speed of neighboring links.

Figure 1(a) depicts the average speed in all the links throughout a 24-hr period (i.e. link-
level matching, Eq. 1 applied for all links), while Figure 1(b) presents the average speed in the
freeway links and 1x1 km cells that represent urban components of the network (i.e. regional
matching, Eq. 1 and 2 applied for freeway links and urban cells, respectively). Note that, in the
regional matching case, all urban links inside the same cell are assigned the same average speed.
Clearly, the speed on freeway links is higher than the speed on surrounding urban links in both
estimation methods, which points to the hierarchy of roads in mixed urban/freeway systems. Note
that the average speed calculation could be done for smaller time periods, e.g. 1-hr. Figure 1(a)
and 1(b) represents only the time-independent average traffic conditions in a day.

METHODOLOGICAL FRAMEWORK
In this section, we create aggregated route choice patterns through individual trip trajectories, and
attempt to reconstruct them with shortest path results. In other words, we compare the patterns
identified through the observed paths and the shortest paths that result from a few different travel
cost considerations. The aggregated patterns we are interested in include average distance crossed
in certain subnetworks, regional split ratios that define the proportion of accumulation aiming for
a particular neighboring subnetwork and distance traveled in urban/freeway systems. The former
two variables are strongly related with dynamic equations of MFD modeling, which will be fur-
ther discussed in the next subsection. In addition, they are very important for developing mixed
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FIGURE 1: (a) Speed in all links, (b) speed in urban regions and freeway links.

urban/freeway control strategies, such as integrated corridor management (18) or mixed traffic
signal/ramp metering schemes (9).

Travel cost functions that we consider in the shortest path calculation are;

• distance (regardless of hierarchy of roads)

• estimated travel time (a single constant speed for each speed limit zone, abbreviated as
est. tt.)

• time-independent regional travel times (average values over 24-hr, abbreviated as reg. tt.)

• time-independent link travel times (average values over 24-hr, abbreviated as link tt.)

• time-dependent regional travel times (average values every 1-hr, abbreviated as dyn. reg.
tt.)

• time-dependent link travel times (average values every 1-hr, abbreviated as dyn. link tt.)

The comparison of time-independent (static) and time-dependent (dynamic) cost scenarios may
reveal the importance of dynamic traffic conditions in the network, and it may explain if and how
people adapt to varying traffic conditions. In time-dependent cost scenarios, we employ the travel
costs that correspond to departure time of trips in the shortest path calculation. On the other hand,
the difference between regional and link-level matching may expose the significance of traveler
perception regarding the travel costs along the network. Note that the number of observations per
link especially in the urban system can be quite low, which may lead to under- or over-estimated
link travel times. Regional matching puts all the measurements in the urban system together and
assigns the smoothed average value to the links inside the same area.

MFD Modeling
Let us assume that the urban network is partitioned into several regions with well-defined MFDs.
Let QI(t) [veh/s] denotes the exogenous traffic flow demand generated in region I , NI(t) [veh] be
the vehicle accumulation in region I . The traffic flow conservation equations are as follows:

dNI(t)

dt
= QI(t)−

∑
H∈VI

MH
I (t) +

∑
H∈VI

M I
H(t) (3)
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where VI is the set of regions that are directly reachable from region I , i.e. adjacent regions to
region I including region I itself. M I

I (t) [veh/s] would be the internal trip completion rate for
accumulation in I with destination I (without going through another region), while the transfer
flow for accumulation in I to neighboring region H is denoted by MH

I (t) [veh/s].
Internal trip completion rates (I = H) and transfer flows (I 6= H) are estimated corre-

sponding to the ratio between accumulations as:

MH
I (t) = θIH(t) ·

FI

(
NI(t), σ(NI(t))

)
LIH(t)

(4)

where FI(·) [veh.m/s] is the production MFD of region I (i.e. the total distance traveled per unit
time in the region) that is a function of the region accumulation, NI(t), and the link density hetero-
geneity across all region I links, σ(NI(t)). Moreover, LIH(t) [m] is the average trip length corre-
sponding to transfer trips from region I to its neighbor regionH ∈ VI , and θIH(t) is the percentage
of accumulation in region I going through neighboring region H; hence

∑
H∈VI

θIH(t) = 1. Mod-
eling the region link density heterogeneity, i.e. σ(NI(t)), is investigated in (13). Previous work
assumes LIH(t) and θIH(t) are constant permanently or over the prediction horizon, and identify
the control actions by respecting this assumption. In this paper, we aim for providing the average
trip length LIH(t) and split ratio θIH(t) using the available OD demand and shortest path assign-
ment. This new piece of information could lead to a better design of traffic control/management
strategies.

Aggregating route choice patterns
Let us assume that a rectangular urban region I (presented in Figure 2(a)) is connected to other
homogeneous regions through its edges. In addition, there are freeway connections at the boundary
of the region, which might be considered as a separate subnetwork. Therefore, VI is a set of
neighboring regions, freeway subnetwork and region I itself. The following formulas estimate the
average trip length LIH(t) and split ratio θIH(t), respectively.

LIH(t) =
∑
j∈J

sj(I,H, t) /
∑
j∈J

1R+(sj(I,H, t)) H ∈ VI (5)

θIH(t) =
∑
j∈J

1R+(sj(I,H, t)) /
∑
j∈J

1R+(sj(I, t)) H ∈ VI (6)

where sj(I,H, t) is the distance crossed by journey j in region I till the boundary of region H
(see Figure 2(a)), and 1R+(.) is an indicator function with value 1 in case (.) ∈ R+, 0 otherwise.
In other words, Eq. 5 represents the average distance for all vehicles that cross a non-negative
distance in region I to go to neighboring region H , while Eq. 6 indicates the portion of vehicles
going to region H among all vehicles that cross a non-negative distance in region I . Note that
sj(.) can be coming from the observed GPS tracks or shortest path trajectories depending on the
scenario analyzed.

In addition to route choice parameters needed in MFD modeling, one can estimate vehicle
distance traveled (VDT) in urban and freeway systems. This information allows us to define the
traffic load in different components of the mixed urban/freeway system. Let us denote LF and LU

the set of freeway and urban links in the network, respectively. The following formula compute
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FIGURE 2: (a) a trajectory through the area of interest, (b) Study area.

VDT in freeway and urban system.

dtf (t) =
∑
j∈J

∑
l∈Lf

sj(l, t) (7)

dtu(t) =
∑
j∈J

∑
l∈Lu

sj(l, t) (8)

RESULTS
In order to produce the route choice parameters required in MFD modeling, we choose an area
I of 3x3 km (presented with red lines in Figure 2(b)). The area in the west of the square is the
major city center with strong trip attractions and high level of congestion. Note that there are two
freeway connections from the chosen urban area; one in the north, one in the south. For the sake
of simplicity, we consider the vehicles that take the freeway via these interchanges as one single
traveler group. This assumption can easily be relaxed later in order to calculate inflows to specific
freeway junctions. Although a detailed partitioning algorithm is not yet conducted, we assume
the chosen area is homogenous enough to assign MFD properties. We also assume there are 4
other homogeneous urban regions connected to the chosen area through its edges in 4 directions
(i.e.north, south, west, east). Therefore, VI is a set of six components; 4 neighboring regions,
freeway subnetwork and region I itself. In other words, we define 6 traveler groups with distinct
choices; heading for one of 4 neighboring regions, taking the freeway in the north or south, and
finishing the trip inside the region. We apply Eq. 5-6 for all GPS trajectories and shortest paths
that result from a set of travel cost definitions described in previous section. Since all OD pairs
in the whole data set have been considered in the analysis, the number of trips that actually cross
region I can be quite different for the observed trajectories and shortest path results. This might
significantly affect the accuracy of estimated parameters.

Figure 3 introduces observed and estimated (or reconstructed) split ratios and average trip
lengths. Note that solid curves in Figure 3 represent observed trajectories, while dashed curves are
estimated with shortest path trajectories. Travel costs that have been tested here are time-dependent
regional and link travel times. Not all but certain components of split ratios and average trip lengths
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reveal a strong dynamic behavior, see for example θI,inside (the fraction of trips that finish within
the region) and LI,west (the average trip length for trips exiting through the west boundary), and
these patterns have been roughly followed by estimated parameters. Note that, between 11h and
13h, in dynamic link travel time case, LI,north estimations are not very consistent with neighboring
time periods (see Figure 3(d)). This is again probably due to low sampling and inaccurate travel
time estimation for certain links. The network is much less dense in the northern part of the square
and few destinations hit towards this direction (less than 3% as shown in Figure 3(a) and 3(c)).
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FIGURE 3: (a) Split ratios with dynamic regional travel time, (b) average trip lengths with
dynamic regional travel time, (c) split ratios with dynamic link travel time, (d) average trip lengths
with dynamic link travel time.

In order to calculate dtf and dtu values, we choose an area of 5x5 km with both freeway
and urban links (see the orange lines in Figure 2(b)). Note that previously chosen area of 3x3 km
does not include any freeway links, and therefore it is not suitable for the traffic load analysis. We
apply Eq. 7 and 8, and calculate the observed and estimated VDT values using actual and shortest
path trajectories, respectively. Figure 4 depicts the resulting curves for static/dynamic regional/link
travel times. Note that, in all scenarios, freeway load has been overestimated (for about 10%), and
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consequently urban system use has been underestimated. In fact, one of the major freeways present
in this analysis is a toll freeway. Therefore, travel cost on this specific freeway section should be
a certain combination of toll fee and travel time. However, this analysis will be reported in an
extended version of this article; this issue requires further investigation. Another interesting obser-
vation is the similarity between time-dependent and -independent scenarios. Except the afternoon
peak period, both scenarios produce quasi-identical results. This implies that relative speeds in ur-
ban and freeway systems remain approximately constant throughout the day except the afternoon
peak.
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FIGURE 4: (a) VDT with regional travel times, (b) VDT with link travel times

Table 1 presents the mean absolute errors (MAE) for the estimation of variables presented
in Figure 3-4. For each subcomponent (e.g. traveler groups for θIH and LIH , urban and free-
way subsystems for VDT) and each observation (e.g. time periods for θIH , LIH and VDT), we
simply calculate the absolute difference between the observed and estimated (or reconstructed)
variables, and compute the average of all to report MAE. In overall, estimations that are based
on distance or estimated travel time produce quite inaccurate results compared with other travel
cost definitions. Although time-dependent regional travel time produces slightly better results than
its time-independent version in case of θIH and LIH estimation, dynamic link travel time fails to
improve the results of its static counterpart. The probable reason behind it might be the lack of
sufficient number of observations for certain links. Note that the best estimation has been achieved
with time-independent link travel time computation for both θIH and LIH . In case of dtf , dtu
estimation, dynamic cost definitions produce better results than their static counterparts, and the
best results have been obtained with time-dependent link-level travel times.

DISCUSSION
This paper is a first attempt, to the authors’ knowledge, to identify and to reproduce aggregated
route choice patterns in a mixed urban/freeway environment. An extensive GPS data set of 20,000
taxis from Shenzhen, China make it possible to monitor, understand and analyze aggregated route
choice patterns. The variables that we focus on in this paper include regional split ratios, average
trip lengths, VDT in different systems and urban/freeway shares. Note that the former two variables
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TABLE 1: Mean Absolute Error (MAE) of estimated parameters
Travel Cost

distance est. tt reg. tt link tt dyn. reg. tt dyn. link tt
θIH 0.038 0.042 0.023 0.015 0.019 0.015
LIH [m] 395 372 199 191 195 201
VDT [veh.m.1e5] 4.35 2.96 2.30 2.20 1.86 1.77

can be embedded in MFD dynamics, and may lead to a better traffic prediction model. However,
testing of such hypothesis requires data from both loop detectors and probe vehicles, which is not
available in this case. The main objective of this work is to reproduce the aggregated patterns
through shortest path assumption. We replace each observed trajectory with a shortest path that
connects the same origin and destination points, and reproduce aggregated variables that result
from different travel cost considerations. Although there are certain problems (e.g. overestimation
of freeway use) regarding the shortest path assumption, the results are quite promising.

Future work should focus on discrete choice models instead of shortest path algorithms.
A better route choice estimation at individual trip level will definitely lead to better estimation of
aggregated route choice patterns. Discrete choice models may also allow us to distinguish between
toll freeways and others in an explicit way. This might overcome the issue of overestimation on
freeway load. Another future research direction is to test the accuracy of aggregated route choice
variables regarding MFD dynamics. Previous work in literature estimates average trip lengths
through loop detector data. In other words, outflow value identified through loop detectors has
been employed to estimate average trip lengths (see Eq. 4). However, in this paper, we propose
trajectory-based calculations. The integration between these two should be analyzed for a real
network where both probe vehicle and loop detector data are available (this is not the case in
Shenzhen).
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