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Abstract 

Understanding the dependence structure of road segments is a key to building successful 
prediction models for traffic forecasting. In order to accurately predict the traffic state of a 
particular target link at a given time interval, the prediction model should incorporate traffic 
states of other links that are spatially and temporally correlated with the target link into the 
model structure. Given a potentially very large number of links in a network, however, identifying 
a subset of links whose traffic states are highly dependent is a challenging task. To  tackle  this   
problem, this paper proposes a statistical approach that uses Granger causality analysis to 
determine the causal dependence among time series data of link traffic flow measures  and 
identify a group of links that are functionally connected to a given target link. The functional      
connectivity refers to the statistical dependence between two locations in terms of their 
observed traffic states, regardless of their structural connectivity, which refers to the 
static/physical connection or spatial adjacency determined by the underlying physical road 
network. As such, two distant links characterized by low structural connectivity can show high 
functional connectivity if traffic flow time-series from these two links show high statistical 
correlation or dependency. The Granger causality analysis has been widely applied to detect 
such a functional connectivity in various spatio-temporal systems. In this study, the Granger 
causality analysis is applied on the time-series of link measures (traffic volume or speed) 
collected from a road network in Brisbane, Australia in 2014 to discover the (causal) 
dependency structure of the links and understand dynamic changes in the dependence 
structure across different times of the day. The paper tests both bivariate and multivariate linear 
vector auto-regression (VAR) models to perform pair-wise and multivariate Granger causality 
analyses, respectively, and discusses the performance difference between these models. The 
study also discusses the impact of different choices of link measures (i.e., volume   time-series 
vs. speed time- series) on the performance of identifying the causal structure and the capability 
of short term traffic prediction. 
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1. Introduction 

The ability to accurately predict traffic states in a road network has long been considered central 
to urban traffic management and Intelligent Transport Systems (ITS). The increasing availability 
of rich sources of data and computing power has led to growing interests and demands for data-
driven or machine learning models such as neural networks and Bayesian networks for large-
scale network traffic prediction. One of the challenges in building such data-driven models is, 
however, to figure out input variables and model structure that are efficient in training with large 
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amounts of data while being effective in producing accurate prediction results. Including 
irrelevant variables in a model may decrease its prediction accuracy, not to mention increasing 
the computational complexity. In the context of short term traffic prediction, this means that we 
would want to identify a set of links whose traffic states are highly dependent so that we can 
consider only those relevant links when predicting a particular target link in the set. 
 
Motivated by this need, i.e., identifying the spatial dependencies in a road network to improve 
the efficiency and effectiveness of short term traffic prediction models, this study proposes a 
statistical approach that uses Granger causality analysis to determine the causal dependence 
among time series data of link traffic flow measures. This Granger causality analysis method 
identifies directed functional or causal interactions of different variables in the time series data 
(Seth et al., 2015). Granger causality is based on two major principles (i) The cause happens 
prior to the effect and (ii) The cause makes unique changes in the effect (Granger 1969, 1980). 
A time series x is said to Granger cause another time series y, if regression for y which includes 
both past values of y and x is statistically significant than regression for y having only with past 
values of y (Arnold et al. 2007). Granger causality test has become an established method for 
analysing potential causal relationship (Li et al., 2015). Although this method is widely used in 
neuroscience (Dhamala et al., 2008; Barnett and Seth, 2014), economics and air transport 
studies (Fernandes and Pacheco, 2010; Vijver et al., 2014), it has not been widely explored in 
the area of road traffic research. 
 

3. Test bed and data 

For this study, approximately 11 km long section of a two-way Moggill road in Brisbane, 
Australia is selected as a test bed. The selected road section starts from Moggill road-Barkin 
road intersection and ends at Moggill road-Witton road intersection. The study site includes 32 
road links in both inbound and outbound directions including minor approach roads. However, 
due to missing data and invalid flow and speed values, five links among these 32 links are 
excluded from the analysis.  Figure 1 shows the roadways and links of the test bed. 

Figure 1: Selected test bed (Google Earth view) 
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Table1 presents the basic information on the selected 27 links in the test bed which includes 
total length, number of lanes, design speed and direction of each link.  
 
Table 1: Details of each link of the test bed 

Link ID 
Length 

(m) 
No. of 
Lanes 

Design speed 
(km/hr) 

Type of link Direction 

466 182 1 50 Minor road Eastbound 

641 357 2 60 Major arterial Eastbound 

642 212 1 60 Major arterial Eastbound 

643 149 3 60 Major arterial Eastbound 

644 620 1 70 Major arterial Eastbound 

645 468 1 70 Major arterial Northbound 

646 267 1 60 Major arterial Northeast bound 

647 213 1 60 Major arterial Southbound 

649 189 1 60 Major arterial Southwest bound 

650 267 1 60 Major arterial Southwest bound 

651 357 3 60 Major arterial Westbound 

652 149 1 60 Major arterial Westbound 

653 212 1 70 Major arterial Westbound 

654 620 1 70 Major arterial Westbound 

789 288 1 50 Minor road Westbound 

839 183 1 50 Minor road Southbound 

931 343 1 50 Minor road Northbound 

989 1356 1 60 Minor road Northbound 

999 517 3 60 Major arterial Eastbound 

1004 1050 1 60 Major arterial Northeast bound 

1006 220 3 60 Major arterial Southwest bound 

1010 517 1 60 Major arterial Westbound 

1173 172 1 50 Minor road Westbound 

1196 607 1 50 Minor road Westbound 

1406 965 1 60 Major arterial Northbound 

1407 1340 1 70 Major arterial Northeast bound 

1408 685 1 60 Major arterial Southbound 

 
In this study, two traffic parameters are considered which are traffic flow and vehicle speed. 
Traffic data are obtained from Queensland Department of Transport and Main Road (DTMR) 
through Public Traffic Data System (PTDS). Traffic data were collected from loop detectors in 
2014 which include traffic flow and speed in every 15 minutes and details of all links of roads in 
South East Queensland. The traffic data are divided into four parts based on the time of day i.e. 
morning peak period (6am-11am), daytime off-peak period (11am- 4pm), afternoon peak period 
(4pm-10pm), and night time off-peak period (10pm-6am). In this study, we consider morning 
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peak traffic, afternoon peak traffic and whole day traffic. For the analysis, six traffic parameter 
cases are selected for Granger causality test as follows: (1) traffic flow at morning peak period, 
(2) traffic flow at afternoon peak period, (3) traffic flow for the whole day period, (4) speed at 
morning peak period, (5) speed at afternoon peak period, and (6) speed for the whole day 
period. Figure 2 presents a typical speed-flow diagram of a link based on the obtained data. 
 

Figure 2: Example of speed-flow diagram of a link in the test bed at morning peak period, 
afternoon peak period and whole day period.   

       (a) During morning peak period    (b) During afternoon peak period 

      
 

     (c) During whole day period 
 

     
 

4. Model description  

4.1. Model formulation 

In this study, Granger causality method of analysis is employed to find out the spatial 
relationship among the road links. Granger causality test can be performed by the following 
regression model. Let xt−1  be the lagged variable of 𝑥𝑡 , y

t−1 be the lagged variable of 𝑦
𝑡
 and 

𝐀, 𝐁 represent vectors of coefficients.  
 
yt  =  a0  +  𝐀. y

t−1
+  𝐁. xt−1         (1) 
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yt  =  a0  +  𝐀. y
t−1          (2) 

 

Then applying F test to obtain a p value for whether or not the first equation results in a better 
regression model than second equation with statistically significance. If the p value rejects the 
null hypothesis that x does not Granger causes y, then it is said that x Granger causes y.  
 
Granger causality among the variables can be tested by a pairwise or Vector Auto Regression 
(VAR) method (Kamarianakis and Prastacos, 2003). The pairwise Granger causality test cannot 
fulfil the aim of the study since conditional probabilities among different variables are needed for 
actual spatial relationship. Thus, a Granger causality test based on VAR is selected for this 
study.  
 
In a VAR model, each of the variables is considered as dependent variable once and the rest 
are taken as independent variables. This model can be developed by bivariate or multivariate 
time series in which every variable is explained by its own lagged and current values and past 
values of other variables (Zivot and Wang, 2006).  
 
Let, 𝐘t  =  (y1t, y2t, … . , ynt) is a (n × 1) vector of time series variables. The basic p-lag vector 
VAR model can be written as    
 
𝐘t =  c +  Π1𝐘t−1  +  Π2𝐘t−2  +···  + Πp𝐘t−p  +  εt      (3) 

 
where Πi are (n × n) coefficient matrices, c is the intercept, t = 1, … , T and εt is an (𝑛 × 1) 
unobservable zero mean white noise vector process (serially uncorrelated or independent) with 
time invariant covariance matrix, Σ.  
 
For example, a multivariate VAR (with 2 lag order) model equation has the following form  
 

𝑌1𝑡  =  𝑐1 +  ∏ 𝑦1,𝑡−1
1
11 +  ∏ 𝑦2,𝑡−1

1
12 + ⋯ + ∏ 𝑦𝑛,𝑡−1

1
1𝑛 +  ∏ 𝑦1,𝑡−2

2
11  +  ∏ 𝑦2,𝑡−2

2
12  + ⋯ +

 ∏ 𝑦𝑛,𝑡−2
2
1𝑛 +  𝜀1𝑡            (4) 

Y2t  =  c2 +  ∏ y1,t−1
1
21 +  ∏ y2,t−1

1
22 + ⋯ + ∏ yn,t−1

1
2n +  ∏ y1,t−2

2
21  +  ∏ y2,t−2

2
22  + ⋯ +

 ∏ yn,t−2
2
2n +  ε2t          (5) 

Ynt  =  cn +  ∏ y1,t−1
1
𝑛1 +  ∏ y2,t−1

1
𝑛2 + ⋯ + ∏ yn,t−1

1
𝑛𝑛 +  ∏ y1,t−2

2
𝑛1  +  ∏ y2,t−2

2
𝑛2  + ⋯ +

 ∏ yn,t−2
2
𝑛𝑛 +  εnt          (6) 

After the formation of VAR model, the Granger causality test can be performed by hypothesis 
testing of F test with zero restriction. In this test, a given time series is considered as Granger 
cause of another time series if at least one value in the coefficient vector is found non-zero by 
statistical significance test (Bahodori and Liu, 2012). ). To check whether a variable such as 

𝜃2 is granger cause of 𝜃𝑛,𝑡 in VAR Equation 6, the null hypothesis is   H0: Π1
n2 =  Π2

n2 = 0 and 

alternative hypothesis is H1: Π1
n2 ≠ 0  and/or H1: Π2

n2 ≠ 0 .  
 
The restricted model (model with zero restriction) is: 

 𝜃n,t  =  cn +  ∏ 𝜃1,t−1
1
𝑛1  + ⋯ + ∏ 𝜃n,t−1

1
𝑛𝑛 +  ∏ 𝜃1,t−2

2
𝑛1  +  … +  ∏ 𝜃n,t−2

2
𝑛𝑛 +  εn,t  (7) 

The unrestricted model is:  
 

𝜃n,t  =  cn +  ∏ 𝜃1,t−1
1
𝑛1 +  ∏ 𝜃2,t−1

1
𝑛2 + ⋯ + ∏ 𝜃n,t−1

1
𝑛𝑛 +  ∏ 𝜃1,t−2

2
𝑛1  +  ∏ 𝜃2,t−2

2
𝑛2  + ⋯ +

 ∏ 𝜃n,t−2
2
𝑛𝑛 +  εn,t          (8) 
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The test statistic can be written as   
 

F0  =

SSRr−SSRur
q

SSRur 

n−(k + 1)

          (9) 

where SSRr is the sum of the squared residuals of the restricted model and SSRur is the sum of 
the squared residuals of the unrestricted model,  n is the number of observations, k is the 
number of independent variables in the unrestricted model and q is the number of restrictions or 
the number of coefficients being jointly tested (Blackwell, 2008). 
 
The calculated F0 value is then compared with the critical value of F with significance value (0.05 
or 0.01). If the calculated value is higher than the critical value, then it rejects the null hypothesis 
and, therefore, it can be said that the time series Granger causes the target time series. 
 

4.2. Model development and estimation 

In this study, six traffic scenarios based on different traffic parameters and time periods are 
considered for model development. These scenarios are: traffic flow at morning peak period, 
afternoon peak period and whole day period and speed at morning peak period, afternoon peak 
period and whole day period. Therefore, six different VAR models are developed in this paper to 
find out how causal relationship changes with time of day. These VAR models are developed by 
using software package Gretl. 
 
Traffic parameters of all links on the roadway are considered as endogenous variables in 
multivariate VAR analysis. One of the most important conditions of VAR or Granger causality 
model is that time series of each variable should be stationary. To meet this criterion, every 
variable needs to be evaluated by unit root test such as Augmented Dickey Fuller (ADF) test. 
The following equations are estimated for each of the time series:  
 
∆yt  =  bDt +  d0yt−1 +  d1∆yt−1 +  d2∆yt−2 + ⋯ +  dp∆yt−p +  ut           (10) 

 
where y𝑡  may contain a unit root, Dt is a vector of deterministic variables (a constant and linear 

trend; sometimes dummy variables for a break in the intercept or the slope of the trend), Δ is the 

first difference operator, ut is a disturbance term, t is the time, p denotes the number of lags 
used and αt is the error term, b and d’s are parameters (Weber, 2001). The null hypothesis 
(H0: θ = 0: The series Δyt is non-stationary and it needs to be differenced to make it stationary) 
can be rejected if θ is statistically significant with negative sign. Lag order of this test is selected 
by BIC as in VAR model. The test results show that alternative hypothesis (H1: θ < 0) is 
accepted for all variables with 95% confidence level. It means that all data are stationary and 
every variable is within unit root of 1. Also, same result is found by Engle-Granger co-integration 
test (Engle and Granger, 1987) which shows that residuals of ADF regression are not auto-
correlated or not co-integrated. So, the data used for Granger causality satisfy the condition of 
stationary. Figure 3 and Figure 4 show that all of the time series are within in the circle of unit 
root of 1. 
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Figure 3: VAR Inverse root in relation to the unit circle plot of flow at morning peak period, 
afternoon peak period and whole day period (From left to right) 

                     

 
 

Figure 4: VAR Inverse root in relation to the unit circle plot of speed at morning peak period, 
afternoon peak period and whole day period (From left to right)  

                    
 
 
 
The next step is to select lag order for Granger causality test. This study used 15 minute interval 
traffic data. So the data are considered to have four lags within an hour. Therefore, maximum 
lag order is selected as 4. Then actual lag order is calculated by BIC (Schwarz Bayesian 
Information Criteria) score. The formulation of this measure is  
 

BIC =  −2 l(θ̂)  +  k log n           (11) 
 

where l(θ̂) represents the maximum log-likelihood as a function of the vector of parameter 

estimates (θ̂) and k is the number of independently adjusted parameters within the model. BIC 
is negatively related to the likelihood and positively related to the number of the parameter. So 
k log n means that the penalty for adding extra parameters grows with sample size. This 
ensures, asymptotically, one will not select a larger model over a correctly specified 
parsimonious model. Among different lag orders, the one with the lowest BIC score is 
considered as actual lag order for modelling (Cottrell and Lucchetti, 2016). Figure 5 depicts BIC 
score and lag order selection for each of the six cases.  
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Figure 5: BIC score and lag order for (i) flow based model and (ii) speed based model 

      
(i)                                                      (ii) 

 
Durbin-Watson test are also evaluated in order to find out whether the residuals of the model 
variables are auto correlated or not. The test statistics  
 

d = ∑(zt − Zt−1)2

n

t=2

 / ∑ zt
2

n

t=1

 

            (12) 

where zt … zn are the residuals, n is number of observations (Durbin and Watson, 1971). In all 
cases, Durbin Watson test statistics (d) values are in between 2 to 2.1 which are higher than 
upper critical value of Durbin Watson statistics (du =1.78 at level of significance α = 0.05). 
Therefore, it can be said that model residuals are not auto-correlated meaning that errors in 
past have no effect on errors at present.  
 
Residual vs. Time series plots (Figure 6) for six time periods of analysis depict that errors are 
independent or they are not in the form of positive or negative correlation. In fact, no trend can 
be identified from Figure 6. Speed residuals plot has lesser scatter points compared to flow 
residuals plot.  In the residual illustrations, a number of outliers are found in the afternoon peak 
periods for both flow and speed. This is due to the fact that link 651 has been considered here 
as an example of target link which is in the outbound direction. Traffic flow rate are much higher 
during afternoon peak period and therefore, traffic congestion may occur often.  
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Figure 6: Residuals vs. Time series for flow and speed based analysis of morning peak period, 
afternoon peak period and whole day period 
 
       (a) Based on flow at morning peak period              (b) Based on flow at afternoon peak period 

             
     (c) Based on flow at whole day period           (d) Based on speed at morning peak period 

            
 
    (e) Based on speed at afternoon peak period             (f) Based on speed at whole day period 
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4.3. Model validation 

As mentioned in the introduction, the main motivation of this study is to build a data-driven traffic 
prediction model in a more systematic manner. Based on the assumption that the prediction 
accuracy of the traffic state of a particular target link is improved by including only those links 
that are statistically dependent to the target link into the model, this study proposes a Granger 
causality-based method that aims to automatically identify a set of links that are statistically 
dependent each other. In order to evaluate the effectiveness of the proposed method, we build 
a simple traffic prediction model using a Bayesian Network (BN) to test the prediction accuracy 
of the BN model under different combinations of input variables. A Bayesian Network (BN) is a 
probabilistic graphical model that represents probabilistic relationships among a set of variables 
via a directed acyclic graph (DAG). A BN consists of a set of nodes and a set of edges, where 
nodes represent random variables and edges connecting pairs of nodes represent direct 
dependencies between variables. Recently, a BN has been increasingly used in the studies for 
traffic state or congestion prediction (Pascale and Nicoli, 2011; Kim and Wang, 2016).  
 
In this study, nodes in a BN represent a set of links and edges represent dependency relations 
between links. Each node is a discrete random variable that represents traffic measure θ, which 
can be ether flow or speed, of the corresponding link and takes one of four discrete states {very 
low, low, high, very high} in terms of the value of θ. The discretization is performed for each link 
based on the percentage fraction of the respective maximum value. The discretised four states 
are defined as follows: very low (<0.25 of the maximum value), low (>0.25 to <0.5 of the 
maximum value), high (>=0.5 to <0.75 of the maximum value) and very high (>=0.75 of the 
maximum value). The full description for the discretization and state definition is presented 
somewhere else (Kim and Wang, 2016) and interested readers are referred to that paper. 
 
Five different scenarios are tested in terms of the variable selection for a BN model. Given a 
target link, 

 Scenario 1: includes those links identified by the Granger causality analysis into the 
model. 

 Scenario 2: includes only the nearest upstream and downstream links of the target link 
into the model. 

 Scenario 3: includes both Ganger causal links as well as the immediate upstream and 
downstream links to the model. 

 Scenario 4: includes all links in the same direction of target link into the model. 

 Scenario 5: includes all links in both directions into the model. 
 
 
Then each of these scenarios is tested for two traffic measures i.e. flow and speed, separately 
at three different periods of time such as morning peak period, afternoon peak period and whole 
day period. As such, a total of 30 BN models were specified. 
 
The specification of each BN model structure (i.e., edge connection) is based on the actual 
network connectivity of road links. In these Bayesian networks, upstream and downstream links 
of target link are placed at upstream and downstream of target node. Since traffic parameters of 
upstream link have effects on traffic parameters of downstream link, the edge or arrow between 
two nodes is directed from upstream to downstream. The links of minor road in the intersections 
are connected to their nearest downstream link of major road and the arrow is connected from 
minor road’s node towards major road’s node. Bayesian network model developed by Granger 
causal links, Granger links with upstream-downstream links and all links of the roads include 
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links on both ways of the road. In these BN structures, the nearest node in opposite direction of 
target node is connected with target node by directing an arrow from opposite directional node 
to the target node. All other nodes in the opposite direction follow traffic movement direction 
from upstream to downstream. However, other two scenarios based BN structures include only 
the links in the same direction of target link.  
 
This paper uses software package Netica to build BN models. Figure 7 provides graphical 
illustrations of the tested BN models, where traffic parameters (flow and speed) are indicated as 
θ, target link and nearest opposite directional link of target link are identified as subscripts i and j 
respectively. Also, major or minor road link is mentioned as a superscript major or minor. The 
notations used in Figure 7 are summarized in Table 2. 
 
Table 2: Summary of notations for BN variables  

Notation Description 

θi
major

 traffic parameter at target link 

θi−1
major

 traffic parameter at the nearest upstream of target link  

θi+1
major

 traffic parameter at the nearest downstream of target link 

θi−n
major

 traffic parameter at the nth distant upstream link of target link 

θi+n
major

 traffic parameter at the nth distant downstream link of target link 

 θj
major

 traffic parameter at the nearest opposite directional link of target link  

θj−1
major

 traffic parameter at the nearest upstream of opposite directional link j 

 θj+1
major

 traffic parameter at the nearest downstream of opposite directional link j 

 θj−n
major

 traffic parameter at the nth distant upstream link of opposite directional link j 

 θj+n
major

 traffic parameter at the nth distant downstream link of opposite directional link j 

θi
minor

 minor road approach link connecting to target link 

θi−n
minor

 minor road link connecting to the nth distant upstream of target link 

θi+n
minor

 minor road link connecting to the nth distant downstream of target link 

θj
minor

 minor road link connecting to link j 

θj−n
minor minor road link connecting to the nth distant upstream link of link j  

θj+n
minor minor road link connecting to nth distant downstream link of link j link  
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Figure 7: Bayesian network models for testing five variable selection scenarios 

(a) Scenario 1: Granger causal links based Bayesian network structure: 
 

 
 
(b) Scenario 2: Nearest upstream-downstream links based Bayesian network structure: 
 

 
 

 
(c) Scenario 3: Granger causal links with nearest upstream downstream links based Bayesian 
network structure: 
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(d) Scenario 4: All links in the same direction of target link based Bayesian network structure:   
 

 
 
(e) Scenario 5: All links in both directions based Bayesian network structure:   

 
 

 
This study uses log-likelihood as the scoring function for BN structures. Figure 8 presents the 
average log-likelihood score of proposed BN structures where higher the value, better the 
model. It is found that nearest upstream-downstream based BN models have the highest log-
likelihood score in all cases. Granger causal links based BN structures have the second highest 
log-likelihood values in the morning peak and afternoon peak periods. However, for whole day 
period, all links in the same direction of target link based BN models have higher log-likelihood 
values than that of Granger causal links based BN models. In fact, log-likelihood value depends 
on number of nodes and connection arrows. Therefore, the nearest upstream-downstream links 
based BN structures which have only 3 or 4 nodes produce the highest log-likelihood scores. 
Also, during whole day period Granger causal links based BN structures include more number 
of nodes than morning peak and afternoon peak. Therefore, all links in the same direction of 
target link based BN has the second highest log-likelihood values during whole day period. 
Overall, it can be said that the proposed BN structures describe the data quite closely because 
of having significant higher score in log-likelihood.  
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Figure 8: Average Log-likelihood score of proposed BN model structures.  

 
 
To validate the proposed BN models, data are separated into training dataset and testing 
dataset. In this study, 80% of total data is taken as a training set and 20% of total data as a 
testing dataset. Bayesian model is developed by the training dataset and testing dataset is used 
for validation. In the validation process, each model predicts the traffic parameter state of the 
target node by testing data of all other nodes. The error rate of prediction is found by confusion 
matrix (Table 3) which represents the number of cases those are predicted inaccurately. The 
prediction accuracy of the model is calculated as 100 minus the error rate of the prediction.   
 

Table 3: Confusion matrix for developed BN structures 

Actual traffic 
parameter 
condition 

Prediction of traffic parameter condition 

 Very low Low High Very high 

Very low TRUEvery low FALSElow FALSEhigh FALSEveryhigh 

Low FALSEvery low TRUElow FALSEhigh FALSEveryhigh 

High FALSEvery low FALSElow TRUEhigh FALSEvery high 

Very high FALSEvery low FALSElow FALSEhigh TRUEvery high 

 
 Error percentage of prediction = (Total false prediction / Total number of cases)*100% (13) 

 Prediction accuracy percentage = 100 - Error percentage of prediction     (14) 
 

5. Results and discussion  

In this study, all the traffic links on the roadway including minor road approaches are considered 
for evaluation of spatial relationship. Granger causality test is conducted on each of the six 
cases i.e. traffic flow and speed at morning peak period, afternoon peak period and whole day 
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period. This study considers 99% confidence level while testing Granger causality in order to get 
more accurate causal relationship. The results of the Grange causality show that spatial 
connectivity depends on traffic parameters as well as time of the day. Each traffic parameter 
case is found to have different Granger causal links and even within same traffic parameter, 
Granger causal relationship changes over time of the day. In fact, three time periods have 
different number of observations. For example, the number of Granger causal links is higher 
during whole day period because of having much higher number of observations compared to 
other two time periods. Also, the two traffic parameters have different ranges of values i.e. traffic 
flows are found to have higher ranges (from 4 to 4480 veh/hr) whereas speed values have 
smaller ranges (from 7 to 70 km/hr). This is one of the key factors of providing different Granger 
causal links by these two traffic parameters. Figure 9 and Figure 10 illustrate that Granger 
causality relationship depends on time of the day as well as traffic parameters. As an example, 
outbound link 651 in Moggill road is considered here as a target link and all other links are taken 
as predictor links. 
 
Figure 9: Granger causal links of target link at different time period based on traffic flow  

 
 

Figure 10: Granger causal links of target link at different time period based on speed 
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Figure 11 and Figure 12 illustrate that the spatial relationship among target link and upstream-
downstream links changes with traffic parameters as well as time periods. In these figures, red 
circle represents target link (Link 651 is taken as an example) and green circles indicate 
Granger causal links.   

Figure 11: Granger causal links based on flow at (a) morning peak period, (b) afternoon peak 
period, and (c) whole day period 

   
  (a)    (b)          (c) 
 

Figure 12: Granger causal links based on speed at (a) morning peak period, (b) afternoon peak 
period, and (c) whole day period  

   
   (a)    (b)          (c) 
 

 
To evaluate prediction accuracy of BN models, each of all road links (in total twenty links) in the 
main road is selected as a target link. However, the minor road approach links are not taken as 
target links because data are not available for their nearest upstream links. Prediction accuracy 
percentage of each of these twenty links is calculated using Eq.14 and the average value is 
obtained for different measures (flow vs. speed), time-of-day conditions, and variable selection 
scenarios. The average prediction accuracy for each case is presented in Table 4 and Figure 
13. 
 
First, it is observed that prediction accuracy is significantly higher when using speed as model 
variable than when using flow. This may pertain to the shape of fundamental diagram (FD). In 
FD, speed decreases or increases monotonically with density, while flow follows a parabolic 
path. As such, flow can be more complex to predict, compared to speed, as the same level of 
flow can be observed in both uncongested and congested phases making the classification task 
more complex. This explanation is also supported by the fact that the prediction accuracy varies 
more widely with time-of-day selection in the flow case than in the speed case. For instance, in 
Figure 13, the prediction accuracy of flow is higher for the afternoon peak than the morning or 
whole-day periods, which can be because the portions of FD during the afternoon peak 
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contained a path that is more monotonic than the portion covering the morning peak or the 
entire curve associated with the whole day. However, a further investigation needs to be carried 
out to draw conclusions about the impact of traffic parameter and time-of-day choice on 
prediction accuracy. 
 
Next, we compare different variable selection scenarios within each case of traffic parameter 
and time-of-day choices. Overall, the difference in prediction accuracy appears to be small in 
terms of the absolute magnitude of prediction accuracy percentage. However, when we take a 
closer look at its relative difference in Figure 13(b), it shows patterns that provide insights into 
the performance of different scenarios and potential benefit of the proposed method. An overall 
pattern shows that scenarios 1, 3, and 5 produce higher prediction accuracy than scenarios 2 
and 4. More specifically, we can make the following observations: 

 Scenario 2 vs. Scenario 3: The models that only include the nearest upstream and 
downstream links (scenario 2) could be further improved by adding Granger-causal links 
(scenario 3). 

 Scenario 1 vs. Scenario 3: The models that only include Granger-causal links 
(scenario 1) perform equally well or better (in flow cases) than the models that contain 
both Granger-causal and the nearest up/downstream links (scenario 3). 

 Scenario 1 vs. Scenario 5: The models that only include Granger-causal links 
(scenario 1) perform equally well or better than the models that contain all links in both 
directions (scenario 5). 

 Scenario 4 vs. Scenarios 5 and 2: If we remove the links in the opposite direction 
(scenario 4) from the models with all links (scenario 5), the performance of those 
models decreases and they (scenario 4) perform equally poorly as those with the 
nearest up/downstream links only (scenario 2). 
 

Although it is difficult to generalize the observed patterns beyond the tested data sample, the 
proposed method (scenario 1) seems to offer an appropriate trade-off between model accuracy 
and model simplicity; that is, models with Granger-casual links (scenario 1) are more accurate 
than the simplest model (scenario 2) and simpler than the most comprehensive model 
(scenario 5). 
 
Table 4: Average prediction accuracy percentages of BN structures in different time and variable 
selection scenarios  

Time  
period 

Variable  
selection  
scenario 

Flow at 
morning 

peak 
period 

Flow at 
afternoo
n peak 
period 

Flow at 
whole 

day 
period 

Speed at 
morning 

peak 
period 

Speed at 
afternoo
n peak 
period 

Speed at 
whole 

day 
period 

Granger links 71.84% 76.30% 70.69% 87.62% 88.84% 88.94% 

Nearest upstream- 
downstream links 

69.48% 73.56% 69.42% 87.77% 88.17% 88.32% 

Granger links with 
upstream-downstream links 

69.59% 76.24% 69.55% 88.29% 88.71% 88.92% 

All links in the same 
direction of target links 

69.44% 74.15% 70.43% 87.74% 88.16% 88.33% 

All links in the road- both 
directions 

70.23% 75.94% 69.85% 88.76% 88.64% 89.15% 
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Figure 13: Average prediction accuracy percentages of each spatial-temporal based BN model.  

 
(a) Original Y-axis (y-axis bounds: 0% – 90%) 

 

 
(a) Truncated Y-axis (y-axis bounds: 65% – 90%) 

 
 

6. Conclusion  

This study evaluates the spatial relationship of traffic parameters of various links in a roadway at 
three different periods of time i.e. morning peak period, afternoon peak period and whole day 
period. In order to find out spatial connectivity, vector auto-regression based Granger causality 
model is developed. Then spatial relationship efficiency of Granger causal model is evaluated 
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by comparing with other spatial connectivity of road links. For this comparison, Bayesian 
network structures have been adopted in this paper. BN structures are developed based on five 
different variable selection scenarios of roadway links such as Granger causal links, nearest 
upstream-downstream links of target link, Granger causal links with nearest upstream-
downstream links, all links in the same direction of target link and all links in both directions of 
the road. This comparison result shows that Granger causality based models provide a good 
trade-off between model accuracy and model simplicity, suggesting the potential of using 
Granger causal analysis in guiding variable selection for data-driven traffic prediction models. A 
further investigation will be carried out to evaluate the performance of the proposed method in a 
more general setting, focusing on its applications in large-scale networks. Another future 
research direction includes the consideration of dynamic aspects of spatial dependencies, 
where the connectivity of road links varies dynamically, in conjunction with the use of dynamic 
Bayesian networks in order to build models for short-term traffic prediction. 
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