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Abstract 

This paper addresses adjusted travel route choice in the context of new transport 
developments and incremental traveller learning. It is assumed that new developments can 
impact traveller perceptions and adjustments in multiple ways. For instance, if travellers 
expect a project to significantly increase or decrease overall travel demand they may change 
their daily route choice based on those new expectations. Further, over time, travellers will 
learn actual network demand, and adapt their route choice accordingly. In particular, this 
paper employs a methodological framework to model the day-to-day learning process of road 
users, and the corresponding system performance over time with a focus on the impact of 
specific new developments. Travellers assume an initial demand distribution, and 
incrementally update it based on their day-to-day travel experiences. Bayesian Inference is 
used to update the travel demand distribution, and the strategic user equilibrium model is 
used to compute the underlying traffic assignment pattern. Numerical analysis is conducted 
on a test network to demonstrate the learning process in terms of the perceived travel 
demand, path choice, and perceived path travel times.  

Keywords: Learning, demand uncertainty, strategic user equilibrium, network modelling, 
Bayesian inference 

1. Introduction 

New infrastructure development has the potential to fundamentally change the performance 
of routes throughout a transport network. To assess the impact of new developments, the 
post-re-equilibration state is commonly employed. However, a critical factor that is often 
unaccounted for, yet essential to the success of the planning process, is the time taken for 
users to learn about and adjust to a given change within the system.  This study addresses 
this gap, and proposes a methodological framework which can be used to model the day-to-
day learning process of road users, and the corresponding system performance over time. 
The aim is to help identify an appropriate modelling “horizon”, or time period after a project 
has been completed, for which the transport system impact can be accurately assessed. 

Currently, common practice to determine horizon time periods for future traffic impact 
assessments are based on the scheduled completion of works and the addition of a fixed 
time period to account for the users learning and transforming their route choice. The fixed 
time period of “learning” of users’ is based on standard practice and engineering judgement 
with no definitive method or approach to its calculation. This study investigates the duration 
of the learning period of users’ in adjusting to the presence of a new development or 
infrastructure change within the urban environment. The impact of a new development is 
inferred as a change to the total travel demand distribution generated between origin and 
destination pairs throughout the network. The time taken by users to transform their initial 
perceived travel demand distribution to the actual demand distribution is defined as the 
learning period. The study uses the Strategic User Equilibrium (StrUE) Model (Dixit et al., 
2013) as the foundation of the analysis and incorporates learning through Bayesian 
inference.  
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The StrUE model is defined such that "at strategic user equilibrium all used paths have equal 
and minimal expected cost". For each user present in a given demand scenario, their route 
choice is based on the distribution of the demand and the route is followed regardless of the 
realized travel demand on a given day. Therefore, the link flows will not result in an 
equilibrium state in any particular demand realization, but instead equilibrium exists 
stochastically across all demand realizations. The StrUE model was proposed to be able to 
capture the impact of day-to-day demand volatility on reliability, and eventually route choice. 
In this paper, users will update their perceived distribution curve based on day-to-day travel 
experience.  Studies completed in the recent past make the assumption that the demand fits 
a log normal distribution (Duell et al., 2014, Wen et al., 2014, Zhao and Kockelman, 2002, 
Kamath and Pakkala, 2002). The paper is structured as follows. Initially, further details of the 
background to the problem are presented.  The next section provides an explanation of the 
modelling framework as well as the assumptions made to devise the model. The model is 
then applied to a sample network and the results of the application are then analysed and 
discussed. Finally, future extensions and applications of the study are discussed. 

2. Backgrounds 

Traffic impact assessment and traffic modelling guidelines provide practitioners advice on 
how to assess the future traffic impacts which will result from the establishment of a new 
urban development.  The guidelines provide detailed methods to forecast the level of travel 
demand for the future year assessments by either (i) using calibrated and validated regional 
travel demand models or (ii) by using population and development data (Florida Department 
of Transport (FDOT), 2014, Roads and Maritime Services (RMS), 2013, The California 
Department of Transportation (Caltrans), 2002). For example, the Roads and Maritime 
Services Traffic Modelling Guidelines (2013) states the following; “Planners need to analyse 
historic data and develop a forecasting methodology appropriate to model future time 
horizons”, providing no clear distinction of how these time horizons are determined.  To the 
authors’ best knowledge there is little to any discussion regarding how the actual horizon 
time period for assessment is determined in practice. To address this gap in the literature this 
study specifically addresses the impact of new developments on changes to users’ route 
choice over time based on their daily travel experience. The contribution of this study is a 
methodological framework to determine the horizon time period which should be chosen for 
project assessment.  

Within-day traffic assignment has shown its capability of taking implicitly into account the 
variability of the flow state along the arc accordingly to any concave fundamental diagram, 
and modelling real-time traffic (Bellei et al., 2005, Gentile et al., 2005, Helbing et al., 2006). 
However, most commuters tend to update their commute experiences on a day-to-day basis. 
Day-to-day travel experiences within a transport network affect future travel decisions, 
extending from mode choice to route choice along a road transport network (Ben-Elia et al., 
2013, Ben-Elia and Shiftan, 2010, Mahmassani and Liu, 1999). Day-to-day dynamics of 
traffic assignment, which investigates the evolution of travel choices and traffic congestion 
over time, has been addressed in a number of previous studies (Smith et al., 2014, He et al., 
2010, Watling and Hazelton, 2003, Daganzo, 1983, Cascetta and Cantarella, 1991, He and 
Liu, 2012, Watling and Cantarella, 2013, Wang et al., 2013, Zhao and Orosz, 2014, 
Hazelton, 2002, Han and Du, 2012, Hazelton and Watling, 2004, Zhang and Nagurney, 
1996). Previous research has addressed both deterministic process models (He et al., 2010, 
Han and Du, 2012, Zhang and Nagurney, 1996) and stochastic process models (Cascetta 
and Cantarella, 1991, Hazelton, 2002, Hazelton and Watling, 2004). A detailed discussion of 
the literature within this topic is presented by Watling and Cantarella (2013). A majority of 
these studies focused on long term traffic equilibration as a result of day-to-day traffic 
variations and seasonal changes which are expected by the user. Previous studies have also 
investigated the impact of disruptions (He and Liu, 2012, Wang et al., 2013), providing insight 
into how long people take to learn about the impacts of a major disruption and how they 
adjust their routing decisions in the long term. All of these studies provide great insights into 
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long term user route choice. The work presented in this paper instead focuses on changes in 
route choice during the adjustment period immediately following the significant change of 
demand, rather than normal day-to-day conditions.  

When considering route choice of road network users, travellers learn about their available 
routes from their experiences of performing the same trip over an extended period of time. 
Within the context of this study explicit learning could also potentially arise from the 
marketing and media of new residential land releases or the opening of new urban 
infrastructure, this information has the potential to affect how people perceive the travel 
conditions. There have been a number of approaches to modelling and understanding about 
learning in a route choice context and how this affects network performance. Bogers et al. 
(2007) suggests that two types of learning, derived from theories within psychology, play a 
critical role in day-to-day route choice; implicit or reinforcement based learning and explicit or 
belief based learning.  Implicit learning arises for users as a consequence of travel; a higher 
relative travel time from a trip would be a negative reinforcement whilst a lower relative travel 
time would be a positive reinforcement for future decision making (Erev and Barron, 2005).  
In general, people are habitual decision makers and once an efficient method to complete an 
activity is devised it is used repeatedly, and this holds true for travel decisions (Jager, 2003). 
However, when characteristics of the network change, such as the establishment of a new 
residential development, habitual route choice may not be the most efficient method resulting 
in implicit learning. Additionally, in a transport context, explicit learning will also occur when 
users gain knowledge from information sources and their beliefs of these information sources 
(Arentze and Timmermans, 2003). 

Controlled laboratory experiments using repeated route choice games have been conducted 
to understand users’ learning behaviour and results have been adapted to discrete choice 
models (Ben-Elia and Shiftan, 2010, Cominetti et al., 2010, Bogers et al., 2005). In particular, 
Ben-Elia and Shiftan (2010) presented that initial risk seeking behaviour in route choice 
transforms into risk averse behaviour as learning progresses which is consistent with the 
findings of Arentze and Timmermans (2005). Experimental approaches provide the ability to 
investigate dynamic system evolution and the behavioural implications of users’ day-to-day 
choices. However, a shortcoming with this method is that there is difficulty in resolving the 
biases that may occur within the simulated environment as compared to the real environment 
(Chen and Mahmassani, 2004).  In terms of econometric modelling, Horowitz (1984) 
developed an updating version of EUT to analyse repeated travel choice situations using a 
weighted average approach in calculating the perceived travel cost of a route. Further 
studies have also used this concept where the route choice is determined by a process of 
adaptive learning where the information affects the utility of the route and the knowledge of 
the road network for future decisions (Mahmassani and Liu, 1999, Srinivasan and 
Mahmassani, 2003, Mahmassani et al., 1986).  De Palma and Marchal (2002) investigated 
day-to-day learning using an exponential Markov process representing learning; however this 
model was not validated with empirical data.  A drawback of all the perception updating 
methodologies described above is that they do not capture drivers’ uncertainty in their 
estimation of travel time which can be accounted for using a Bayesian updating approach 
(Jha et al., 1998, Chen and Mahmassani, 2004). Jha et al. (1998) uses a Bayesian updating 
model to capture the mechanism by which travellers update their day-to-day travel time 
perceptions based on previous experiences and information from ATIS systems.  Chen and 
Mahmassani (2004) extend the use of Bayesian Inference by also considering heuristics to 
trigger and terminate the learning process to depict a users’ salience to new information. The 
social impact under uncertainty on traffic was also demonstrated (Sunitiyoso et al., 2011), the 
parameterization of modelling the learning, or evolution of urban network was discussed as 
an extension of physical rules (Helbing and Nagel, 2004). All these studies provided a 
background in developing the methodology of this study. Specifically, this study utilizes 
Bayesian Inference to model the learning process within the StrUE model, which explicitly 
incorporates uncertainty into the traffic assignment problem. The analysis of travel behaviour 
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in uncertain conditions has historically focussed on three economic theories, Expected Utility 
Theory (EUT), Prospect Theory (PT) and Regret Theory (Ben-Elia et al., 2013). Research 
and models developed using these theoretical frameworks provide great insight into one-shot 
decision making where the outcome of one decision has no relationship to the next (Arentze 
and Timmermans, 2005). In contrast, the focus of this study is to incorporate experiential 
information into the users’ decision process.  

Travel demand is a main factor that affects travel time on a network. Though demand data is 
difficult to obtain, the expected demand and an estimate for the distribution of travel demand 
can be obtained through loop detector data, household survey data and through many other 
approaches. However, there is a certain degree of uncertainty that exists with these 
estimations. This study incorporates this uncertainty by providing partial information 
regarding the demand distribution to the user as well as including a perception component 
which interprets the user’s confidence level of their estimation of the travel demand. A 
Bayesian Inference Model was implemented to update users’ perceived travel demand 
distributions based on previous travel experiences, which contrasts previous studies which 
investigated the update of travel time perceptions.  Furthermore, the study utilizes the 
strategic user equilibrium (StrUE) model (Dixit et al., 2013) to determine the traffic 
assignment pattern corresponding to each step in the learning process, and quantify various 
system performance metrics The static version of the StrUE model, which has been 
developed in a static and dynamic context (Waller et al., 2013), was specifically selected 
because it offers a way to incorporate day-to-day demand variability. The importance of 
accounting for demand volatility has also been discussed in many previous papers(Clark and 
Watling, 2005, Duthie et al., 2011, Uchida and Iida, 1993); the model ensures that users 
recognize the uncertainty or variability in travel time to their destination and rationally choose 
routes while considering all possible demand scenarios from a known (or perceived) 
distribution. In addition, the model provides the link flow variability as a result of the demand 
volatility. 

3. Problem Formulation 

In this section we describe the Bayesian inference process which is used to model the 
learning behaviour of users. The underlying traffic assignment model implemented in this 
model framework is the strategic user equilibrium (StrUE) assignment model which is 
described in detail in (Dixit et al., 2013). A brief description of this assignment model is also 
included for completeness in this section. Table 1 lists the notation used in this section. 

TABLE 1 Summary of notation 

N Node (index) set 

A Link (index) set  

 

Path set 

 

Proportion of total demand on link n; f= (…,  ) 

 

Travel time on link n; t= (…, ,…) 

 Free flow travel time on link n 

 The capacity on link n 

 

Proportion of flow on path k, connecting OD pair r-s, must be non-negative; 

= (…, , …); =(…, ,…) 

 

Travel time on path k connecting O-D pair r-s; = (…,  ); =(…, ,…) 

 

Fraction of total trip demand that is between OD pair r-s;  

 

Actual total trip demand 

 

Users’ perceived total trip demand 

 

The probability distribution function of the total trips,  

 The realized total trip demand observed by users on day i. 

 

The conditional probability of given . 



A Learning Model for Traffic Assignment: Incorporating Bayesian Inference within the Strategic User 
Equilibrium Model 

 

5 

 
Indicator variable  ; 

 

 Expected value function 

 Variance function 

 Standard deviation function 

The StrUE model which is employed in this paper is defined such that "at Strategic User 
Equilibrium all used paths have equal and minimal expected cost". The model explicitly 
accounts for day-to-day demand uncertainty and assumes that users make strategic routing 
choices considering full knowledge of the demand distribution. For a given OD pair the StrUE 

model provides a set of fixed path proportions, . For each user present in a given demand 

scenario, the chosen route is then followed regardless of the realized travel demand on a 
given day. The strategic assignment model therefore produces link flows which will not result 
in a state of network equilibrium under any particular demand realization.  The mathematical 
formulation for the StrUE model is presented below: 

                                                 [1] 

Subject to: 

                                                                                                 [2] 

                                                                                                 [3] 

                                                                                                 [4] 

The link travel time function, , is modelled after the Bureau of Public Roads cost 

function (U.S, 1964), where  and are the parameters for the BPR function: 

                                                                                            [5] 

The pdf for the total trips, , is assumed to follow a lognormal distribution. The 

positiveness of the log normal distribution and the ease of determining conjugate priors 
necessary for the Bayesian inference process ease the computational process and as such 
are assumed for this study as well. However, it must be noted that other distributions could 
be assumed, however significant mathematical manipulation would be required to ensure 
positivity and apply Bayesian inference. With StrUE, the expected link travel time and 
variability of link travel time can be shown to be strictly a manifestation of travel demand 
uncertainty, and analytically defined as follows:  

                                                                                                     [6] 

                                                            [7] 

Equation 6 defines the expected link travel time and equation 7 defines the variance of link 
travel time, where the is the  moment of the demand distribution and can be found 

analytically using the moment generating function. For a given demand distribution, the 
StrUE assignment problem can be solved using any algorithm capable of solving the static 
traffic assignment problem. In this work the Frank-Wolfe algorithm is implemented to 
compute the link proportions. The difference is we use equation 6 with the moment 
generating function to calculate and update the expected travel time instead of a constant 
flow, hence the shortest path cost will change accordingly. 
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As stated previously, the main contribution of this work is that the learning process is 
incorporated into the novel strategic user equilibrium model. To incorporate learning, the 
user’s perceived demand distribution is used to compute the link costs in StrUE, thus 
resulting in a given system assignment pattern. Furthermore, the perceived demand 
distribution is assumed to change over time based on knowledge gained by users through 
their past travel experiences. Every time the perceived demand distribution is updated, the 
link costs functions will change, resulting in a new set of equilibrium-based path choices. To 
update the perceived distribution a Bayesian inference process was implemented, which is 
described below. The learning model with underlying StrUE assignment is hereby referred to 
as L_StrUE. 

Firstly, two demand distributions were defined, i) the actual demand distribution and ii) the 
perceived demand distribution. The actual distribution represents the true state, from which 
day-to-day demands are sampled. The perceived distribution is what the users assume to be 
true at the time. It was assumed that the actual distribution does not change during the 
timeframe of concern. The perceived distribution is assumed to initially underestimate or 
overestimate the expected trip demand and variance. Both distributions were assumed to 
follow lognormal distributions with known, but different, parameters. The actual demand 
distribution is defined as , and the perceived demand distribution is 

defined as . Note that  and  are simply parameters of the lognormal 

distribution, and have a direct relation to the mean and variance of the lognormal distribution, 
defined in equation 8 and 9, respectively. These equations represent the mean and variance 
of the total trip demand distribution. 

                                                                                                                           [8] 

                                                                                                                                 [9] 

Because providing the mean and variance of total trip demand is more intuitive than simply 
assuming the corresponding lognormal parameters, the lognormal parameters  and  

were back calculated based on the actual demand distribution,  and variance 

of . It was further assumed i) that the perceived location parameter  is identical to 

the location parameter of the actual demand distribution, , ii) it is known by the users, and 

iii) remains fixed over the course of the learning process. This is based on the assumption 
that users have some level of prior knowledge which they base their initial perceived 
distribution on (i.e. they are not unfamiliar drivers). The assumption also allows us to 
compute the perceived expected demand,  and variance of perceived demand , 

for any precision parameter, . Note that the assumption of identical location parameters, 

and the assumption below of the gamma distribution are made because they can reduce the 
computation complexity without compromise in the investigation of the learning process,, 
otherwise numerical integration may have to be used in every iteration. 

The learning process is modelled using Bayesian Inference to update the precision 
parameter, , based on users’ previous travel experiences.  The initial perceived precision 

parameter  is assumed to be a random variable, and follows a gamma distribution, 

. The Gamma distribution is capable of describing various kinds of 

probability curves and is always positive. From Bayesian inference, the posterior distribution 
is a function of both the prior distribution and the likelihood function. The posterior distribution 
of the precision, , given that a set of data  are observed, is: 

                                                                                                                             [10] 
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The gamma distribution is the conjugate prior of the lognormal likelihood function, i.e. if the 
actual demand has a lognormal distribution, from Bayesian inference, the closed form 
probability distribution function of the posterior distribution exists, and is also a gamma 
distribution. The precision variables for the prior and posterior distributions are thus defined 
as  and , respectively. The and  parameters 

are initialized as , and updated each day based on users’ travel experience, as 

defined below: 

                                                                                                                                                            [11] 

                                                                                                                                         [12] 

The expected precision and variance of precision can therefore be defined in terms of  and 

 as follows: 

                                                                                                                                                 [13] 

                                                                                                              [14] 

The variance of the precision can be interpreted as the confidence level of a user group, and 
reflects their willingness to adapt their route choice (i.e. update the perceived demand 
distribution) based on past travel experiences. A low precision variance represents a user 
group whom is more confident in their initial perception of the travel conditions, and is 
therefore going to be less willing to change their perception based on travel experiences. A 
higher precision variance represents a user group whom is less confident in their initial 
perception of the travel conditions, and is therefore going to be more willing to adapt their 
route choice based on past travel experiences. The impact of this variable is illustrated in a 
sensitivity study presented in the numerical analysis section.  

In the analysis conducted, a single iteration is equivalent to a day during which users 
commute to work. Each day the users will select a route based on their perceived demand at 
the time. On the same day, a demand will be realized, which is sampled from the actual 
demand distribution, resulting in a set of path flows on the network and the consequent link 
and path travel times. The users observe these travel times, and update their perceived 
demand curves accordingly, by updating parameters,  and . The updated parameters are 

then used to compute the updated perceived precision parameter, , using the expected 

posterior precision from equation 13. At the end of each iteration the updated perceived 
demand distribution will be:  

.                                                                                        [15] 

At the end of the entire learning process the users’ final perceived demand distribution will be 
defined by , and is expected to have converged from the initial 

perceived distribution,  to the actual distribution, 

. Note that because and  determine the prior precision variable, 

assuming the initial perceived distribution is equivalent to assuming a mean and variance of 
the precision variable. To further explore the impact of the initial perception distribution on 
the learning process, the next section illustrates the convergence behaviour of L_StrUE for a 
range of initial perceived distributions modelled on a test network. 

4. Numerical Analysis 

The developed L_StrUE model has been demonstrated using on a test network with 4 nodes 
and 5 links (Braess Network) as presented in Figure 1. The assumed network properties are 
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defined within Figure 1, free flow travel times and capacity for each link are shown in 
parentheses in units of miles per hour and vehicles per hour, respectively. In addition, the 
BPR parameters α and β for all links are equal to 0.15 and 4, and the length of each link is 1 
mile. 

FIGURE 1: Test network 

1

2

3

4

(45,900)

(80,1800)

(80,1800)

(80,1800)

(30,900)

 
The analysis investigated the sensitivity of the network performance regarding two main 
components: i) different initial perceived demand distributions (i.e. how accurate drivers’ 
initial perception is relative to the actual travel demand distribution) and ii) the impact of an 

increasing precision variance (i.e. confidence level of the drivers in regards to their initial 
perception). The purpose of conducting these two sensitivity analyses was firstly, to compare 
the learning process when the initial perceived and actual demand distribution varied, and 
secondly, reveal the role of the precision variance in the learning process. For all scenarios 
evaluated the actual demand curve was fixed, with a mean demand of 2700 and standard 
deviation of 270, or 10% of the mean. Twelve scenarios were selected in a systematic 
fashion representing different combinations of perceived overestimation believed by users, 
and precision variance (confidence levels). The scenario selection was based on the idea 
that road network users’ would have knowledge of a new (recent) development and as a 
result perceive conditions which are inflated relative to the historical traffic conditions. The 
precision variance levels were chosen to demonstrate the system impact of users’ 
willingness to adapt. The set of scenarios assessed in this analysis are presented in Table 2. 
The perceived standard deviation of total trips, ], is presented as a percentage of the 

perceived expected total trips ]. For each scenario 2000 iterations were run in order to 

capture the entire learning process.  

TABLE 2: Scenarios assessed for numerical analysis 

Scenario 
Variance of 
precision 

] ]  

1 0.1 2835 34% 

2 0.1 3240 67% 

3 0.1 3510 84% 

4 0.1 4050 113% 

5 0.2 2835 34% 

6 0.2 3240 67% 

7 0.2 3510 84% 

8 0.2 4050 113% 

9 0.3 2835 34% 

10 0.3 3240 67% 

11 0.3 3510 84% 

12 0.3 4050 113% 
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4.1 System Level Performance 

A system level performance assessment was conducted to obtain an understanding of the 
convergence of the L_StrUE model under the different scenarios tested. The purpose of the 
analysis was to identify system level performance metrics for different initial perceived 
demand distributions and ii) variance of the precision variable. In the analysis presented the 
time to convergence provides a proxy for the time taken for users’ to learn the actual travel 
demand conditions, which is one of the main objectives of this study. It is however important 
to note, the numerical results of the L_StrUE model are specific to this case study, and at this 
point cannot be extrapolated to alternative network structures. The main contribution of this 
work is the proposed framework for modelling the learning process travellers go through due 
to changes to the network conditions. This study also serves to demonstrate various potential 
applications of the model. Throughout the following sections, results from a subset of the 
scenarios are presented, which are representative of the trends observed across all the 
scenarios tested.  

4.1.1 Sensitivity to Initial Perceived Demand Distribution 

The convergence of the perceived expected demand over the learning period is illustrated in 
Figure 2(a). The horizontal axis represents the learning time, or the number of learning 
iterations, while vertical axis represents users’ perceived expected total demand. The figure 
shows Scenarios 5 through to 8 which consider the range of initial perceived demand curves 
presented in Table 1, and a fixed precision variance of 0.2. The horizontal line in the figure 
depicts the actual total demand. The figure illustrates the convergence of all the scenarios; 
after 365 iterations (which can be interpreted as a year of daily travel) the perceived demand 
is within 5% of the actual demand. The initial perceived demand distribution is shown to have 
significant impact on the learning process. Figure 2.a reveals the most inflated initial 
perceived distribution has taken almost twice as long to converge than the least inflated 
scenario. Figure 2(b) presents the convergence of the perceived standard deviation of 
demand over the learning period, illustrating a similar trend to what was observed in Figure 
2(a). Both these figures suggest that when people’s perceived demand distributions more 
closely reflect the actual demand distribution, the learning time is reduced significantly. This 
can potentially be a source of information provided to users in order to reduce the level of 
learning required within a system. 

FIGURE 2: Illustration of Convergence of a) Perceived Expected Demand b) Perceived Variation 
of Demand under different initial perceived demand distributions. 

 

(a) 
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(b) 

4.1.1 Sensitivity to Precision Variance 

The impact of increased precision variance on the convergence of the L_StrUE model is 
presented in this section. The convergence of perceived expected demand and perceived 
standard deviation of demand are presented in Figure 3(a) and Figure 3(b), respectively. The 
figures illustrate Scenarios 2, 6 and 10 corresponding to a precision variance of 0.1, 0.2 and 
0.3, where the initial perceived demand distribution remains fixed. 

Figure 3(a) and 3(b) clearly indicate convergence of the perceived expected value 
and standard deviation of the total demand to the actual distribution values. However the rate 
of convergence is significantly affected by the value of the precision variance. The lowest 
precision variance results in a considerably slower convergence when compared with the 
other two scenarios. Again, the lower precision variance represents a user group that is more 
confident in their initial perception, and therefore less willing to change their route choice. 
Similarly, a higher precision variance indicates a user group who is less certain about the 
prevailing traffic conditions and therefore less confident in his/her initial perception of the 
travel demand. These users can possibly be categorised as “new road users” or an 
“unfamiliar road users”, as they are more willing to update their route choice based on 
previous travel experiences, and therefore learn the actual demand faster, as illustrated by 
increased rate of convergence of the L_StrUE model. An alternative explanation of this 
behaviour is that the user is a “fast learner” and someone who is aware of the presence of 
the new development and has rationalised the potential effect on traffic and is willing to 
adjust his travel patterns.  In contrast, users with a lower precision variance could be 
classified as “stubborn users” who are determined that their initial perceptions reflect the 
actual traffic conditions, and refuse to accept the changed resulting from a new development. 
These users exhibit a slower rate of learning, as illustrated by decreased rate of convergence 
of the L_StrUE model. The results from the L_StrUE model therefore provide a behavioural 
intuition regarding the precision variance. 

FIGURE 3: Illustration of Convergence of a) Perceived Expected Demand and b) Perceived 
Variation of Demand under different precision variances. 
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(a) 

 

(b) 

4.2 Path Level Analysis 

In addition to evaluating the learning process at the system level, a path level assessment 
was conducted to explore the impact of the learning process on user route choice under the 
different scenarios tested. Of specific interest was the changes to path flows and path travel 
times over time as users learned the actual conditions of the network. Similar sensitivity 
analysis was conducted to explore the changes in path flows over time relative to i) the 
variation of the initial perception distribution and ii) variance of the precision variable. 

As described in the methodology section, the path assignment is computed using the StrUE 
model. It is important to note that the StrUE model provides unique link proportions and 
ultimately unique link flows, not unique path flows. However, for the test network used within 
this study, it was possible to obtain path performance statistics because there were distinct 
links associated to individual paths. Path-based statistics are presented instead of link level 
statistics because they provide a more intuitive illustration of the network performance. As 
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with the system level analysis, results from a subset of scenarios evaluated are presented, 
which are representative of the trends observed across all the scenarios tested. The paths 
are hereby referred to as Path 1, 2 and 3, where Path 1 connects nodes 1-2-4, Path 2 
connects nodes 1-3-4, and Path 3 connects nodes 1-3-2-4. 

4.2.1 Path Choice Convergence: Sensitivity to Initial Perceived Demand Distribution 

The convergence of the path proportions over the learning period is illustrated in Figure 4 for 
four different initial perceived demand distributions. As with the system level analysis, 
Scenarios 5 through 8 are presented for consistency. The results illustrate that the path 
proportions converge to within 5% of the actual expected demand for all the scenarios (5 
through to 8) within 2000 iterations. Similar to the system level analysis, the convergence 
rate of the path proportions is sensitive to the accuracy of the initial perception of the users.  
The results illustrate a clear increased rate of convergence when the initial perceived 
demand is closer to the actual demand. 

Across all the scenarios the path proportions deviate from their initial state. Initially the path 
proportions for Path 1 ranges between 0.31 and 0.34, Path 2 ranges between 0.20 and 0.29 
and Path 3 ranges between 0.41 and 0.46. The differences in the initial proportions are a 
result of the differences in the initial perceived distributions. As users learn over time the 
proportions across all scenarios converge to the same values. The changes in path 
proportions represent a considerable change in link flow over time. In particular the flow on 
Path 2 has halved over the course of the learning process. These results illustrate the 
importance of accounting for the learning process in conjunction with new developments that 
may impact demand, which can have major implications in how we forecast and manage 
traffic throughout the network. In addition the process can affect infrastructure planning and 
potentially the ranking of the suitability of infrastructure projects.  

FIGURE 4: Impact of Perceived Demand Distribution on Path Choice for four scenarios a) 
Scenario 5 b) Scenario 6 c) Scenario 7 d) Scenario 8, corresponding to different initial 
perceived demand distributions. 
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4.2.2 Path Choice Convergence: Sensitivity to Precision Variance 

The sensitivity of the precision variance on path choice is illustrated in Figure 5. As with the 
previous sensitivity analysis, Scenario 2, 6, and 10 have been presented, which correspond 
to a precision variance of 0.1, 0.2 and 0.3, respectively, and a fixed initial perceived demand. 
The results illustrate the same trends to what was observed in Figure 3. The rate of path 
choice convergence is significantly affected by the precision variance, with a lower variance 
corresponding to a slower rate of convergence. As discussed previously, this parameter 
could represent the familiarity or degree of stubbornness of users of the network. Accordingly 
further investigation is required to calibrate the true value of the precision variance for a 
given user group and network, and will be addressed in future work using controlled 
behavioural experimental procedures. 

FIGURE 5: Impact of Precision Variance on Path Choice. The three figures graphs 

correspond to a variance precision of a) =0.1 b)=0.2 c) =0.3 

 

 
(a)                                                                             (b) 

 
(c) 

4.2.3 Convergence of Perceived Expected Path Travel Time  

Finally, we explore the changes in the perceived expected path travel times by the users 
over the course of the learning process. The results are depicted in Figure 6. The perceived 
travel times provide the basis for the users’ route choice decisions. Thus, evaluating how 
these costs change throughout the learning period can provide insight into users’ expected 
route choice. In Figure 6 the expected path travel times for all three paths are shown to 
overlap. This is consistent with the definition of the StrUE model, for which a Wardropian 
Equilibrium solution is based on the expected path costs, and in the case of L_StrUE, the 
perceived expected path costs. The figure also illustrates that perceived expected path travel 
times are initially much greater than they are under the actual demand distribution. The 
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results also illustrate a quick convergence to the correct distribution. For scenario 6, the 
perceived expected travel times converges in around 100 iterations, to 2.84. This time period 
is consistent with Figure 5(b), in which the path proportions stabilize after the same number 
of iterations. The results from this type of path level analysis can be used to reveal how 
quickly the impact of a new development is learnt by users. 

FIGURE 6: Illustration of Convergence of Perceived Expected Path Travel Times   

 

5. Conclusion: 
This study proposes a methodological framework which can be used to model the day-to-day 
learning process of road users after a new development or infrastructure project is in place. 
The work presented in this paper is novel in two main ways: (i) the application of focus here 
is the impact of specific new developments on route choice and the immediate adjustment 
period, versus normal day-to-day conditions and (ii) the Bayesian Inference model is 
employed to model the learning process within the StrUE assignment model, which is 
implemented to compute the underlying traffic assignment pattern each day. Numerical 
analysis was conducted to investigate the sensitivity of the learning process with respect to 
two main factors, how accurate drivers’ initial perception was relative to the actual travel 
demand distribution, and the impact of the drivers’ confidence in their initial perception. 

Results illustrated that drivers learned the true demand distribution for all scenarios 
evaluated. The learning period was shown to be highly dependent on the precision variance, 
or the drivers’ level of confidence in their initial perception. The lowest precision variance, 
corresponding to a higher confidence level, resulted in a considerably slower convergence 
process, and longer learning period. In contrast, higher precision variances, representing 
“new road users” or an “unfamiliar road users”, corresponded to much shorter learning 
periods. Similar trends were evident at the path level and system level. The results from this 
type of analysis can be used to reveal how quickly the true impact of a new development is 
learnt by users, and provide insight into users’ expected route choice throughout the 
assessment period. 

Future research will address the development of L-StrUE as well as the application into 
different transport contexts. There is considerable scope to further develop the L-StrUE 
model. The assumption regarding the equality of the location parameter of the actual 
demand and perceived demand can be relaxed and different conjugate priors, such as the 
normal distribution, can be applied to observe any differences in behaviour. Furthermore 
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controlled behavioural experimental procedures need to be conducted to understand the true 
value of the precision variance for a given user group and network and used as a calibration 
tool for the model.  These developments will enhance the modelling and understanding of the 
cognitive learning processes that a user makes whilst travelling.   

A learning model such as L_StrUE, has a number of applications in addition to the 
assessment of changes to infrastructure and the urban environment within a transportation 
context. L_StrUE can be further developed to understand the impact of major disruptions and 
disasters to a network. The removal of a link or area of a network will affect the actual 
demand distribution and perceived demand distribution of the users resulting in a learning 
process. Another key area where an adaptation of L_StrUE can be applied is within public 
transit modelling. The impact of learning within a road network can affect the performance 
and reliability of bus systems consequently impacting the way we value the implementation 
of these systems. These and further applications will be considered as future research efforts 
in extending the L_StrUE formulation. 
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