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Abstract 

There is a consensus on the importance and value of automatic fare collection (AFC) data in 
analysing different aspects of public transport. As such combining other data sources such 
as the General Transit Feed Specification (GTFS) can greatly improve the quality of the 
analyses and ultimately provide a better understanding of public transport performance. This 
paper presents a methodology for data processing and analysis to acquire a public transport 
Origin Destination (OD) matrix. The case study uses a very large dataset on passenger 
boarding and alighting of all three transit modes, namely bus, rail and ferry, in South-East 
Queensland (SEQ). The OD trip matrices are estimated for both the AM and PM peak 
periods for five weekdays. Also, the estimated public transport demands for the same 
periods from the SEQ strategic transport model (SEQSTM) are employed. This approach 
enables not only the comparison of OD matrices over time to determine changes in travel 
patterns but also investigates the similarity between the demands from the SEQSTM 
procedure and those from AFC data.  A number of statistical measures, namely R2, GEH, 
%RMSE and an eigenvalue-based measure, are utilized to determine the level of similarity 
of these OD matrices. The results highlight the similarity of the trip pattern between four 
workdays (Mon-Thu). However, trip patterns on a Friday are slightly different from the other 
weekdays, particularly in the PM peak period. Also, the demand from SEQSTM for both time 
periods is not analogous to any of the AFC patterns.  

Key words: Smart card scheme; Public transport, OD matrices, OD matrix similarity  

1. Introduction 

Smart card data are increasingly used for transit network planning, passengers’ behaviour 
analysis and network demand forecasting. The primary advantage of using smart cards, in 
addition to their original use as a valuable payment option, is to provide a high quality and 
plentiful source of information for transit agencies and researchers (Pelletier et al., 2011). In 
addition, smart card data can be used to better understand passenger travel behaviour and 
measure trip habits (Lee and Hickman, 2011; El Mahrsi et al., 2014), improve strategic 
planning and manage the demand through the network (Frumin, 2010; Sun et al., 2012) and 
estimate missing information such as alighting locations and OD trips (Gordon et al., 2013; 
Alsger et al., 2015). The accuracy level of smart card data greatly influences the extracted 
information and the successful estimation of OD matrices (Pelletier et al., 2011). 

An OD matrix is an important input to transport models to assess new transport policies. 
There have been a few attempts to evaluate and assess the accuracy and similarity of OD 
matrices, using a number of statistical measures. Ye et al. (2012) used the Chi-squared test 
as a goodness-of-fit measure to compare synthetic matrices. The Chi-squared test ignores 
the correlations between cells and deals with cells independently. Alsger et al. (2015) used 
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the Geoffrey E. Havers (GEH) statistic to evaluate the accuracy level of a set of estimated 
matrices with a base OD matrix. 

Djukic et al. (2013) presented the Mean Structural SIMilarity (MSSIM) as a more appropriate 
comparator of matrices. This method compares OD matrices as images based on pixels 
equating to individual OD cells. The authors showed a degree of correlation between the 
neighbouring cells (pixels) just as in images. Later, Day-Pollard and van Vuren (2015) 
investigated the comparison of OD matrices based on the MSSIM  and other comparison 
techniques, namely R2, GEH and RMSE. The authors concluded that the MSSIM approach 
requires further refinement for use with OD matrices. Ruiz de Villa et al. (2014) introduced a 
measure for comparing OD matrices, Wasserstein metric, unlike the methods that only 
based on the cell by cell comparison. The suggested method is based on the topology of the 
network and considering travel time between all OD pairs.  However, this approach is 
impracticable for large networks due to the huge number of calculations required. 

The accessibility and quality of data required for evaluation of estimated OD matrices have 
usually been a big challenge. In the current research, a unique smart card (automated fare 
collection, or AFC) dataset, known as GoCard and obtained from TransLink1, is used to 
evaluate the estimated OD matrices. The important advantage of this dataset is that it 
includes both boarding and alighting times and locations for each passenger of the public 
transport services that comprise buses, trains and ferries.  

In addition to the experimental data, this paper compares the results with a synthetic 
regional transport model. The South-East Queensland Strategic Transport Model (SEQSTM) 
is a four-step strategic transport model developed by the Queensland Department of 
Transport and Main Roads (TMR). This model is developed in the EMME/4 modelling 
platform2 to serve as a long-range planning tool. The model was already calibrated and 
validated by TMR (TMR, 2011). The model is comprised of 1394 traffic zones, and this 
zoning system is used for estimating OD flows based on the AFC data. This model takes 
advantage of a mode choice model that includes seven modes: car driver, car passenger, 
walk to public transport, park and ride, kiss and ride, cycle and walk. The transit type 
includes three main modes:  bus, rail, and ferry. The model forecasts demand for a 24-hour 
period and applies fixed time-period factors to allocate trips to the AM peak, inter-peak, PM 
peak and off-peak. Demand is segmented by eight resident trip purposes at trip generation, 
trip distribution and mode choice stages (Hunkin, 2009). The transit demand was obtained 
by aggregating all demands from different trip purposes after the mode choice step. The 
results of mode choice were calibrated and validated using the SEQ travel survey on the 
base year (2011) by TMR (Joycey and Ryan, 2008).  

The objective of this paper is threefold: 

 to investigate on the level of accuracy of the AFC data; 

 to evaluate the travel pattern changes over time by comparing OD matrices based on 
AFC data on multiple days and in different periods of time; and, 

 to compare the travel pattern obtained from the two sources of AFC and SEQSTM in 
both the AM and PM peaks. 

The remaining sections are organised as follows. The next section explains the research 
methodology, comprising the data description, the preparation and cleaning procedure, the 
trip-chaining method, and the OD estimation algorithm. The results of the OD estimation 
matrices for different weekdays are provided in the third section. These results are then used 
to conduct the similarity analysis and evaluate the accuracy of these matrices for different 
days and also for the SEQSTM using different measurements. Finally, conclusions and 
suggestions for future work are presented. 

                                                

1
 The public transport authority of South-East Queensland (SEQ), Australia 

2
 A commercial software package that is distributed by INRO in Canada 
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2. Methodology 

Our study framework is shown in Figure 1. This framework encompasses four stages, 
namely: 1) AFC data processing, 2) application of a trip-chaining method, 3) OD matrix 
estimation, and 4) similarity analysis. 

Figure 1: Study framework 

 

2.1. AFC data 

Stage one relates to the GoCard dataset and the process of data cleaning. Robinson et al. 
(2014) highlight that the level of accuracy of AFC data may vary, and the data are affected 
by various types of errors. These errors may affect the accuracy of individual journeys and 
trip chains. In this regard, data validation and journey validation as described in  Pelletier et 
al. (2011) are essential to ensure the quality of data for the purpose of this research. To 
perform the data cleaning, a framework is proposed including two stages as shown in Figure 
2. Since the nature of data usually contains some errors caused by system failure or human 
error, the data are filtered with some transactions excluded, such as duplicate transactions 
and transactions when no boarding or alighting stops are recorded. In addition, all reload 
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transactions, which are related to GoCard credit top-ups and are not transactions related 
directly to public transit use, are excluded from the data.  

The second stage involves mapping the GoCard data into the GTFS network. This stage 
facilitates our investigation of the validity of boarding and alighting stops and the associated 
route and direction. The approach includes finding all possible trip-IDs for each trip leg 
based on the boarding and alighting stops in conjunction with their associated times. Then, 
the best trip-ID is selected based on minimising the differences between the scheduled and 
actual transaction times calculated for both boarding and alighting stops. Ultimately, 
transactions with errors in defining origin or destination stops and/or times are identified and 
excluded from the analyses.  

 Figure 2: Framework of GoCard data mining and cleaning process 

 

If any transaction of a card ID is excluded, the rest of the transactions for that card ID are 
also excluded for the given day, as the transactions on a single day must be in sequence to 
be chained into a tour for the given day.  

2.2. Trip-chaining method  

The main purpose in the trip-chaining method is to connect transactions of a passenger to 
infer full passenger journeys. Figure 3 shows an example of the trip-chaining method. 

A passenger has his first transaction from first boarding (B1) to first alighting (A1), and then 
walks to the next boarding stop to start the second transaction from second boarding (B2) to 
second alighting (A2). To complete a passenger’s travel sequence, allowable transfer time 
has to be assumed. This time threshold is used to merge transactions into a single journey. 
If the transfer time exceeds this threshold, the next boarding is a new OD trip (Munizaga et 
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al., 2014; Alsger et al., 2015). It should be noted that the time between (A1) and (B2) could 
be short, with enough time only for a transfer, or long, with enough time for an intermediate 
activity. 

Figure 3: Example of the trip-chaining method 

 
Note: The first boarding transaction in a day is identified by B1 and the first alighting transaction as A1, the time 
between B1 and A1 is the in-vehicle time. (Adapted from: Alsger et al., 2015) 

 

The main function of this method is to detect transfers, so that trip-legs can be merged to 
obtain journeys. In this regard, the first transaction of the day is the boarding for the first trip-
leg, for a unique card ID. The remaining trip-legs for the same card ID will be transfers if the 
transfer time is less than the allowable transfer time (threshold). The allowable transfer time 
is set as 60 minutes, to be compatible with TransLink’s 60-min transfer time allowance 
(Alsger et al., 2015). If the transfer time exceeds this value, the alighting location of the prior 
trip-leg is the destination of the passenger’s journey, and the next transaction is the boarding 
location of a new journey. If an alighting transaction is the last transaction of the day for the 
current card ID, another card ID is chosen, and the algorithm continues searching to create 
passenger journeys. 

2.3. OD matrix estimation 

The next step is to estimate the OD matrix from the passengers’ journeys based on the 
GoCard dataset. In this process, stop-to-stop OD journeys should be converted to zone-to-
zone OD journeys. For this purpose, the same traffic analysis zones (TAZs) in the SEQSTM 
are utilized as the level of aggregation. A journey from any stop located within the TAZ is 
counted as a journey originating in that TAZ; similarly, a journey ending at any stop within a 
TAZ is counted as a journey destined for that TAZ. Using the same procedure, OD matrices 
can be estimated for different days of a week and also different time periods in each day 
(AM peak and PM peak).  

2.4. Similarity analysis 

Different measurements are utilized to compare OD matrices and determine the level of 
similarity over time and between sources. These measures are described below. 

2.4.1. R-squared (R2) 

The R-squared (R2), as one of the most commonly and widely used (Washington et al., 
2011), is a statistical measure of how close the data are to the fitted regression line, and it is 
used for comparing between origin-destination pairs of two OD matrices. R2 values range 



ATRF 2016 Proceedings 

6 

from 0 to 1, with higher values indicating less difference between OD matrices. A general 
formula for calculating R2 is: 
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where: 
1

,i jOD  is the pair i,j of the first demand matrix and 
2

,i jOD  is the pair i,j of the second 

demand matrix OD is the mean of the 
1OD pairs. 

 
Along with considering higher value of R2 as a higher level of similarity, the regression line 
should be close to a 45-degree line through the origin. In this condition, the coefficient of the 
line should be closer to one and the intercept should be closer to zero. The lower and 
greater coefficient values indicate the tendency of the pattern to overestimate or 
underestimate values in the reference OD matrix.  

2.4.2. Geoffrey E. Havers (GEH) statistic 

The GEH statistic is used to evaluate the level of closeness between origin-destination pairs 
of two OD matrices. The GEH is applied to every pair in the two matrices, with a GEH of less 
than 5 indicating a good fit (Hollander and Liu 2008). The GEH formula is: 
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Then, the percentage of OD pairs that have a GEH equal to or less than 5 is calculated to 
indicate the level of closeness between two OD matrices.  

2.4.3. Root Mean Square Error (RMSE) and Percent Root Mean Square Error 
(%RMSE) 

The root mean squared error (RMSE) and accordingly the percent root mean squared error 
(%RMSE) are used to evaluate the closeness of the matrices.  The %RMSE is where the 
variability of the demand is most evident: if two demand matrices were identical, the %RMSE 
would be equal to zero. The (RMSE) and (%RMSE) are: 
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where: 
1

,i jOD  is the pair i,j of the first demand matrix and 
2

,i jOD  is the pair i,j of the second 

demand matrix. 

 

2.4.4. Eigenvalue-based measure (EBM) 
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This measure is based on the concept of eigenvectors and is introduced for comparison of 

OD matrices in this study. 1
OD  is similar to 2

OD  if there exists a matrix P such that 
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1
OD  and 2

OD have the same characteristic polynomial and therefore the same eigenvalues. 

On this basis, two similar matrices have the same eigenvalues (Ford, 2014). Based on this 
approach, two OD matrices are similar if their eigenvalues are the same. The sum of 
absolute error (SAE) is a promising technique to determine the closeness of model results to 
the actual data and has been used in a number of studies (Chowdhury and Saha, 2011; 
Purdy, 2012). This technique is employed in this study to establish a measure to show the 
similarity of ODs by comparing vectors of the eigenvalues of the OD matrices; the lower the 
value, the greater is the similarity. 

1 2(eig(OD ) eig(OD ))EBM SAE    (8) 

where: 1
OD and 2

OD are the demand matrices, and eig(.) is a vector containing the 

eigenvalues of a square matrix. 

3. Data description and analysis 

The GoCard dataset for five weekdays is analysed over the SEQ network, considering all 
modes, namely bus, rail, and ferry, for Monday 18 March to Friday 22 March 2013. These 
weekdays were selected as there was no public holiday and had normal weather conditions. 
In the SEQ network, a transaction record is generated each time a passenger boards and 
alights. Each transaction contains information comprising: the operation date, run, route, 
direction, ticket number, smartcard ID, boarding time, alighting time, boarding stop and 
alighting stop. However, transferring activities are not directly obtained.  

Table 1 presents the results of the data in different stages of this study as described in 
Section 2. First, the general data description is given, including the total number of 
transactions per day before cleaning, the reload transactions, and the available trip legs per 
day after excluding these errors. Then, a summary of these errors is given for each day: the 
situations that boarding or alighting locations are missing or are not recorded, boarding or 
alighting times are missing, the boarding stop location is the same as the alighting stop, and 
boarding time is later than or equal to the alighting time. The next step in data cleaning is 
identifying and excluding stop mapping errors where the algorithm could not find a match 
between the stops in both the GoCard data and GTFS.  

The next part of Table 1 presents the number of trip legs after performing the data cleaning, 
the number of errors in trip legs in the second stage, the number of treated trip legs, and 
ultimately the number of available trip legs after all data cleaning. The results indicate that 
about 68% of the initial data can be used for the current research. This available GoCard 
data is large enough to provide a reliable sample size, considering the fact that more than 
82% of transit trips are made by GoCard users in SEQ (Moore, 2015). After applying the trip-
chaining method to obtain passengers’ journeys, the last section of the table shows the 
information related to the number of journeys per day and also the unique number of 
GoCard IDs related to these journeys. Figure 4 shows the total number of cleaned 
transactions and the corresponding number of GoCard IDs for the selected weekdays. 
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Table 1: Data description and statistics in different stages of the study 

Description 
Date 

18/03/13 
Mon 

19/03/13 
Tue 

20/03/13 
Wed 

21/03/13 
Thu 

22/03/13 
Fri 

General data description 

Total transactions 609,509 635,841 628,479 633,106 613,481 

Number of reload transactions 16,382 17,034 16,999 17,621 15,921 

Available trip legs per day 593,127 618,807 611,480 615,485 597,560 

General errors 

No boarding stop 18,005 18,683 16,353 16,916 14,915 

No alighting stop 11,931 11,698 11,780 11,430 10,504 

No boarding time or alighting time 29,936 30,381 28,133 28,346 25,419 

Boarding time >= alighting time 2,776 2,846 3,025 2,836 3,090 

No boarding stop or alighting stop 29,936 30,381 28,133 28,346 25,419 

Boarding stop = alighting stop 12,017 12,242 12,035 11,852 12,596 

Stop mapping errors  

Stop mapping error in boarding 12,223 12,684 11,989 12,231 11,559 

Stop mapping error in alighting 11,988 12,297 11,680 11,939 11,296 

Trip legs  

 Number of available trip legs after first 
data cleaning 

443,087 466,438 465,988 468,119 456,842 

 Number of errors in trip legs 45,836 46,651 44,973 46,601 44,395 

 Number of treated trip legs 6,306 6,635 6,324 7,109 7,813 

 Number of available trip legs after all data 
cleaning 

395,633 418,823 418,098 418,424 409,296 

Ratio of available data to all data 66.7% 67.7% 68.4% 68.0% 68.5% 

OD trips information 

 Number of Go Card IDs 182,799 192,501 193,433 194,151 190,187 

 Number of journeys 324,091 343,000 342,821 373,796 334,287 

 

Figure 4: Number of cleaned transactions and GoCard IDs for the selected weekdays 
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OD matrices for weekdays based on the passengers’ journeys are then generated. The next 
section introduces the results of the estimation of the OD matrices for both weekdays and for 
the SEQSTM.  

3.1. OD matrices estimation 

Transit travel demand mostly follows a non-uniform time-of-day distribution and includes two 
main peak periods, AM peak and PM peak. To understand the daily behaviour of demand, 
journeys were aggregated based on the start time during each 15-min interval. Figure 5 
shows the public transport time-of-day demand based on the Go Card data for weekdays. 

Since demand during each time unit is averaged over 15-min intervals, this could cause 
variation of demand. As a result, there is a potential risk of overestimating or 
underestimating the demand profile. The moving average technique is employed to minimize 
the effect of this variation and to smooth the demand profile. The moving average of three 
sequential demands can be calculated as:   

1 1( ) / 3t t t tMDS DS DS DS      (9)

  
where 

DSt      = the moving average of three sequential speeds; 

DSt-1   = the demand at one time-interval before t; 

DS,t      = the demand at one time-interval at t; 

DSt+1  = the demand at one time-interval after t; 

 

Figure 1: Illustrative Time-of-Day Variations in Transit Demand for weekdays 

 

 

As can be seen from Figure 5, all weekdays follow a similar trend including morning and 
afternoon peak periods. The afternoon peak is lower and more broadly spread out compared 
with the morning peak.  In addition, the demand on Friday is slightly different from that of 

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769717375777981

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 2 4 6 8 10 12 14 16 18 20 22 24

D
em

an
d

 (
p

as
se

n
ge

rs
 b

o
ar

d
in

g)
 

Hour of day 

AM peak PM peak Monday Tuesday Wednesday Thursday Friday



ATRF 2016 Proceedings 

10 

other weekdays and lower in both peak periods. To use similar peak periods as those in the 
SEQSTM, AM peak and PM peak are defined as 7:00AM-9:00AM and 4:00PM-6:00PM, 
respectively. Based on the start time of the journeys, OD matrices were calculated for 
weekdays and both AM and PM peak periods. In addition, public transport OD matrices from 
SEQSTM for the two peak periods are extracted. A summary of statistics of all OD matrices 
are shown in Tables 2 and 3.  

 

Table 2: Summary statistics of demand matrices for AM peak 

 Mon Tue Wed Thu Fri SEQSTM 

Total demand (journeys) 80,259 84,020 83,305 82,246 77,333 210,976 

Number of pairs with non-zero 
demand 

15,922 16,507 16,469 16,496 15,978 1,865,955 

Maximum demand (journeys) 587 548 560 588 513 790 

Average of demand (journeys) 5.04 5.09 5.06 4.99 4.84 0.11 

STD of demand (journeys) 18.40 18.34 18.33 18.13 17.37 2.40 

 

 

Table 3: Summary statistics of demand matrices for PM peak 

 Mon Tue Wed Thu Fri SEQSTM 

Total demand (journeys) 73,733 76,872 75,099 75,323 66,409 139,476 

Number of pairs with non-zero 
demand 

14,560 15,100 14,957 15,047 14,440 1,865,953 

Maximum demand (journeys) 562 549 561 580 437 203 

Average of demand (journeys) 5.06 5.09 5.02 5.01 4.60 0.07 

STD of demand (journeys) 18.31 18.22 17.84 17.92 15.44 1.00 

 

 

The results indicate that the demand based on the GoCard data in the PM peak always is 
lower than that during the AM peak. Friday has the lowest demand and Tuesday has the 
highest demand among weekdays. On average, the number of OD pairs with demands more 
than zero are about 1000 pairs more in the AM peak. Nonetheless, the maximum demand, 
average demand, and STD of demand are very similar, comparing both peak periods.  

Comparing the demands from GoCard data and SEQSTM in both peak periods reveals that 
the SEQSTM demand is significantly higher than the GoCard weekday demand in both the 
AM and PM peaks. This might be due to the fact that during the data cleaning about 32% of 
the data was excluded from the analysis. In addition, there were some passengers who used 
paper tickets rather than the GoCard and therefore were not considered in the analysis. On 
this basis, all demand matrices were normalised according to their total demand to analyse 
the similarity between matrices. Furthermore, the fairly low average demand and STD of 
demand, and the high number of number of OD pairs with demand greater than zero in the 
SEQSTM, indicate that there are many OD pairs with demand less than 1 journey, 
particularly for the PM peak. This may cause big discrepancies between the GoCard 
weekday demand and the SEQSTM demand. In this regard, analysis was performed using 
different threshold measures including 0.5, 1, 2 and 3 trips, in order to identify the impacts of 
demand pairs with a low value in the results. The results show that “Number of pairs with 
non-zero demand” decreased to 51,360, 28,653, 15,009  and 9,918 pairs in the AM peak, 
respectively, for the four thresholds. In PM peak, this measure decreased to 43,337, 22,310, 
10,629 and 6,719 pairs, respectively, for the four thresholds. 
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4. Similarity analysis 

The statistical measures from Section 2.4 are utilised to assess the similarity between 
demand matrices of the GoCard and the SEQSTM in AM and PM peak periods. The results 
of the analysis based on these measures are presented in Table 4 and Tables 5 for the AM 
and PM peak periods, respectively. The GEH measures for almost all comparisons are more 
than 99%, indicating a fairly good similarity, unlike the results from the other measures. This 
might be related to the scale of the demand pairs. On this basis, the GEH statistic was 
determined not to be a suitable measure for this analysis and was excluded from the 
considered measures for comparison. It is only indicative when a threshold is defined for the 
‘negligible’ OD demand; for an example of this approach, see Alsger et al. (2015). As 
discussed in the previous section, different threshold measures were used to analyse the 
demand from the SEQSTM. The results indicate that in all conditions in both the AM peak 
and the PM peak periods, transit travel patterns from the SEQSTM are not similar to the 
weekday demand from the GoCard. Accordingly, the results in this section are based on the 
not excluding any demand from the SEQSTM. 

The demand matrices are almost the same in the AM peak on weekdays, as the R2 measure 
is more than 0.97 and the coefficient of the lines are quite close to one (more than 0.910) 
and the constants are close to zero (less than 0.27), as shown in Tables 4a and 4b. In 
addition, the %RMSE measures are within the same range and the EBM measures follow a 
similar pattern. However, the OD matrix on Friday is slightly different from the other 
weekdays, as the R2 is lower on Friday, the coefficients and constants have more distance 
from the ideal measures on Friday, and also %RMSE and EBM measures are higher on 
Friday. This suggests different timing and scale of demand in the Friday PM peak period, as 
some people may leave work early or may prefer to do a social activity before going home. 

Comparing normalised demand matrices between the GoCard and the SEQSTM indicates 
that transit travel patterns from the SEQSTM are not similar to the weekday demand from 
the GoCard in both AM and PM peaks. R2 measures are clearly lower compared to the same 
measure between weekdays, with a fairly large distance of the coefficients and constants 
from the ideal measures. On average the coefficient is about 0.2 away from one and the 
constant is about 1.15.  

The EBM measures are also about 250,000 on average for similarity between the SEQSTM 
matrix compared to an average of 65,000 for weekdays in the AM peak period as shown in 
Table 4. The same trends can be seen in the PM peak period. The %RMSE measure is also 
confirming the dissimilarity of the SEQSTM matrix with the weekday matrices based on the 
GoCard data. This suggests the need to re-evaluate and calibrate the demand within the 
strategic transport model with the demand from actual comprehensive datasets.  
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Table 4: Results of similarity measures between demand matrices for AM peak * 

a) R
2
 measure  b) Parameters for the best fitting line ** 

 
Mon Tue Wed Thu Fri STM   Mon Tue Wed Thu Fri STM 

Mon 1 0.98 0.97 0.97 0.97 0.21 
 

Mon 
1 
0 

1 
0.27 

0.99 
0.23 

0.99 
0.2 

0.93 
0.21 

0.20 
1.60 

Tue  1 0.98 0.97 0.97 0.19 
 

Tue  
1 
0 

0.98 
0.04 

0.97 
-0.002 

0.91 
0.03 

0.19 
1.57 

Wed   1 0.98 0.98 0.20 
 

Wed   
1 
0 

0.977 
0.04 

0.92 
0.06 

0.20 
1.56 

Thu    1 0.98 0.20 
 

Thu    
1 
0 

0.93 
0.08 

0.20 
1.58 

Fri     1 0.21 
 

Fri     
1 
0 

0.21 
1.58 

STM      1 
 

STM      
1 
0 

a)        
 

       

c) %RMSE  d) Eigenvalue-based measure 

 
Mon Tue Wed Thu Fri STM   Mon Tue Wed Thu Fri STM 

Mon 0 49 51 52 53 351  Mon 0 63,793 60,072 63,984 67,975 247,866 

Tue  0 49 50 55 346  Tue  0 70,292 68,605 70,135 249,276 

Wed   0 47 49 348  Wed   0 60,181 67,891 248,125 

Thu    0 47 349  Thu    0 68,802 249,120 

Fri     0 345  Fri     0 248,580 

STM      0  STM      0 
 

* Demand of weekdays based on Go card data, STM: public transport demand from SEQSTM 
** The top value is coefficient of the line, the below value is intercept of the line 

 

Table 5: Results of similarity measures between demand matrices for PM peak * 

a) R
2
   b) Parameters for the best fitting line ** 

 
Mon Tue Wed Thu Fri STM   Mon Tue Wed Thu Fri STM 

Mon 1 0.98 0.96 0.97 0.94 0.3 
 

Mon 
1 
0 

0.99 
0.24 

0.96 
0.33 

0.97 
0.25 

0.81 
0.58 

0.21 
1.14 

Tue  1 0.96 0.97 0.95 0.29 
 

Tue  
1 
0 

0.95 
0.17 

0.97 
0.09 

0.80 
0.43 

0.21 
1.12 

Wed   1 0.96 0.94 0.29 
 

Wed   
1 
0 

0.98 
0.12 

0.93 
0.42 

0.22 
1.11 

Thu    1 0.95 0.3 
 

Thu    
1 
0 

0.94 
0.45 

0.22 
1.11 

Fri     1 0.28 
 

Fri     
1 
0 

0.25 
1.05 

STM      1 
 

STM      
1 
0 

b)        
 

       

c) %RMSE  d) Eigenvalue-based measure 

 
Mon Tue Wed Thu Fri STM   Mon Tue Wed Thu Fri STM 

Mon 0 49 61 57 72 335  Mon 0 89,445 62,214 86,293 101,385 138,536 

Tue  0 58 54 67 332  Tue  0 91,617 91,788 100,427 138,665 

Wed   0 64 72 329  Wed   0 86,210 99,204 140,525 

Thu    0 65 331  Thu    0 75,658 141,131 

Fri     0 312  Fri     0 148,862 

STM      0  STM      0 
               

* Demand of weekdays based on Go card data, STM: public transport demand from SEQSTM 
** The top value is coefficient of the line, the below value is intercept of the line 
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5. Conclusions 

Automated fare collection systems have been widely used in public transport and have 
provided very large datasets. One of the main challenges of using such data is its accuracy 
level. This study makes use of the AFC system in SEQ, Australia, which has extensive 
records of passenger boardings and alightings by all transit modes. On this basis, this study 
presents the errors at different stages of data cleaning and presents the quality of such data 
for journey estimation. 

From another perspective, AFC systems are a rich source of information for many transport 
planning applications. The proposed methodology in this study utilises the AFC data to 
characterise passenger journeys in order to estimate the OD matrices of transit passengers 
in weekdays during both AM peak and PM peak periods. In addition, a traditional four-step 
model, the SEQSTM, is used to compare transit OD demand in both the AM peak and PM 
peak periods. 

Comparing demand matrices provides essential information about passenger travel patterns. 
This comparison may also help to avoid unnecessary surveys by suggesting the use of 
similar available data. This study introduces a new measure for OD matrix similarity, an 
eigenvalue-based measure (EBM), along with the other established statistical measures of 
R2, GEH, and %RMSE. The results show that the proposed measure has good performance 
in terms of indicating the level of similarity between matrices. This study performs the 
similarity analysis between weekdays demand matrices based on GoCard data and also with 
the SEQSTM demand in both peak periods.    

The results show that the AM peak has slightly higher demand compared to PM peak for all 
weekdays, and the demand fluctuations are greater across days in the PM peak. Also, the 
Friday demand is slightly different from other weekdays (Monday to Thursday) in the PM 
peak. Furthermore, the SEQSTM has larger demand compared to the GoCard weekday 
demand. These findings highlight that the public transport travel OD matrix according to the 
SEQSTM is distinct from that of the GoCard data. 

Further research needs to be conducted to investigate on the similarity of the transit demand 
on weekends. Also, it is recommended that the effects of adverse weather on transit demand 
and passengers’ travel behaviour be examined.   
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