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Abstract 

Stop-&-go (S&G) waves usually occur in congested traffic and are characterised by cyclic 
patterns of deceleration followed by acceleration. Due to its frequent and annoying nature, 
drivers tend to avoid travelling on routes with more occurrences of stop-&-go waves. Existing 
transportation models need to be modified to incorporate the impact of S&G waves on route 
choice. This raises the question about how to quantify the number of S&Gs waves 
experienced by vehicles. The question has been extensively studied in two independent 
fields, namely traffic engineering and control theory. This paper aims to conduct a review of 
S&G quantification techniques in both fields of study and propose a unifying approach. The 
study proposes to determine the surrogate measures around the locations of vehicles 
undergoing S&G using signal processing techniques. The integrated approach would help in 
understanding the complex and latent nature of S&G waves by expressing its formation in 
terms of kinematic measures. 

Keywords: Stop-&-go waves; route choice; wavelet transformation; adaptive cruise control; 
surrogate measures 

1. Introduction 

A stop-&-go (S&G) wave, also called traffic oscillation or phantom jam, is a traffic 
phenomenon that often exists in urban road networks during congestion. Under S&G traffic, 
vehicles are forced to decelerate and travel at a lower speed, or even come to a halt before 
resuming their original speeds (Shott, 2011). Li et al. (2010) found a cyclic occurrence of 
S&G waves which alternates between slow (stop) and fast (go) movements. These waves 
can be triggered due to multiple reasons which include: asymmetric driving behaviour (Edie 
and Baverez, 1965; Laval and Leclercq, 2010), lane change manoeuvers (Ahn and Cassidy, 
2007; Laval, 2007), any kind of moving bottleneck in a traffic stream (Koshi et al., 1992; 
Laval, 2007), a drop in the roadway capacity (Bertini and Leal, 2005; Cassidy and Bertini, 
1999a,b), and due to different roadway geometric features like curves and uphill segments 
(Jin and Zhang, 2005). These oscillations not only cause an increase in fuel emissions 
(Helbing, 1997), but also lead to safety risks. Moreover, numerous studies in the health 
domain have found that traffic oscillations have a detrimental effect on driver physiology, 
particularly the cardiovascular measurements like blood pressure and heart rate (Apparies et 
al. 1998; Yang et al. 2013). As drivers need to be more focussed while driving in S&G traffic, 
it results in heightened discomfort and frustration levels among drivers (Levinson et al. 
2004). These factors tend to influence drivers to avoid travelling on routes where S&G 
conditions are frequent. It can thus be hypothesised that an increase in the number of S&Gs 
on a route increases its disutility for a driver. A recent study by Saxena et al. (2015) showed 
the validity of this research hypothesis. However, a limitation of the study was that it asked 
participants to recollect the number of S&Gs experienced by them in their most recent travel. 
Unlike travel time and cost, the number of S&G is not perceived well by participants due to 
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its subjective (latent) nature. This might introduce a measurement bias in the collected data, 
which can lead to an incorrect estimation of the WTP measures. Thus, it becomes important 
to come up with techniques which can quantify the evolution of S&G waves in a way that is 
systematic and easy to comprehend across practitioners and policy makers.  

A rich literature exists in the field of traffic engineering on techniques that are able to study 
the evolution characteristics of stop-&-go (S&G) waves. Different time series and signal 
processing methods have been used to determine the location of S&G waves in space and 
time from the observed traffic or vehicle specific data (Li et al., 2010; Zheng et al., 2011a,b; 
Zheng and Washington, 2012) . These techniques provide a reasonable measure of when a 
stop-&-go wave is initiated, but do not provide any information about the kinematic 
characteristics (speed, acceleration (deceleration), etc.) around the vehicle undergoing S&G. 
Understanding these features around a vehicle in S&G traffic can further enhance our 
knowledge about the initiation of these waves from traffic kinematics perspective.  

Alternately, the phenomenon of S&G waves is also studied and applied extensively in the 
domain of control theory, which relates to the design of adaptive cruise control (ACC) 
systems in modern luxury cars. Unlike the cruise control (CC) function, ACC is an automated 
feature which adapts to the relative speed and distance between the host and leader vehicle 
by controlling both the brake and throttle system of the vehicle. As a latest extension, the 
stop-&-go ACC (S&G-ACC) mechanism facilitates smooth vehicle movement under S&G 
traffic. This not only eases the mental burden on drivers from the reduction of acceleration 
and deceleration cycles, but also leads to an increased throughput and reduced fuel 
emissions (Benz et al., 2003). The control algorithms are designed and rigorously tested 
using simulation experiments to imitate driver behaviour. Different surrogate safety 
measures, like peak acceleration/deceleration value, time headway and jerk value (rate of 
change in acceleration/deceleration), are used as criteria for the performance evaluation of 
the designed system. These measures can be useful to quantify the occurrence of S&G 
waves in an empirical context.  

This paper aims to present a review of literature in traffic engineering and control theory to 
identify the techniques and parameters used in the quantification of S&G waves, discussing 
about their accuracy, merits and disadvantages. A thorough review will enable the selection 
of a suitable technique and a set of measures to identify the occurrence of S&G waves from 
the observed data. This study proposes a unifying approach to determine the surrogate 
measures around the locations of S&G which can be found using signal processing 
techniques from the traffic engineering literature. This study adds to the existing knowledge 
on the formation of S&G waves by proposing an alternative way to define the occurrence of 
S&G waves in terms of vehicle kinematics. Vehicle kinematic variables are easy to measure 
and perceive, and thus can help in reducing the subjectivity associated with the way 
formation of S&G waves is defined. To the best of our knowledge, no other paper the past 
has looked at integrating the knowledge in traffic engineering and control theory to 
understand and model the formation of stop-&-go waves. 

The remainder of this paper is organised as follows. Section 2 presents a detailed review of 
literature on the techniques used to identify the occurrences of S&G waves from observed 
data. The section initially reviews different time series and other widely used stationary 
signal processing techniques currently in practice. The second half of the section discusses 
a more recent technique, called the wavelet transformation, its applications and superiority 
over previously existing methods. Section-3 presents a review from the literature of control 
theory and lists out the surrogate measures that are generally used while designing adaptive 
cruise control algorithms. Section-4 presents an example where surrogate measures are 
evaluated around traffic oscillations using a detailed vehicle trajectory dataset. Finally, 
Section-5 discusses the findings from this study and its implications, followed by future 
research works in this direction.  
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2. Identifying stop-&-go waves through observed data 

Stop-&-go (S&G) waves were first observed inside the Lincoln tunnel in the US by Edie 
(1961). The study observed significant speed fluctuations on a one lane traffic stream 
caused due to small perturbations. Since then, numerous studies have been carried out to 
understand the intricacies associated with the nature and life cycle of S&G waves (Laval and 
Leclercq, 2010a). These studies can be broadly classified into empirical and theoretical. The 
empirical studies used different signal processing techniques to determine the amplitude and 
number of traffic oscillations from the time series of observed traffic data. For example, 
empirical studies found that S&G waves generally repeat in intervals of 2-15 minutes, last for 
up to 30 seconds and propagate backwards at a wave speed between 10 to 20 km/h (Ahn et 
al., 2004; Laval et al., 2009; Laval and Leclercq, 2010; Li et al., 2010; Mauch and Cassidy, 
2004). On the other hand, theoretical studies focussed more on modelling the dynamics of 
S&G waves by encompassing asymmetric driving behaviour (Yeo and Skabardonis, 2009) 
and driver heterogeneity (Laval et al., 2009; Laval, 2011) into the simplified car following 
model proposed by Newell (2002). For the scope of this paper, we restrict our discussion to 
empirical studies that were conducted to quantify the occurrences of S&G waves.  

Empirical techniques can further be classified into stationary and non-stationary signal 
processing. An input signal is considered as stationary, if its frequency or periodicity remains 
constant with time. In other words, an analyst is only interested in knowing the underlying 
frequency component, while working on a stationary input signal. A pure sinusoidal function 
is a perfect example of a stationary wave, which has got a uniform frequency of 1/2π 
cycles/radian. Non-stationary wave analysis techniques, on the other hand, are capable of 
reporting both frequency and time information of any fluctuation embedded in the signal. 

2.1 Stationary wave processing techniques 

The earlier empirical studies analysed traffic oscillation properties using the time series of 
raw traffic data. For example, Kuhne, (1987) fit sinusoidal waves on the speed profile from a 
loop detector to determine the characteristics (amplitude and frequency) of S&G waves. 
Paolo (1988) also conducted a similar study using the traffic count information from different 
loop detectors. The two studies aggregated information over a given time period to 
smoothen the raw data. However, aggregation dampens the effect of traffic oscillations by 
smoothing it out along with other unwanted components (Zheng and Washington, 2012). 
Thus, these techniques are not reliable in estimating traffic oscillations, as they might 
provide contradictory results from what is actually present in the original data. Neubert et al., 
(1999) conducted a cross-correlation analysis on traffic flow parameters (average speed, 
flow and density) which revealed that S&G waves were characterised by a strong correlation 
between flow and density (ρ~1). The time period of oscillations was determined by 
measuring the separation between neighbouring peaks on a correlogram, which was found 
to be around 10 minutes. However, few limitations of this method, as highlighted by Li et al., 
(2010) were: 1. identification of distinct peaks becomes challenging in case of multiple 
comparable frequency components, and 2. amplitude of traffic oscillations cannot be 
determined from the correlogram plot, which is standardised between [-1,1]. Muñoz and 
Daganzo, (2003) used another signal data processing technique, called the oblique 
coordinate system, to plot cumulative traffic counts against time and reveal the underlying 
traffic oscillations. The data analysed comprised of aggregated loop detector counts, 
occupancy and average speeds over a 20 second interval. The oblique coordinate system 
amplifies the signal pattern by a technique that is similar to the second order difference of 
cumulative vehicle counts with a moving time window (Mauch and Cassidy, 2004). The 
advantages of considering a moving time window are: 1. it helps to reduce the local noise 
from traffic data, and 2. it provides frequency along with an approximate location of signal 
fluctuation in time. The smoothed data signal is given by Equation 1 
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𝑥𝑚̂ (𝑚0) =  𝑓𝑚 −  
1
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 (𝑓𝑚+𝑚0

+  𝑓𝑚−𝑚0
) =  

1

2
 [ ∑ 𝑥𝑚−𝑖 − ∑ 𝑥𝑚+𝑖

𝑚0

𝑖=1

𝑚0−1

𝑖=0

] (1) 

Where 𝑥𝑚̂ represents the cumulative traffic counts at an instant 𝑚, and 𝑚0 is the half window 
length on either side of 𝑚, which was taken as 7.5 minutes. Wiggles in the oblique plot 
represent the oscillation pattern in the data. The technique became popular, and was picked 
by other researchers due to its simple framework. However, later research works identified 
few limitations inherent in the model formulation. The oblique coordinate system method 
requires a careful selection of the time window, a failure to do so might lead to biased traffic 
oscillation information from the smoothed data. Figure 1 has been taken from Li et al., 
(2010), which gives a good illustration of the impact of time window length on the resulting 
oscillation patterns. Figure 1(a) shows a pure sinusoidal signal used as an input, and Figure 
1 (b) and (c) show its resulting patterns using window lengths as 10 and 30 units 
respectively. While Figure 1(b) shows amplification of signal (meaning frequent traffic 
oscillation), Figure1(c) shows a considerable dampening of the same input signal (inferring 
negligible traffic oscillation). Another limitation of the method can be seen through Figures 
1(d-f) wherein different lengths of time window might cause a noisy signal (Figure 1(d)) to 
depict periodic oscillations of different magnitudes (Figures 1(e and f)). Thus, an 
inappropriate window length might lead to under or over representation of underlying traffic 
oscillation patterns. 
 

Figure 1: Effect of window length on the signal resolution [Source: Li et al. (2010)] 

 

Li et al., (2010) conducted a frequency spectrum analysis, a popular technique in signal 
processing, to reveal traffic oscillation patterns from the aggregated traffic data. Frequency 
spectrum analysis comprises three steps: 1. De-trending the signal to remove traffic demand 
effects, 2. identifying stationary time intervals for analysis, and 3. detecting oscillations of 
interest in these time intervals. De-trending is generally carried out by fitting a low order 
polynomial function. A short time Fourier transformation (STFT) is then applied to identify the 
oscillation pattern within the de-trended, non-stationary time series data. STFT overcomes 
the limitation of Fourier transform by using multiple smaller sized windows to capture 
irregularities in the non-stationary data. STFT plots are helpful in dividing the signal into 
smaller, same sized time intervals within which an oscillation pattern remains invariant. The 
oscillation pattern within this time interval is analysed further to determine its amplitude and 
frequency, which represents the magnitude and period of oscillations. The authors also used 
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a term called cycle abundance index (CAI) to quantify the number of oscillations caused 
during a given time interval.  

The study found the average oscillation periodicity between 8 to 12 minutes with an average 
CAI around 6 across different studied locations. However, a subjective judgement is required 
while selecting the oscillation-invariant time period, making it difficult to reproduce the same 
result across analysts (Zheng and Washington, 2012). The study also proposed a model to 
relate oscillations observed at loop detectors with the trajectory oscillations experienced by 
an individual driver. Equation 2 presents the proposed model which was developed using 
simplified vehicle trajectory and principles of traffic theory 

𝑇𝑑

𝑇𝑡
= 1 +  

𝑣̅

𝑣𝑤
> 1 (2) 

In this equation, 𝑇𝑑 is the oscillation period observed from the detector data (using the 
frequency spectrum analysis), 𝑇𝑡 is the period of oscillation faced by a driver, 𝑣̅ the average 

speed of a vehicle and 𝑣𝑤 the traffic wave speed (~ 15 km/h). The model is a useful find as it 
provides a reasonable and cost-effective means of determining traffic oscillations at an 
individual vehicle resolution from the easily available loop detector data. However, the model 
made few simplifying assumptions, which limit the application of the model in real world. 
First, the model assumed a steady traffic state which does not hold true as the traffic flow 
rate approaches or exceeds roadway capacity (Rouphail et al., 2005; Tanaka and Nakatsuji, 
2011). Thus, a steady state assumption does not hold true in case of traffic oscillations, 
which are prevalent in congested traffic. Secondly, the model considered zigzag vehicle 
trajectories which does not reflect driver asymmetries (Laval and Leclercq, 2010; Laval, 
2011; Yeo and Skabardonis, 2009).  

2.2 Non-stationary wave processing techniques 

For identifying transient locations in a non-stationary signal, wavelet transform (WT) has 
evolved as a widely used technique over time. WT is useful in discerning the location and 
frequency of a pulse in a signal, which is not visible to a naked eye, thus making it useful in 
analysing local events. The technique is quite popular in the field of image processing, 
geophysics, finance, engineering and medicine (Addison, 2002; Kumar and Foufoula-
Georgiou, 1997). In the last one decade, WT has found numerous applications in traffic 
engineering relating to automatic detection of freeway incidents (Adeli and Samant, 2000; 
Ghosh-Dastidar and Adeli, 2003), traffic features around freeway work zones (Adeli and 
Ghosh-Dastidar, 2004; Ghosh-Dastidar and Adeli, 2006), traffic flow forecasting (Boto-
Giralda et al., 2010; Jiang and Adeli, 2005), and traffic pattern recognition (Jiang and Adeli, 
2004; Vlahogianni et al., 2008). Recent studies by Zheng et al. (2011a,b) and Zheng and 
Washington (2012) applied WT to distil origins of traffic oscillation characteristics from a 
transient non-stationary traffic data. Wavelet transform provides both time and frequency 
components of a signal fluctuation, which is more detailed than its stationary signal 
processing counterparts. For example, Zheng and Washington (2012) conducted a 
numerical simulation experiment to compare stationary wave processing techniques in time 
and frequency domain against WT. The experiment suggested the superiority of WT over 
popular techniques with regards to accuracy, robustness and consistency. Figure 2 explains 
the key differences in the degree of resolution among the Fourier, STFT and WT techniques, 
based on Heisenberg’s uncertainty principle. Heisenberg’s uncertainty principle states that 
the area of each rectangular box, as shown in Figure 2, must be equal (which is 𝑓 ∗ 𝑡 in this 
case). The thin, long rectangles in Figure 2(a) signify that Fourier transform gives a high 
frequency resolution, but compromises on the temporal detail. A short time Fourier transform 
(STFT) in Figure 2(b) improves the former technique by capturing some temporal detail 
through a smaller time window at an expense of losing some frequency resolution. However, 
the window length is decided subjectively by an analyst, and is fixed for the entire length of a 



ATRF 2016 Proceedings 

6 

 

signal. Wavelet transform (WT) in Figure 2(c) outperforms the other two techniques by using 
time and frequency windows of variable lengths to analyse transient points in a non-
stationary signal. As a general rule, WT provides good frequency and temporal resolution by 
using long and short time windows for low and high frequency signals respectively. Studies 
show the superiority of WT over STFT and other techniques in consistently capturing 
accurate localised fluctuation details from a non-stationary signal (Addison, 2002; Zheng and 
Washington, 2012). As WT technique requires no subjective judgement in selecting the size 
and shape of a time window, the results can easily be replicated across analysts. 
 

Figure 2: Frequency-time plots in accordance with Heisenberg’s uncertainty principle 

for (a) Fourier, (b) STFT and (c) Wavelet transformations 

 

Wavelet transformation identifies the location and frequency of a signal fluctuation by scaling 
(dilation and compression) and translating a suitable wavelet function over the time domain 
of a signal. A wavelet is represented by a complex mathematical function that should satisfy 
the conditions stated in Equation 3 and 4 

𝐸 =  ∫ |𝜑(𝑡)|2 𝑑𝑡 <  ∞
∞

−∞

 (3) 

∫ 𝜑(𝑡) 𝑑𝑡 = 0
∞

−∞

 (4) 

Equation 3, which is also called the admissibility condition, states that a wavelet must have a 

finite energy (E) at each point within a signal domain (Daubechies, 1992). This energy value 
is represented as brightness in the time-frequency plot shown in figure 2(c). The level of 
brightness increases as one nears a localised fluctuation. Equation 4 suggests that a 
wavelet should have a zero mean value, which implies that the total area under a given 
wavelet should be zero. This property also aids in recognising localised fluctuations.  

Wavelet analysis can be broadly classified into continuous and discrete wavelet 
transformation. While discrete wavelet transform (DWT) provides an accurate location of 
fluctuation in space and time at lesser computational cost, continuous wavelet transform 
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(CWT) is considered ideal for detecting sharp changes in a signal (Kumar and Foufoula-
Georgiou, 1997). A wide range of wavelets can be used to identify the traffic oscillation 
information from the given data. Zheng and Washington (2012) provide exhaustive 
guidelines for selecting an appropriate wavelet from a candidate set. According to the 
guideline, it is vital to know the mathematical properties of a given wavelet, which further 
paves the way for its application in a given context. The two important properties of a 
wavelet are: 1. vanishing moments and 2. compact support. A wavelet function 𝜑(𝑡) is said 

to possess 𝑛 vanishing moments if Equation 5 is satisfied. 

∫ 𝑥𝑘 𝜑(𝑡) 𝑑𝑡 = 0
∞

−∞

             ∀ 𝑘 ∈ [1, (𝑛 − 1)] (5) 

A wavelet with more vanishing moments is capable of analysing a more complex signal. For 
example, a wavelet with 2 vanishing moments can identify only a linear discontinuity (degree 
1). Similarly, a wavelet with 3 vanishing moments can identify up to a quadratic fluctuation 
(degree 2). Compact support is defined as an interval within which a wavelet is defined (or is 
non-zero). The wavelet function is evaluated at each point in the support domain for CWT 
case and at discrete points in case of DWT. Some interesting points about vanishing 
moments and compact support are as follows:  

 High frequency wavelets (at a smaller scale) have a compact support 

 More vanishing moments denotes a complex wavelet, which ensures an accurate 
representation of an input signal. However, it leads to a sharp increase in the 
computation time 

 Wavelets with more vanishing moments are high on regularity (more smooth wavelet 
function), but require a wider support domain 

 Wavelets with a smaller support size are more efficient in detecting transient 
locations in a signal  

 A good wavelet should preferably have fewer vanishing moments that are adequate 
enough for analysing the signal fluctuation of interest. 

A Mexican hat wavelet is found to perform reasonably well in identifying stop-&-go waves 
from the vehicle trajectory data (Zheng et al., 2011a,b; Zheng and Washington, 2012). A 
Mexican hat wavelet represents the second derivative of the standard Gaussian function and 
its shape resembles a traffic oscillation pattern. Equation 6 gives a general equation for this 
wavelet where 𝜇 and 𝜎 represent the translation and scale parameter respectively. The 

value 
2

𝜋
1

4⁄  √3𝜎
 ensures that the wavelet function at different scales have the same energy. 

Properties of other wavelets like Haar, Gauss, Daubechies, Meyer, Morlet, etc. are 
thoroughly reviewed in Zheng and Washington (2012). 

𝜑(𝜇, 𝜎, 𝑡) =  
2

𝜋
1

4⁄  √3𝜎
 ((

𝑡 − 𝜇

𝜎
)

2

− 1)  exp  (− (
𝑡 − 𝜇

𝜎
)

2

) (6) 

𝑇(𝜇, 𝜎) = ∫ 𝜑(𝑡). 𝑣(𝑡) 𝑑𝑡
∞

−∞

 (7) 

𝐸𝑏 =  
1

max (𝜎)
 ∫ (𝑇(𝜇, 𝜎))

2
 𝑑𝜎

∞

0

 (8) 

A wavelet is translated over the time domain of an input signal 𝑣(𝑡) and the correlation 

coefficient 𝑇(𝜇, 𝜎) is determined at a given scale (refer to Equation 7). The wavelet is then 
dilated and is made to run over the entire signal again. Thus, we get a plot between the 
scale and translation parameter, where 𝑇(𝜇, 𝜎) is represented by the level of brightness at 
that scale and translation. This plot is known as a scalogram. A brighter area on the 
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scalogram signifies the spatio-temporal location of the point of singularity in an input signal. 
A scalogram plot requires a visual inspection to identify the transient points, which becomes 
a cumbersome task while analysing bigger datasets. Zheng et al. (2011a) proposed an 
automation procedure, by calculating average wavelet based energy (𝐸𝑏) from the 
scalogram plot. Equation 8 gives an expression for evaluating this metric. An average 
wavelet based energy (𝐸𝑏) at a given translation (𝜇) is defined as the average of squared 

correlation coefficients (𝑇(𝜇, 𝜎)) across all scales (𝜎). A peak in the energy profile represents 
an approximate location of a transient point in data. 

Zheng et al. (2011a) used speed time plots of individual vehicles (from NGSIM dataset) to 
locate traffic oscillations. The authors defined traffic oscillation as a cyclic pattern 
characterised by: 1. arrival of deceleration wave, 2. arrival of acceleration wave, and 3. 
arrival of another deceleration wave. A deceleration wave is identified by a sudden change in 
the speed of a vehicle which causes a sharp spike in the average wavelet based energy. 
Hence, one can precisely determine the occurrence of traffic oscillations experienced by 
individual vehicles using the wavelet transform.  

As a recap to the discussion, stationary signal processing techniques are generally easy to 
implement, but suffer from the following limitations: 1. smoothing the low and higher 
frequency components of an original signal can cause disruption or complete loss of mid-
frequency signals, which bear traffic oscillation information, and 2. some methods (e.g. STFT 
and oblique coordinate system) require subjective judgement, which does not ensure a 
unique solution across analysts and datasets. Moreover, working with aggregate traffic data 
cannot provide accurate traffic oscillation information experienced by an individual vehicle, 
which is required to test the proposed hypothesis. Given its advantages over other methods, 
we select the wavelet transform technique to quantify the number of traffic oscillations 
experienced by individual vehicles in this study. 

3. Role of kinematic variables in the design of Adaptive 
Cruise Controls 

A rich literature exists in the field of control theory on the adaptive cruise control (ACC) (also 
known as adaptive driver assistance systems, ADAS) feature that is available in vehicles 
today. Starting in the early 1990s within the luxury car segment, ACC systems are now 
available in vehicles across different car and truck segments. While a cruise control (CC) 
feature controls just the throttle of a vehicle, ACC is a semi-autonomous system that 
operates both the throttle and brake system of a car, by maintaining a pre-set value of time 
headway from the target (leading) vehicle in a traffic stream (Naus et al., 2008). As a more 
recent development, advanced systems come with a stop-&-go functionality that enables low 
speed adaptive cruise control in congested traffic. The feature is specifically designed for 
vehicles experiencing cycles of stop-&-go (S&G) waves in urban road networks. The 
advantages of stop-&-go ACC (S&G-ACC) are as follows: 1. it relieves the driver from an 
additional stress caused due to frequent cycles of deceleration followed by acceleration 
(Marsden et al., 2001; Venhovens et al., 2000), 2. it makes the vehicle accelerate and 
decelerate smoothly, which significantly helps in bringing down fuel emissions, and 3. it 
leads to an improved traffic efficiency, as vehicles cruise at a smaller and consistent time 
headway (than the ones maintained by drivers manually), thus increasing the throughput 
(Benz et al., 2003). A radar is mounted on the host vehicle, which tracks the relative speed 
and distance between itself and the target vehicle. A suitable time headway value is set 
upfront by the user, and the desirable relative distance is calculated using the selected time 
headway, host vehicle speed and separation between vehicles at standstill. The S&G feature 
is activated once the actual distance goes below the desirable value, which then decelerates 
the host vehicle by applying brakes.   
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Most ACC algorithms in practice are formulated as a linear (Naus et al., 2008; van Driel et 
al., 2007) or non-linear (Martinez and Canudas-de-Wit, 2007) programming problem. The 
main control objective is to maintain a desirable relative distance between the host and 
leader vehicle. The objective function is bounded by constraints or criteria for a better 
performance evaluation of an ACC system. These criteria can be divided into two main 
categories: 1. comfort and 2. driving behaviour characteristics. As S&G-ACC is a semi-
autonomous system, it should resemble the non-linearity in driving behaviour to increase its 
user acceptability (Stanton et al., 2011). Time headway and time to collision (TTC) are 
generally used as proxies to analyse driving behaviour when following a preceding vehicle 
(Han and Yi, 2006; Yamamura et al., 2001). While the time headway is defined as the time 
difference between the fronts of leader and host vehicle, TTC denotes the time before two 
vehicles collide, if none of the vehicles takes an evasive action. We select the time headway 
over TTC, as it accounts for potential hazards, which is unlike TTC that is primarily used for 
evaluating safety (Vogel, 2003). The comfort criterion, on the other hand, can be expressed 
in terms of the longitudinal motion or fluctuation a driver experiences while travelling in stop-
&-go traffic. Typically, peak acceleration (deceleration) and jerk (rate of change in 
acceleration or deceleration) values are taken as comfort metrics. Bounded values of the two 
metrics can ensure a certain degree of comfort in the longitudinal control of a vehicle 
(Martinez and Canudas-de-Wit, 2007; Naus et al., 2008; Yi and Moon, 2004). The algorithms 
undergo a rigorous testing and calibration exercise which involves simulation experiments. 
The experiments use wider bounds for comfort and driving behaviour constraints to 
accommodate heterogeneity in driving behaviour, which enhances the safety aspect of an 
ACC system. For example, Naus et al. (2008) used a peak deceleration value as high as 

−9 𝑚/𝑠2 to evaluate the ACC system being studied.  

This section identified surrogate measures like the time headway, peak acceleration 
(deceleration) and jerk values that are widely used in the design of adaptive cruise control 
algorithms. These measures, which are part of an optimisation problem, help in evaluating 
when an adaptive cruise control switch gets activated in S&G traffic. The threshold values for 
these criteria used in simulation experiments are generally kept very high to make the ACC 
system robust against driver variability. Such high cut-off points cannot be used for 
quantifying occurrences of stop-&-go waves in a real world scenario as they focus more on 
avoiding S&G rather than accounting for it. Hence, this study evaluates the selected 
surrogate measures around locations of S&G waves obtained through the wavelet 
transformation on the NGSIM vehicle trajectory dataset. This is the first study to the best of 
our knowledge that attempts to empirically express the occurrence of S&G waves in terms of 
kinematic variables, which are used to measure the performance of ACC systems.  

4. Analysis using the vehicle trajectory data: An example 

In this section, we apply wavelet transformation on the vehicle trajectory data to identify 
locations of traffic oscillation, followed by evaluating surrogate measures around these 
spots. We present the analysis for a single vehicle undergoing S&G for illustration.  

NGSIM data on the interstate US-101 is used for analysis in this study. The NGSIM dataset 
provides a rich information on the microscopic features of a vehicle like speed, location, 
acceleration, etc., collected at a fine temporal resolution of 10 Hertz (NGSIM, 2010). The 
data was collected during the morning peak traffic between 07:50am to 08:35am. The study 
site on US-101 is a 2100 feet long section in the southbound direction, Los Angeles, 
California, US. The section has 5 traffic lanes and also includes an on and off ramp. Lane-4, 
being in the vicinity of ramps, is selected because of a higher likelihood of witnessing S&G 
waves. Figure 3(a) shows the speed profile of the vehicle id 540 travelling on lane-4. The 
figure shows a major speed fluctuation between 810 and 845 seconds from the start of data 
collection.  
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Figure 3: Plots generated for vehicle id. 540 (a) speed-time, (b) Local maxima lines and 

(c) Average wavelet based energy 

 

A wavelet transformation is conducted by selecting the Mexican hat mother wavelet with a 
scale range between 1 and 64 (Zheng and Washington, 2012). Figure 3(b) shows the local 
maxima lines obtained upon analysing the speed trajectory signal given in Figure 3(a). Like 
the scalogram, local maxima lines are another way of representing singularities in the input 
signal. A local maxima line is a locus of points across scales where the correlation coefficient 
is a local maximum. Only the lines that are formed over the entire scale spectrum are 
considered. Partial lines and scattered points are ignored as these are generated due to 
noise in the signal. The oscillation location can be accurately determined by tracing the 
location of a maxima line at the finest scale, which is 1 in this figure (Zheng and Washington, 
2012). For example, the green lines show a mapping of oscillation points on the speed time 
plot. Figure 3(c) shows the plot of average wavelet based energy that was calculated using 
Equation 8. The figure shows the formation of three energy peaks, which jointly defines a 
traffic oscillation (Zheng et al., 2011a). Thus, it can be inferred that vehicle 540 experienced 
one cycle of stop-&-go (S&G). The unexpected peaks at the start and end of Figures 3(b) 
and 3(c) constitute the boundary effect (Addison, 2002), which are generally ignored. The 
analysis is done using the wavelet toolbox in Matlab. 

Once the traffic oscillation location in time is determined from the plots, we then evaluate the 
surrogate measures around this location from the given data for vehicle id 540. The time 
headway, acceleration (deceleration) and experienced jerk value at an instant when the S&G 
wave is initiated are found as 1.90 seconds, -4.06 m/s2 and -2.35 m/s3 respectively. The 
negative value of jerk signifies that the driver hit hard on the brakes causing a sudden 
reduction in its speed. Not surprisingly, the observed deceleration value is much lower than 
what is used in the design of ACC systems. Thus, finding out these surrogate measures 
from the real-world data can provide us with alternate metrics of quantifying S&G waves.  
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5. Discussion 

Driving in stop-&-go traffic (traffic oscillations) has got many negative effects such as, 
increased fuel emissions, safety risks and driver distress. The hypothesis that drivers 
experience increased disutility in route selection due to multiple occurrences of S&Gs  was 
recently validated by Saxena et al. (2015). However, due to the subjective nature of the 
definition of an S&G wave, it becomes necessary to come up with a mechanism to quantify 
the occurrences of S&G experienced by individual vehicles. Studies in the fields of traffic 
engineering and control theory have looked into understanding the intricacies of S&G waves. 
While the objective in the former was to identify the formation of S&G waves, the latter 
focussed on controlling the parameters that jointly define the occurrence of these waves in 
the ACC systems of cars. In this paper, we review both sets of literature and propose a 
unifying approach of defining the formation of S&G waves. The approach suggests 
determining the surrogate measures (eg. time headway, acceleration (deceleration) and jerk) 
around the locations where a vehicle enters S&G wave, which can be found by using 
wavelet transformation on the vehicle trajectory data. Applying this approach to the observed 
trajectory datasets (like NGSIM) will provide empirical ranges of the surrogate measures 
which can be jointly used as thresholds in defining the occurrence of an S&G wave. Thus, 
the integrated approach expands the existing knowledge base by expressing the formation 
of S&G waves in terms of vehicle kinematics. The estimated occurrence of S&Gs thus 
obtained is expected to be close to the true value, which is generally unknown due to its 
latent nature. Moreover, the obtained empirical ranges can be coded in transportation 
models which increment the occurrence of S&Gs experienced whenever the threshold 
conditions are met. Hence, the proposed approach is also computationally efficient as it 
does not require quantification of S&G waves using wavelet transformation, which requires a 
large volume of trajectory data for all vehicles.  

Future research endeavours will focus on expanding the current empirical analysis over 
other NGSIM datasets, including other sites, and compare if the results are statistically 
different across sites. Secondly, the authors will relate the estimated surrogate measures to 
the macroscopic variables like traffic density and flow. This inter-relationship would help 
quantify the formation of S&G waves and study their impacts on a larger area, which would 
provide wider insights to practitioners and decision makers.  
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