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Abstract 

Driverless plug-in electric vehicles (DPEVs) have attracted a growing attention in transport 
engineering due to their low environmental impact and increased level of automation. When 
compared to regular internal combustion engine vehicles, DPEVs have two characteristics: 
1) DPEVs require a higher frequency of recharge operations; 2) DPEVs are controlled by 
predetermined intelligent algorithms, rather than drivers' experience and judgement. Hence, 
a critical question is how DPEVs can navigate while minimising travel costs subject to 
recharge requests. Considering potential delays induced by recharge operations, traditional 
shortest path algorithms, such as Dijkstra’s algorithm, are not completely suitable. In this 
paper, two predominant recharge modes are considered. One is traditional charging 
stations, where vehicles must stop and wait to recharge. The other is modern charging 
lanes, which automatically recharge traversing vehicles. In this case, vehicles might make a 
detour to catch charging lanes.  

This study proposes a shortest path navigation algorithm for DPEVs in traffic systems with 
recharge facilities. First, a transport network is converted into a fictitious network wherein 
both charging stations and charging lanes are represented as charging stations with 
appropriate delay nodes. Second, we introduce a novel mathematical optimisation model for 
the shortest path navigation problem for DPEVs accounting for recharge delay. Third, we 
develop a refined label-correcting algorithm accounting for en-route recharge modes and 
recharge delay for this routing problem. Finally, systematic experiments are conducted to 
validate the performance of the proposed approach. The results demonstrate that the 
algorithm can generate route decisions with high computational efficiency. Moreover, we 
report that the navigation results can be significantly influenced by the number and the 
location of recharge facilities, recharge time and the distance limits of DPEVs. 

1. Introduction and literature review 

With the development of our society, more people have their own private vehicles, most of 
which are internal combustion engine vehicles (ICEVs), particularly gasoline vehicles (GVs). 
As is well-known, the increasing number of ICEVs has caused a huge amount of petroleum 
consumption, resulting in serious environmental disruption and energy crisis. By comparison, 
electric vehicles (EVs), typically plug-in electric vehicles (PEVs) rely primarily or entirely on 
electricity, which is more economical and environmentally friendly and of greater interest to 
both planners and users [1]. Besides PEVs, driverless vehicles (DVs) also have received 
more attentions from both the industry and academia since it helps free up drivers’ time, 
avoid the collisions caused by human errors such as misjudgement and distraction and 
increase access to vehicles for everyone [2][3]. Therefore, transport-based research efforts 
associated to PEVs and DVs are experiencing a surge in popularity because of their 
potential to reduce harmful emissions caused by traditional ICEVs, or a promotion in the 
intelligent transportation system. Actually, driverless plug-in electric vehicle (DPEV) will 
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definitely attract increasing attentions with a greater emphasis on sustainability and 
efficiency. As Lawrence D. Burns argued in his paper published in Nature, driverless and 
electric vehicles will revolutionize motoring, which shape the transport future [4]. Previous 
work has conducted some research in these two sorts of vehicles, but rarely in combination. 
This study aims to address this gap and make research in shortest path navigation for 
DPEVs. 

One of the major concerns of PEVs lies in the distance limit, which is also called range 
constraint. Under this restriction, a PEV driver, who always pursues a least travel cost, has 
to either make a trip with the total distance shorter than the limit, or choose a path or tour 
along which sufficient recharge facilities are available. This extra task of seeking for 
recharge sources would unavoidably change the route choice strategy. Furthermore, for a 
DPEV, it cannot count on a driver that could find a nearby recharge facility empirically. Thus, 
it is of vital importance to propose a shortest path algorithm to navigate a DPEV. 

The shortest path problem is based on the assumption that a traveller will always choose a 
path with the minimum cost, which is widely acknowledged in the transport research area. 
However, for a DPEV, the distance limit needs to be addressed, which poses a resource 
constraint shortest path problem (RCSPP) [5]. Previously, a limited number of studies were 
conducted in this area. Here, we summarised some of those research outcomes. Handler, 
G.Y. et al made a study on RCSPP in the context of multimode transportation network and 
developed a Lagrangian relaxation algorithm for problem-solving [6]. Jaffe, J.M addressed 
RCSPP with both weight and length constraints, and mathematically proved that RCSPP is a 
NP-complete problem [7]. Erdoğan, S. et al formulated a vehicle routing problem with driving 
range and limited refuelling infrastructures, and developed two construction heuristics to 
seek for the proposed green route [8]. Jiang, N. et al modelled several distance-restrained 
shortest path problems with range constraints of electric vehicles [9][10]. Chen, N. et al used 
Jiang’s outcomes to evaluate the network system performance under various charging 
station location options [11]. Xie, C. et al proposed a shortest path problem with relay 
requirement and extended the proposed shortest path problem to a traffic assignment 
problem and explored the impacts of driving range and relay station locations on equilibrium 
flow patterns [12]. In terms of solution methodologies, Raith, A. et al. compared different 
solution strategies, including standard label-correcting and label-setting methods, a purely 
enumerative near shortest path approach and the two-phase method, and suggested that 
the label correcting and setting approaches are preferable in stability [13]. Furthermore, 
some studies have revealed that label correcting algorithm is the most efficient method. For 
example, Cabral, E.A. concluded that label correcting algorithm and the network expansion 
algorithm [14]. Laporte, G. et al studied the shortest path problem with replenishment and 
found that label correcting algorithm is superior to label setting algorithm in terms of 
computational efficiency [15]. Smith, O.J. et al demonstrated the benefits of using label 
correcting algorithm in aircraft routing problems [16]. 

However, two major gaps exist in previous studies. First, most of them discarded the 
recharge time at a charging station in the optimal path decision process, whereas it is an 
essential part of the total travel cost of an individual trip. Second, previous studies only 
considered single recharge mode, which is a charging station. But actually, a charging lane 
is a new type of facility with high recharge efficiency, which was proposed by Highways 
England [17]. This paper is aimed to address those two gaps, in order to improve and 
popularise the DPEV shortest path navigation system.  

The remainder of this paper is structured as follows. Section 2 includes preparatory work of 
this study, where an approach of network transformation is proposed. Section 3 formulates 
the mathematical framework of the DPEV shortest path problem, considering distance limit, 
two recharge modes, and recharge time. Then, it develops the solution methodology for the 
proposed shortest path problem. Computational experiments are conducted in Section 4. 
Finally, conclusions and future work are presented in Section 5. 
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2. Preparation 

2.1. Notations 

Notations used throughout the paper are listed as follows unless otherwise are specified. 

Table 1: Mathematical notations 

𝑁 Node set 

𝐴 Link set 

𝑂 Origin node set 

𝐷 Destination node set 

𝑍2 Origin-Destination (OD) pair set: 𝑍2 ⊆ 𝑁 × 𝑁 

𝛱 Path set 

𝛱𝑟𝑠 Path set for OD pair (𝑟, 𝑠) 

𝛺 Subpath set 

𝛺𝜋 Subpath set for path 𝜋 

𝑀 Set of classes of vehicles 

(𝑖, 𝑗) Link with upstream node 𝑖 ∈ 𝑁 and downstream node 𝑗 ∈ 𝑁 

𝑚 Vehicle class index, 𝑚 ∈ 𝑀 

𝑡𝑖𝑗 Travel time on link (𝑖, 𝑗) 

𝑡𝑖𝑗
0  Free flow travel time on link (𝑖, 𝑗) 

𝑡𝜋
𝑟𝑠 Travel time on path 𝜋 from origin 𝑟 to destination 𝑠, 𝜋 ∈ 𝛱𝑟𝑠 

𝛿𝑖𝑗,𝜋
𝑟𝑠  

Link-path incidence coefficient, which equals one if link (𝑖, 𝑗)  is on path 𝜋 ∈ 𝛱𝑟𝑠 , and zero 
otherwise 

𝑝𝑞 
Subpath index, which represents a subpath from a used charging station 𝑝 to the next used 
charging station 𝑞, without any other used charging station on the subpath 

𝛿𝑖𝑗,𝜋
𝑟𝑠,𝑝𝑞

 
Link-subpath incidence coefficient, which equals one if link (𝑖, 𝑗) is on the subpath 𝑝𝑞 contained 

in path 𝜋 ∈ 𝛱𝑟𝑠, and zero otherwise 

𝐿𝑚 The maximum distance that the 𝑚th class of vehicle can travel without recharge 

𝑙𝜋
𝑟𝑠 Distance of path 𝜋 ∈ 𝛱𝑟𝑠 

𝑙𝜋
𝑟𝑠,𝑝𝑞

 Distance of the subpath 𝑝𝑞 contained in path 𝜋 ∈ 𝛱𝑟𝑠 

𝑙𝑖𝑗 Length of link (𝑖, 𝑗) ∈ 𝐴 

 

2.2. Network transformation 

Consider a directed graph 𝐺 = (𝑁, 𝐴, 𝛺) where the node set 𝑵 represents node locations, 
and the set 𝐴 and 𝛺 are composed of the directed links (𝑖, 𝑗) and subpaths 𝑝𝑞 respectively in 
a transport network. Our mathematical formulation of the DPEV shortest path problem works 
from a transformed network topology, i.e. we introduce virtual nodes and links to represent 
the decision of using a charging station or lane, as depicted in Figure 1. The key point of the 
network transformation is to convert both charging stations and charging lanes into used 
charging stations on a new network. 
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Figure 1: Network Topology Transformation 

Graph 𝑮: 

 

 

Graph 𝑮′: 

(a) Transformation of a link with a charging station at the downstream node 

Graph 𝑮: 

   

 

Graph 𝑮′: 

(b) Transformation of a link with charging lanes 

Legend: 

 Node without a charging station 

 Node with a charging station 

 
Node with a used charging station, where the charging time is: 

 Positive, if it is derived from a charging station (a); 

 Null, if it is derived from a charging lane (b).  

 
Generic link 

 
Link with charging lanes 

 
Dummy connector 

 

A link (𝑖, 𝑗) with a charging station at the downstream node shown in Figure 1 (a), can be 

represented as two fictitious links 𝑎𝑁 = (𝑖1, 𝑗1) and 𝑎𝑅 = (𝑖2, 𝑗2), where the charging station is 
located at node 𝑗2. Besides, the dummy connectors (𝑖1, 𝑖2) and (𝑗2, 𝑗1) have null length and 

null travel cost. If a DPEV needs to be recharged, then it will choose link 𝑎𝑅 to traverse, and 
𝑎𝑁 otherwise. The lengths of links 𝑎𝑁 and 𝑎𝑅 are equal: 

𝑙𝑎𝑁 = 𝑙𝑎𝑅 = 𝑙𝑎 (1)  
 

The travel costs of links 𝑎𝑁 and 𝑎𝑅 have the following relationship: 

𝑡𝑎𝑅 = 𝑡𝑎𝑁 + ∆𝑡𝑗 (2)  

Where ∆𝑡𝑗 is the time spent recharging  at node 𝑗 on Graph 𝐺, which is assumed to be a 
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positive constant. Given that the travel time is flow-dependent, we have 

{
𝑡𝑎𝑁 = 𝑡𝑎𝑁(𝑥𝑎) = 𝑡𝑎(𝑥𝑎)

𝑡𝑎𝑅 = 𝑡𝑎𝑅(𝑥𝑎) = 𝑡𝑎(𝑥𝑎) + ∆𝑡𝑗
 

where 

(3)  

 

{
 
 

 
 
𝑥𝑎 = 𝑥𝑎𝑁 + 𝑥𝑎𝑅

𝑥𝑎𝑁 =∑𝑥𝑎𝑁,𝑚
𝑚

𝑥𝑎𝑅 =∑𝑥𝑎𝑅,𝑚
𝑚

 

(4)  

 

 

If link 𝑎 = (𝑖, 𝑗) has charging lanes, it can be represented as a link 𝑎 = (𝑖1, 𝑗1) with used 

charging stations located at both endpoints 𝑖1 and 𝑗1, as shown in Figure 1 (b). In this case, 
the recharge time is zero at both charging stations. Link (𝑖, 𝑗) and (𝑖1, 𝑗1) have the same 

length and travel cost. The dummy connectors (𝑖, 𝑖1) and (𝑗1, 𝑗) have null length and null 
travel cost. The significance of the dummy connectors is to avoid the use of charging 
stations 𝑖1 and 𝑗1 by DPEVs which go through one or both of nodes 𝑖 and 𝑗, but does not 
traverse the link (𝑖, 𝑗). 

Based on the transformation above, the network topology 𝐺  can be transformed  into a 
graph 𝐺′. We call 𝐺 the “realistic graph” and 𝐺′ the “fictitious graph”. These two graphs are 
equivalent with regards to link travel costs, recharge service availability and recharge times. 
Hence, for network system analysis, graph 𝐺′ is an alternative representation of graph 𝐺. 
Furthermore, one of the strengths of the network topology transformation is to facilitate the 
formulation of the proposed shortest path problem and traffic assignment problem, which will 
be demonstrated in the following sections. 

3. Methodology 

3.1. Model formulation 

In this work, we address the shortest path problem with recharge (SPPR) for each class of 
vehicle among the network. The significant differences between our SPPR and the basic 
shortest path problem (SPP) are that, in our proposed SPPR: 

1) The distance limit of each class of vehicle is modelled; 
2) Two recharge modes, charging stations and charging lanes, are considered; 
3) Recharge time at a charging station is regarded as a part of travel cost of an 

individual trip. 

In other words, the objective of our proposed SPPR is, over a network 𝐺 = (𝑁, 𝐴), to find the 

least-cost path between a given OD pair (𝑟, 𝑠) considering recharge time, such that the 
length between any two used consecutive charging stations or between a used charging 
station and an endpoint of a used charging lane is no greater than the distance limit of the 
vehicle class. This statement can be simplified with the transformed network: over the 
transformed network 𝐺’ = (𝑁′, 𝐴′), the shortest path for each OD pair is chosen, wherein 

each subpath 𝑝𝑞 connecting two consecutive charging stations must satisfy the distance 

constraint. Based on the latter, we formulate the proposed SPPR. Let 𝛺𝜋
′  be the set of 

subpath 𝑝𝑞 contained in a path 𝜋 connecting OD pair (𝑟, 𝑠). Link variable 𝜏𝑖𝑗  is defined as 

follows: 𝜏𝑖𝑗 = 1 if link (𝑖, 𝑗) is contained in the chosen path, and 𝜏𝑖𝑗 = 0 otherwise. Similarly, a 

subpath-link variable 𝜏𝑖𝑗
𝑝𝑞
= 1  indicates that link (𝑖, 𝑗)  lies on the subpath 𝑝𝑞  and 𝜏𝑖𝑗

𝑝𝑞
= 0 

otherwise. We assume that each vehicle starts its trip with full charge, or the adjusted 
(reduced) driving range 𝐿𝑚 is known otherwise. Another assumption is that all the vehicles 
that traverse a charging lane or use a charging station will be fully recharged. The 
mathematical formulation of the proposed SPPR can be written as follows: 
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P, 𝑆𝑃𝑃𝑅(𝑚, 𝑟, 𝑠) 

min
𝜋
𝑡𝜋 = ∑ 𝑡𝑖𝑗 ∙ 𝜏𝑖𝑗

(𝑖,𝑗)∈𝐴′

= ∑ ∑ 𝑡𝑖𝑗 ∙ 𝜏𝑖𝑗
𝑝𝑞

(𝑖,𝑗)∈𝐴′𝑝𝑞∈𝛺𝜋
′

 (5)  

 

subject to 

∑ 𝜏𝑖𝑗
𝑗∈𝑁′

− ∑ 𝜏𝑘𝑖
𝑘∈𝑁′

= {
1     𝑖𝑓 𝑖 = 𝑟
−1     𝑖𝑓 𝑖 = 𝑠
0     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(6)  

 

 

∑ 𝜏𝑖𝑗
𝑝𝑞

𝑗∈𝑁′

− ∑ 𝜏𝑘𝑖
𝑝𝑞

𝑘∈𝑁′

= {
1     𝑖𝑓 𝑖 = 𝑝
−1     𝑖𝑓 𝑖 = 𝑞
0     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(7)  

 

∑ 𝑙𝑖𝑗 ∙ 𝜏𝑖𝑗
𝑝𝑞
≤ 𝐿𝑚

(𝑖,𝑗)∈𝐴′

, ∀𝑝𝑞 ∈ 𝛺𝜋
′ (8)  

 

𝜏𝑖𝑗 ∈ {0,1}  ∀(𝑖, 𝑗) ∈ 𝐴
′ (9)  

 

𝜏𝑖𝑗
𝑝𝑞
∈ {0,1}  ∀(𝑖, 𝑗) ∈ 𝐴′, ∀𝑝𝑞 ∈ 𝛺𝜋

′ (10)  

 

The objective function (5) is to minimise the total travel cost of an individual traveller. 
Constraint (6) is the flow conservation constraint, sending a unit flow through a path 
connecting OD pair (𝑟, 𝑠). The objective function (5) and (6) have the same format as those 
in the basic SPP model, whereas, in comparison with the basic SPP model, the objective 

and constraints in P1 are established upon the transformed network 𝐺′ instead of the original 
network 𝐺 . Another improvement with respect to the basic SPP model lies in the extra 
constraints (7) and (8), which respectively impose flow conservation constraints for each 
subpath 𝑝𝑞 and subpath distance constraints for each vehicle class. Constraints (9) and (10) 

indicate the domain of the link variables 𝜏𝑖𝑗 and 𝜏𝑖𝑗
𝑝𝑞

. 

The above SPPR is framed as a resource constrained shortest path problem (RCSPP). In 
fact, no polynomial time algorithm is likely to be developed for solving RCSPP since it is 
known to be NP-complete [18][19]. The solution approach of our proposed SPPR will be 
discussed in the next section. 

3.2. Solution approach 

Using the transformation described in Section 2.2, we get a fictitious graph 𝐺′, where a 
DPEV will be fully recharged at all charging stations along its selected route. In addition, 
network 𝐺′  accounts for recharging time through link travel costs. Therefore, solving the 

proposed shortest path problem over the derived network 𝐺’, doesn’t require considering 
charging lanes or recharging time at stations. For this sort of SPPR without those two 
considerations, a pseudo-polynomial time solution algorithm has been proposed by Jiang et 
al. [20]. Their approach is mainly a modified label-correcting algorithm. In this paper, we 
propose to refine this solution algorithm and solve the proposed SPPR within the realistic 
network 𝐺 = (𝑁, 𝐴). 

First, we define a label set 𝐿𝑖 = {(𝑡𝑖, 𝑙𝑖)𝑘 = (𝑡𝑖
𝑘 , 𝑙𝑖

𝑘)} for each node 𝑖. For each label (𝑡𝑖, 𝑙𝑖)𝑘 in 

the set 𝐿𝑖: 𝑡𝑖 represents the travel cost (time) from the origin node to node 𝑖, which includes 

the time spent on recharge at all used charging stations; 𝑙𝑖 represents the distance of the 
subpath from the latest used charging station or charging lane to node 𝑖, where the subpath 
is on the path from origin node to node 𝑖; 𝑘 is the label index. We denote the set of indices of 

the treated permanent labels for node 𝑖  as 𝑃𝑖 , and the set of indices of the untreated 
temporary labels for node 𝑖 as 𝑇𝑖.  

Second, we say that a label is feasible for the 𝑚th class of vehicle if 𝑙𝑖
𝑘 ≤ 𝐿𝑚. Consider that 

more than one feasible label is set to node 𝑖, including two of them denoted as (𝑡𝑖
𝑘 , 𝑙𝑖

𝑘) and 

(𝑡𝑖
𝑤 , 𝑙𝑖

𝑤). The label (𝑡𝑖
𝑘 , 𝑙𝑖

𝑘) is said to be dominated by the label (𝑡𝑖
𝑤 , 𝑙𝑖

𝑤), if 𝑡𝑖
𝑘 > 𝑡𝑖

𝑤 and 𝑙𝑖
𝑘 ≥ 𝑙𝑖

𝑤, 
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or 𝑡𝑖
𝑘 ≥ 𝑡𝑖

𝑤 and 𝑙𝑖
𝑘 > 𝑙𝑖

𝑤. With this definition, we assume that all the travellers would prefer the 

route with both less travel cost and less distance with respect to the latest recharge. 

Furthermore, we say that, for the 𝑚th class of vehicle, a label (𝑡𝑖, 𝑙𝑖) is efficient if it is not 
dominated by any other label at node 𝑖. Besides, we denote the set of nodes with charging 

stations as 𝑁𝑐𝑠, where 𝑁𝑐𝑠 ⊆ 𝑁 ; the set of links with charging lanes as 𝐴𝑐𝑙, where 𝐴𝑐𝑙 ⊆ 𝐴. 
With the definitions above, the procedure of the refined label-correcting algorithm is 
summarized below. 

Step 1: Initialization 
 Set the label set of the origin node 𝑟 as 𝐿𝑟 = {(0,0)1} and the label set of any other 

node as 𝐿𝑖 = {(∞,∞)1}, ∀𝑖 ∈ 𝑁\{𝑟}. 
 Set the index sets: 𝑇𝑟 = {1}; 𝑇𝑖 = ∅, ∀𝑖 ∈ 𝑁\𝑟; 𝑃𝑖 = ∅, ∀𝑖 ∈ 𝑁 . 

 
Step 2: Select the critical temporary label 

 Select the critical label (𝑡𝑖
𝑘 , 𝑙𝑖

𝑘), 𝑖 ∈ 𝑁, 𝑘 ∈ 𝑇𝑖 , such that 𝑙𝑖
𝑘  is the minimal for all the 

untreated labels. 
 Update 𝑇𝑖 and 𝑃𝑖: 𝑇𝑖 = 𝑇𝑖\𝑘 , 𝑃𝑖 = 𝑃𝑖 ∪ {𝑘}. 

 
Step 3: Generate new labels 

      For each link (𝑖, 𝑗) ∈ 𝐴, if 𝑙𝑖
𝑘 + 𝑙𝑖𝑗 < 𝐿𝑚: 

 If (𝑖, 𝑗) ∈ 𝐴𝑐𝑙, the new generated label (𝑡𝑗
𝛾
, 𝑙𝑗
𝛾
) for node 𝑗 is (𝑡𝑖

𝑘 + 𝑡𝑖𝑗 , 0); 

 If 𝑗 ∈ 𝑁𝑐𝑠 , the new generated labels (𝑡𝑗
𝛾
, 𝑙𝑗
𝛾
) for node 𝑗  are (𝑡𝑖

𝑘 + 𝑡𝑖𝑗 + ∆𝑡, 0)  and 

(𝑡𝑖
𝑘 + 𝑡𝑖𝑗, 𝑙𝑖

𝑘 + 𝑙𝑖𝑗); 

 If (𝑖, 𝑗) ∉ 𝐴𝑐𝑙 and 𝑗 ∉ 𝑁𝑐𝑠, the new generated label (𝑡𝑗
𝛾
, 𝑙𝑗
𝛾
) for node 𝑗 is (𝑡𝑖

𝑘 + 𝑡𝑖𝑗, 𝑙𝑖
𝑘 +

𝑙𝑖𝑗). 

 
Step 3: Update label sets and label index sets 

 If (𝑡𝑗
𝛾
, 𝑙𝑗
𝛾
) is not dominated by any (𝑡𝑗

𝑤 , 𝑙𝑗
𝑤) ∈ 𝐿𝑗, 𝑤 ∈ 𝑇𝑗 ∪ 𝑃𝑗, then 𝐿𝑗 = 𝐿𝑗 ∪ (𝑡𝑗

𝛾
, 𝑙𝑗
𝛾
) and 

𝑇𝑗 = 𝑇𝑗 ∪ 𝛾; 

 If any (𝑡𝑗
𝑤 , 𝑙𝑗

𝑤), 𝑤 ∈ 𝑇𝑗, is dominated by (𝑡𝑗
𝛾
, 𝑙𝑗
𝛾
), then 𝐿𝑗 = 𝐿𝑗\(𝑡𝑗

𝑤 , 𝑙𝑗
𝑤) and 𝑇𝑗 = 𝑇𝑗\𝑤. 

 
Step 4 Termination Criteria 

 If 𝑇𝑖 = ∅, ∀𝑖 ∈ 𝑁, then stop. Otherwise, return to Step 2. 

 

4. Case analysis 

The purpose of this case analysis is: 1) to demonstrate the validity of the proposed 
approaches; 2) to examine the impacts on optimal route choice decision by different factors, 
including recharge facility availability, distance limit and recharge time. We use the well-
known Sioux-Falls (SF) network to conduct the computational experiments. The network 
data can be obtained online [21]. The models and algorithms are implemented in Python. 
The tests are conducted on a Windows 7 platform with an Intel Core i7-4770 processor at 
2.41 GHz and 2.0 Gb of RAM.  

In this section, we solve the proposed SPPR by using the proposed refined label-correcting 
algorithm. The link travel time under the free flow pattern is used as a proxy. Experiments 
numbered I - IV are conducted, each of which varies one of the four following factors 
respectively: charging station allocation, distance limit, recharge time and charging lane 
allocation. Four O-D pairs are randomly selected. The results are summarised in Tables 2 - 
5. 
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The average run time of each implemented shortest path is around 0.2 second, which 
underlines the computational efficiency. 

Table 2: Computational results of Experiment I 

Scenario Description 

Scenario 
Set of Nodes with 

Charging Stations 𝑁𝑅 
Recharge Time at 
Charging Stations 

Set of Links 
with 

Charging 
Lanes 

Distance Limit 

(i) {2,5,7,11,13} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 9 

(ii) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 9 

(iii) {2,3,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 9 

(iv) {2,3,5,7,8,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 9 

Shortest Path 

OD 

Scenario 

(i) II (iii) (iv) 

𝑆𝑃
a 

𝑡𝑆𝑃
b 

𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 

(1,20) 
1-2-6-5-6-8-7-

18-20 
45 

1-2-6-5-6-8-7-
18-20 

45 
1-3-4-5-6-8-7-

18-20 
40 

1-2-6-8-7-18-
20 

32 

(1,22) 
1-2-6-5-4-11-
12-13-24-21-

22 
61 

1-2-6-5-6-8-7-
18-16-17-19-

15-22 
59 

1-3-12-13-24-
21-22 

30 
1-3-12-13-24-

21-22 
30 

(2,20) 
2-6-5-6-8-7-

18-20 
34 

2-6-5-6-8-7-
18-20 

34 
2-6-5-6-8-7-

18-20 
34 2-6-8-7-18-20 21 

(2,22) 
2-6-5-4-11-

12-13-24-21-
22 

50 
2-6-5-6-8-7-
18-16-17-19-

15-22 
48 

2-6-5-4-3-12-
13-24-21-22 

46 
2-6-8-16-17-

19-15-22 
32 

a. 𝑆𝑃 represents the shortest path. 

b. 𝑡𝑆𝑃 is the shortest path travel time, including recharge time at a charging station. 

From the results of Experiment I, we can see that the shortest paths are altered in some 
cases due to the change in the charging station allocation. Besides, the shortest path may 
contain a cycle because of the need to recharge, e.g. Scenario II. Another expected 
outcome is that the shortest path travel time tends to decrease with the increasing supply of 
charging stations. 

Table 3: Computational results of Experiment II 

Scenario Description 

Scenario 
Set of Nodes with 
Charging Stations 

𝑁𝑅 

Recharge Time at 
Charging Stations 

Set of Links 
with Charging 

Lanes 
Distance Limit 

(i) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 9 

(ii) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 10 

(iii) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 15 

(iv) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 20 

Shortest Path 

OD 

Scenario 

(i) II (iii) (iv) 

𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 

(1,20) 
1-2-6-5-6-8-7-

18-20 
45 

1-2-6-8-7-18-
20 

32 
1-3-12-13-24-

21-20 
29 

1-2-6-8-7-18-
20 

27 

(1,22) 
1-2-6-5-6-8-7-
18-16-17-19-

15-22 
59 

1-2-6-8-7-18-
16-17-19-15-

22 
46 

1-3-12-13-24-
21-22 

25 
1-3-12-13-24-

21-22 
20 

(2,20) 
2-6-5-6-8-7-

18-20 
34 2-6-8-7-18-20 21 2-6-8-7-18-20 21 2-6-8-7-18-20 16 
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(2,22) 
2-6-5-6-8-7-
18-16-17-19-

15-22 
48 

2-6-8-7-18-16-
17-19-15-22 

35 
2-6-8-7-18-

20-22 
26 

2-6-8-7-18-20-
22 

26 

From the results of Experiment II, we find that the greater the distance limit is, the least 
travel time an electric vehicle can bear. This can be explained as follows: First, a longer 
distance limit leads to a looser range constraint, which means that a vehicle might not 
necessarily do a detour for recharge requirement, reducing the total travel time. This can be 
seen for example, by comparing Scenarios (i) and (ii). A second reason is that even though, 
sometimes, a larger distance limit does not have an influence on optimal route choice, a 
vehicle is not in need of recharge at every charging station along its travelled path, resulting 
in recharge time savings. Such situation can be found, for instance, by comparing Scenarios 
(iii) and (iv) with OD pairs (1,22) and (2,20). 

Table 4: Computational Results of Experiment III 

Scenario Description 

Scenario 
Set of Nodes with 
Charging Stations 

𝑁𝑅 

Recharge Time at 
Charging Stations 

Set of Links 
with Charging 

Lanes 
Distance Limit 

(i) {2,3,5,7,8,11,13,17} 
∆𝑡3 = 15; 

∆𝑡𝑖 = 1, ∀𝑖 ∈ 𝑁𝑅\3 
{∅} 9 

(ii) {2,3,5,7,8,11,13,17} 
∆𝑡8 = 15; 

∆𝑡𝑖 = 1, ∀𝑖 ∈ 𝑁𝑅\8 
{∅} 9 

(iii) {2,3,5,7,8,11,13,17} 
∆𝑡17 = 15; 

∆𝑡𝑖 = 1, ∀𝑖 ∈ 𝑁𝑅\17 
{∅} 9 

(iv) {2,3,5,7,8,11,13,17} 
∆𝑡𝑗 = 15, 𝑗 = 3,8,17; 

∆𝑡𝑖 = 1, ∀𝑖 ∈ 𝑁𝑅\{𝑗} 
{∅} 9 

Shortest Path 

OD 

Scenario 

(i) II (iii) (iv) 

𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 

(1,20) 
1-2-6-8-7-18-

20 
24 

1-3-4-5-6-8-7-
18-20 

28 
1-2-6-8-7-18-

20 
24 

1-2-6-5-6-8-7-
18-20 

33 

(1,22) 
1-2-6-8-16-
17-19-15-22 

31 
1-3-12-13-24-

21-22 
22 

1-3-12-13-24-
21-22 

22 
1-3-12-13-24-

21-22 
36 

(2,20) 2-6-8-7-18-20 17 
2-6-5-6-8-7-

18-20 
26 2-6-8-7-18-20 17 

2-6-5-6-8-7-
18-20 

26 

(2,22) 
2-6-8-16-17-

19-15-22 
24 

2-6-5-4-3-12-
13-24-21-22 

34 
2-6-5-4-3-12-
13-24-21-22 

34 
2-6-5-4-11-12-
13-24-21-22 

38 

Results of Experiment III reveal the impacts of different recharge time on the route choice 
strategies and travel time. We can find that when recharge time increases, a vehicle might 
make a detour or cycle on top of the previous optimal path for recharge purpose. For 
example, in Scenario (iv), recharge time at Node 8 and 17 is increased as compared to 
Scenario (i). As a result, a cycle 6-5-6 is added to the optimal paths connecting OD pairs 
(1,20) and (2,20). 

Table 5: Computational Results of Experiment IV 

Scenario Description 

Scenario 
Set of Nodes with 

Charging Stations 𝑁𝑅 
Recharge Time at 
Charging Stations 

Set of Links 
with Charging 

Lanes 
Distance Limit 

(i) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {∅} 9 

(ii) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {(6,8)} 9 

(iii) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {(10,15)} 9 
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(iv) {2,5,7,11,13,17} ∆𝑡3 = 5, ∀𝑖 ∈ 𝑁𝑅 {(6,8),(10,15)} 9 

Shortest Path 

OD 

Set of Links with Charging Lanes 

(i) II (iii) (iv) 

𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 𝑆𝑃 𝑡𝑆𝑃 

(1,20) 
1-2-6-5-6-8-7-

18-20 
45 

1-2-6-8-7-18-
20 

27 
1-2-6-5-6-8-7-

18-20 
45 

1-2-6-8-7-18-
20 

27 

(1,22) 
1-2-6-5-6-8-7-
18-16-17-19-

15-22 
59 

1-2-6-8-16-17-
19-15-22 

38 
1-2-6-5-9-10-

15-22 
42 

1-2-6-8-16-10-
15-22 

36 

(2,20) 
2-6-5-6-8-7-

18-20 
34 2-6-8-7-18-20 16 

2-6-5-6-8-7-
18-20 

34 2-6-8-7-18-20 16 

(2,22) 
2-6-5-6-8-7-
18-16-17-19-

15-22 
48 

2-6-8-16-17-
19-15-22 

27 
2-6-5-9-10-

15-22 
31 

2-6-8-16-10-
15-22 

25 

 
In Experiment IV, we equip some of the links with charging lanes. We can see that having 
more charging lanes will likely decrease shortest path travel times. For example, with links 
(6,8) and (10,15) equipped with charging lanes, the shortest path travel time for each OD 
pair is reduced by 40.0%, 39.0%, 52.9% and 47.9% respectively, as compared to Scenario 
(i). On the other hand, in some cases, charging lanes make no difference to route choice 
decision, which can be indicated, for example, by comparison of Scenarios (ii) and (iv) for 
OD pairs (1,20) and (2,22). 

5. Conclusions and future work 

This study addresses the shortest path navigation problem of driverless plug-in electric 
vehicles. It formulates the mathematical framework of resource constraint shortest path 
problem. As compared to previous studies, two key improvements are made: 1) recharge 
time is taken as a part of individual trip cost in the optimal path decision process; 2) two 
charging modes are available among the network, i.e. charging stations and charging lanes. 
Then, the modified label correcting algorithm is developed to solve the proposed problem. 
Finally, case study is conducted based on the middle-sized Sioux-Falls Network. The result 
provides insights into the complicated behaviour of the proposed problem. It demonstrates 
that four factors have significant impacts on the optimal route decision process, which are 
charging station allocation, charging lane allocation, recharge time and distance limit. 
Specifically, the whole travel cost of an individual trip can be reduced by increasing the 
distance limit or the amount of charging services, or decreasing recharge time. Furthermore, 
different charging facility locations can lead to different route choice strategies and travel 
costs. 

The outcome of this work can be applied in the navigation system of driverless plug-in 
electric vehicles. For future research directions, the proposed model and algorithm can be 
extended to the traffic assignment problems with the driving range. Meanwhile, we can 
investigate how both driverless internal combustion engine vehicles and plug-in electric 
vehicles can be accommodated under user equilibrium conditions. After that, systematic 
network evaluation and project rankings can be conducted, wherein economic analysis is of 
particular interest in this context. From this work, we can analyse the range-constrained 
route choice behaviour and the savings in travel costs in response to the updates on 
recharge facility allocations which are associated with the construction expenditure and 
budgets. In other words, given the real-world economic data, we can estimate benefit-cost 
ratio for each potentially selected planning policy based on this work, which will technically 
support the government’s decision-making process. Last but not least, we expect that the 
modelling and solution methodologies presented in this work would potentially intrigue 
interest of a broader transport field including multimodal transport route choice and freight 
network optimisation. 
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