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Abstract 
As rail station patronage levels increase, so too does the load on the entire railway system. 
The higher passenger densities exacerbate local egress issues and thus adversely affect 
dwell time and subsequently punctuality, along with the passenger experience. Devices such 
as barriers are regularly used to influence passenger egress. However, their use is typically 
limited to special events; where perhaps a single influence-objective is intended on a 
relatively uniform passenger demographic. This limitation precludes such devices usefulness 
for daily operations; where potentially multiple influence-objectives, which potentially change 
regularly, exists. Furthermore, it is reasonable to expect a considerably less uniform 
passenger demographic which perhaps includes passengers that are less receptive to 
particular influence strategies. 

This paper presents an exploration of components of a robotic system that is responsive to 
real time person behaviours and operator’s needs. Specifically, details of our methods for 
identification of the passenger demographic groups and passenger egress influencing are 
presented along with results from two studies. The first study was conducted at Townhall 
Station Sydney and explored our robotic system’s ability to reliably identify the passenger 
demographic of individual passengers in real time. The ability of our robotic system to 
influence real time egress of real in-transit passengers in situ, and the ability to responsively 
moderate influence-objective based on observed characteristics was explored in the second 
study which was co-located at Perth Station Perth and the University of Technology Sydney. 
Finally, this paper discusses how this predictable influence of passenger egress can 
potentially be leveraged to benefit operations. 

1. Introduction 
Passenger egress behaviour, and the subsequent over crowding, causes service reliability 
issues, limits operational capacity, and has tractable costs [Gray, 2013, Veitch et al., 2013, 
Wang and Legaspi, 2012]. In such, operators expend considerable efforts treating this 
behaviour. Typically though, due to the complexity and situational dependent nature of these 
behaviours, these treatments are static. For instance, devices such as barriers are regularly 
used to influence passenger egress. However, their use is typically more suited to special 
events where perhaps a single influence-objective is intended on a relatively uniform 
passenger demographic. This limitation precludes such devices usefulness for daily 
operations; where regularly changing multiple influence-objectives potentially exists. 
Furthermore, it is reasonable to expect a considerably less uniform passenger demographic 
which perhaps includes passengers that are less receptive to particular influence strategies. 
Many situations exist in which influencing behaviour in congested train stations as part of 
daily operations would be useful. The ability to influence the movement of people could 
reduce collisions on blind corners, or increase the efficiency of passenger flow through 
bottlenecks such as passageways and stairwells by influencing people to a particular side. 

This raises the question: how can people’s behaviour be influenced? Our ongoing research 
has focused on exploring this question through investigating influence during Human-Robot 
Interaction (HRI). For instance, we demonstrated a robot measurably influencing human 
decision-making in [Caraian and Kirchner, 2013a, Caraian and Kirchner, 2013b]. Similarly, 



Influencing Passenger Egress to Reduce Congestion at Rail Stations 
 

2 

we demonstrated robot instantiated interaction with naïve passersby, and influence of 
egress and physical interaction upon a particular individual within a crowd in [Kirchner and 
Alempijevic, 2012, Kirchner et al., 2011]. It is important to note here that a robot is defined as 
an intelligent machine capable of 1) sensing the world around it, 2) deriving an action plan 
from this information in conjunction with some held knowledge, and 3) enacting this plan. 
Robots are often envisioned as embodied agents (appear somewhat human like), however, 
embodiment is not a prerequisite and the principles of robotics hold for disembodied systems 
(such as we demonstrated in [Caraian et al., 2015]). Through this work, we have 
demonstrated that robots, embodied or otherwise, can leverage sociocontextual cues and 
the inherent paradigm of HRI to influence behaviour. 

Specifically, the above interactions leveraged a paradigm of HRI we devised and proposed in 
[Kirchner and Alempijevic, 2012]. This Robot Centric HRI paradigm builds on paradigms of 
HRI and Human-Computer Interaction (HCI); such as those discussed by Dautenhahn 
[Dautenhahn, 2007], Groom [Groom, 2008] and Ju [Ju and Leifer, 2008]. The Robot Centric 
paradigm creates a communication feedback loop between humans and robots through the 
introduction of new communication branches into HRI. As a result, robots are positioned as 
interaction peers with increased agency and the ability to lead interactions. Increasing 
suitability for situations in which the human may be naïve to and/or unsuspecting of the 
robot’s goal(s); for example, public transport passengers may be unsuspecting that a robot is 
attempting to influence their passage, or naïve to where it is directing them. 

However, there are a number of prevalent factors that interplay with influence in situ in public 
spaces such as train stations. For instance, consider the likely egress path influencing 
outcome for a ‘Business Person’ (already has a predetermined egress path identified, and is 
conscious of time) versus a ‘Tourist’ (unclear on best egress path, less conscious of time); 
clearly a different influence strategy seems appropriate for each. For example, information 
highlighting that the next service has been delayed and so the typically ‘slower’ alternative is 
‘faster’ today seems likely to resonate with the ‘Business Person’, whereas information 
highlighting the ‘easy’ and ‘scenic’ way seems likely to resonate with the ‘Tourist’. 
Furthermore, consider the case where options such as the above are not available but 
influence is highly desirable. In this case ‘very strong’ influence may be used with the 
‘Business Person’ to ensure compliance, however, for ‘Tourists’ such ‘strong’ influence may 
potentially cause over-influence (the resultant outcome is considerably beyond the operator’s 
intention, e.g. send people past the target) or rejection along with the subsequent 
dissatisfaction (refusal to comply e.g. “because it was rude”). 

In such, to increase a robot’s effectiveness at achieving its task(s), particularly in such 
scenarios, a key addition of the Robot Centric paradigm is the ability to deliberately set a 
robot’s level of interactivity (the potential of the robot to exhibit causal behaviour, that is, 
respond in reaction to interaction with a human [Bartneck and Forlizzi, 2004]): depending on 
the design of the paradigm branches and implementation, different levels of robot interactivity 
can be achieved. In the context of the Robot Centric HRI paradigm, a robot’s interactivity is 
its ability to moderate the sociocontextual cues it issues based on the behavioural 
information it reads from humans. This is in contrast to traditional HRI paradigms, which 
typically positioned robots as task completers, or tools which simply completed a task when 
given a human command [Groom, 2008]. 

The Robot Centric HRI paradigm is a potentially suitable model to deliberately set, and 
subsequently exploit, this robot interactivity to achieve more predictable and effective 
influence. However, due to our piecemeal exploration of the paradigm thus far, the concept 
of interactivity via the paradigm has been proposed but holistically testing in situ (within the 
train station application space) has not been the focus, nor has its usefulness to train 
operators. Although, we theorise that the more interactivity a robot has through the paradigm, 
the more it will be able to operate as an interaction peer to effectively achieve its goal(s). 
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Thus, three key questions arise: Is it actually feasible 1) for the robot to self derive passenger 
meaningful demographics information in real time in order to drive the most appropriate 
influencing strategy? 2) to responsively influence people’s movement behaviour in congested 
train stations during operations? 3) to exploit the Robot Centric HRI paradigm to increase the 
effectiveness of (robot) influence through shaping its interactivity? This paper presents an 
exploration of these questions via a robotic system that is responsive to real time person 
behaviours and operator’s needs. Specifically, details of our methods for identification of 
individual passengers into demographic groups and passenger egress influencing are 
presented along with results from two studies. The first study was conducted at Townhall 
Station Sydney and explored our robotic system’s ability to reliably identify the passenger 
demographic of individual passengers in real time. The ability of our robotic system to 
influence real time egress of reaxl in-transit passengers in situ, and the ability to responsively 
moderate influence-objective based on an observed characteristics was explored in the 
second study which was co-located at Perth Station Perth and the University of Technology 
Sydney. Finally, this paper discusses how this predictable influence of passenger egress can 
potentially be leveraged to benefit operations. 

2. Foundations for Robot Lead Egress Influence 
Robot interactivity, as framed by our Robot Centric HRI paradigm [Kirchner and Alempijevic, 
2012], is the ability of the robot to proactively Read, then moderate its Elicit strategy based 
on self derived information and known behaviour-to-meaning mappings in such a way as to 
increase the likelihood of achieving its desired outcome(s). In order to investigate this 
relationship between robot interactivity and ability to influence, it is first necessary to 
understand interactivity, and how different levels of interactivity are necessary and can be 
achieved using the Robot Centric HRI paradigm. This begins with an understanding of the 
paradigm and the two additional feedback branches it adds to traditional HRI. 

2.1 Read Information 
The Read branch of the Robot Centric HRI paradigm sees the robot able to sense 
behavioural cues displayed by the interacting human(s), including non-verbal cues. This 
information can then be interpreted through the robot’s contextual understanding and through 
human behaviour-to-meaning mapping available from the fields of Psychology and 
Behavioural Science in order to derive an action plan. One cue set rich in interaction-context 
knowledge when Read is that of person movement-location. For example, such information 
can reveal where a person is headed and at which point an interaction should be instantiated 
to maximise the likelihood of potentially influencing; the Social Interaction (proxemics) Zone 
(∼1.2–4.5m), is where a majority of interactions occur and where issued cues are most 
salient to people, [Hall, 1966, Farenzena et al., 2009, Marquardt and Greenberg, 2012, 
Caraian and Kirchner, 2014a]. 

Figure 1: Our influencing device – shown in a) Static and, b) Dynamic/Responsive. Our SHP for 
robust people awareness – shown in c) & d) 
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The base cue that was Read during this study was that of people’s presence-movement-
location, which was then utilised to Read a number of different participant behaviours 
depending on the paradigm implementation. In the study Part 2 implementation, Read was 
achieved via Wizard-of-Oz (a.k.a. Teleoperation). In the Part 1 & 3 implementations, a 
previously developed person detection and tracking system [Hordern and Kirchner, 2010, 
Kirchner et al., 2012, Kirchner et al., 2014] was implemented on our sensing hardware 
platform (SHP). Our SHP, which has been devised, developed and empirically evaluated, is 
shown in Fig. 1c). Our SHP was demonstrated to be capable of robust people detection, 
tracking, and counting system in public spaces such as train stations [Kirchner et al., 2014]. 

2.2 Elicit Behaviour 
The second additional branch of the Robot Centric HRI paradigm, Elicit, indicates the ability 
of the robot to surreptitiously present human-interpretable cues to an interaction partner in 
order to Elicit particular behavioural responses, for example to influence behaviour and/or 
decision making. The selection of an intended-application-space appropriate cue (that is, a 
cue which is sociocontextual – dependent on the application-space’s social-interaction-space 
and contextual-task-space in order to be interpreted) is vital for effective Elicit, [Kirchner et 
al., 2011, Kirchner and Alempijevic, 2012, Caraian and Kirchner, 2013b]. 

Directional indicators were identified as appropriate sociocontextual cues for use in this 
study. There are a number of characteristics known to moderate the effectiveness of such 
indicators in influencing behaviour, with greater effectiveness being achieved when the 
indication is strong, unambiguous, and successfully attracts people’s attention [Reason, 
2002]. Two key characteristics are change (e.g. flashing) and colour [Bullough and Skinner, 
2013, Wickens and Hollands, 2000]. Firstly, flashing lights have been shown to be more 
conspicuous than constant lights [Gerathewohl, 1953, Vos and Van Meeteren, 1971], as well 
as significantly increasing compliance with direction [Nevo et al., 2010]. A frequency in the 
range of 2–5Hz results in greater noticeability [D’Egidio et al., 2014, Scadding and Losseff, 
2011]. Colour and symbols can similarly affect the conspicuousness and meaning of 
directional indicators. By drawing on populations’ colour stereotypes, colours’ established 
symbolic meanings can be exploited. In Western cultures, for example, green and arrow 
symbols typically signal ‘go’, ‘good’ or safety, or direct movement in a certain direction 
[D’Egidio et al., 2014, Wickens and Hollands, 2000]. In order to issue cues with the above 
characteristics, an influencing device was designed and built for use in this study, Fig. 1a) & 
b). The device consists of an array of perspex screens, each with arrows etched into them. 
The levels of interactivity designed for this device were: 

Static – As can be seen in Fig. 1a), the device appears inactive in Static mode. However, the 
etched perspex arrows are clearly visible – the information appears fixed and unchangeable. 

Dynamic – In Dynamic mode, Fig. 1b), internal illumination gives the effect that green arrows 
are being displayed on screens – the information appears potentially changeable. 

Responsive – A Responsive system is achieved through leveraging the psychological and 
behavioural trigger of an event congruent with physical entry into the Social Interaction Zone, 
which is known to evoke the perception of entering an interaction (Section 2.2 and [Hall, 
1966]). Specifically, while a person is in the Public Zone, the device remains in Dynamic 
mode. The device issues a sociocontextual cue upon the person social trigger of Social 
Interaction Zone entry. A flashing frequency of 4Hz was selected. 

2.3 Interactivity 
Through employing the Read and Elicit branches of the Robot Centric HRI paradigm 
described above, different levels of robot interactivity can be achieved. For example, a 
traditional task completer robot has low interactivity: without the ability to Read, such a robot 
is inherently unable to moderate its Elicit, and hence is only able to carry out a single type of 
Elicit. That is, its Elicit remains static. 
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In the previously mentioned salient-object handover study, on the other hand, the robot had a 
higher level of interactivity: through Reading person location, the robot was able to physically 
direct its cues towards the intended recipient [Kirchner and Alempijevic, 2012]. Even greater 
interactivity was achieved during the interaction initiation study through Reading both person 
presence within the Social Interaction Zone, and the position of the person. This enabled the 
robot to issue its cues at the appropriate time to influence the passerby to enter into an 
interaction, in one case responsively issuing cues as the participant approached the robot 
[Kirchner and Alempijevic, 2012]. 

These examples suggest that the level of interactivity of the robot relates to the effectiveness 
of its influence, where effectiveness is considered to be the ability of the robot to target its 
influence to achieve specific desired outcome(s). Furthermore, It is known that user-group 
demographics reveal insights into probable behaviours and responses to circumstances; 
marketing and advertising leverages this phenomenon to achieve particular ends [Sheth, 
1974]. Furthermore, movement characteristics such as walking path and speed have been 
identified as indicators, and have been demonstrated robustly observable in real world 
situations [Kirchner et al., 2014]. 

In public spaces such as transport environments, Passenger Information (PI) systems 
incorporate some or all of the above characteristics, resulting in a range of fidelity and 
interactivity. Presently, Static and Dynamic PI systems are ubiquitous. At the information 
communications level, information appears to the viewer as being fixed and not readably 
changed in Static PI systems. Dynamic PI systems’ information appears to the viewer as 
potentially changeable from a limited set of information. Static and Dynamic PI systems map 
to the traditional paradigm for HRI described in [Kirchner and Alempijevic, 2012], where the 
robot assumes the passive role of task completer. 

However, as demonstrated by the Robot Centric HRI paradigm, opportunity exists to change 
the fundamental paradigm for interaction via PI systems and to leverage psychological and 
behavioural triggers to increase their interactivity, thus making PI systems more responsive 
to individual passenger’s demographic and current operations information, and drawing 
passengers into a rich and highly salient bi-directional targeted-information interchange. That 
is, to develop Responsive Passenger Information Systems (R-PIS) capable of pursuing 
regularly changeable multiple influence-objectives. 

3. Empirical Explorations 
To explore this, different Robot Centric HRI paradigm implementations were designed to 
achieve various levels of interactivity and to test the robot’s ability to self derive meaningful 
passenger demographic information. These implementations were realised in a disembodied 
robot. This robot was two-part: a sensing and computational component, and an actuation 
component. Each of the paradigm implementations were designed with successive activation 
of the Read-Elicit-Read branches. Interactivity was regulated by moderating the attributes of 
each of these branches. An isolated instance of the Read branch for Reading persons’ 
movement-location was the focus of Part 1 of the study; where the robot’s ability self derive 
passenger demographic information from this movement-location data was explored 
(described in Section 3.1). 

In the paradigm implementation for Part 2 of the study (described below in Section 3.2), the 
first Read was of both person presence in the Public Zone (initial robot setup can be carried 
out as the interaction has not commenced), and whether said person had entered the Social 
Interaction Zone (cue issuance should be triggered). Three cues were available for random 
selection for issuance in Elicit: Static, Dynamic, and Responsive (detailed in Section 2.2). 
The final Read was of the participants’ change in movement. The paradigm implementation 
for Part 3 of the study (Section 3.3) built on the Part 2 implementation with the key addition of 
a Read of the person’s entry position into the Social Interaction Zone; enabling the cues 
issued in Elicit to be moderated based on this behavioural information in order to attempt to 
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increase the likelihood of achieving the goal – i.e. increased interactivity. The final Read was 
again of the participants’ change in movement. This enabled exploration of multiple 
influence-objectives dependent on a Read passerby characteristic. A three-part empirical 
exploration was conducted (total n=641) carried out in two separate major public train station 
(n=368 + 84 + 105) and a university (n=84); we hypothesised: 

H1 – A passenger’s demographic can be autonomously determined through analysis of in 
public space observations of their movement behaviour and characteristics. 

H2 – It is feasible to influence people’s movement behaviour in public spaces using the 
Robot Centric HRI paradigm. 

H3 – Increasing a robot’s interactivity via the Robot Centric HRI paradigm will result in an 
increase in the effectiveness of its ability to influence; that is, its ability to target its influence 
to achieve specific desired outcome(s). 

From these we predict: 

P1 – Statistical clustering of empirically acquired movement behaviour and characteristics 
from passengers in a train station will reveal distinct groups consistent with those identified 
via anthropological investigation. 

P2 – Passenger information systems utilising the Robot Centric HRI paradigm will have 
greater influence on participants than those utilising the traditional HRI paradigm. 

P3 – Reading an additional behavioural cue will yield insights useable to moderate Elicit to 
increase the effectiveness of the robot’s influence. 

3.1 Part 1 – Self Deriving Passenger Demographics 
To explore the feasibility of autonomously placing newly detected passengers within defined 
user-groups we conducted a field study with commuters at a major public train station; 
Townhall in Sydney, Australia. A preliminary anthropological observations based 
investigation was first conducted over several hours by two experimenters at the proposed 
field study site. From this three user-groups were defined. Subjectively termed as: Business 
People – who tended to walk relatively quickly with a straight path, Tourists – who tended to 
walk relatively slowly with highly irregular paths, and Normal Passengers – who’s speed and 
path characteristics lay between Business People and Tourists. The subsequent field study 
explored the feasibility of our SHP autonomously observing passengers movement 
characteristics, and classifying passengers into these groups. This field study is detailed in 
the follow sub sections. 

3.1.1. Participants & Setting 

There were 368 participants randomly selected and directly measured by our SHPs in 
various locations around the station – 282 from three similar thoroughfare locations on a 
platform and 86 from a single thoroughfare location in the main concourse. They were typical 
rail commuters. There was no remuneration for participation nor effort to recruit participants. 
We used the SHP device described in Section 2, Fig.1c). The device is approximately 
250mm x 250mm x 100mm, resembles a security camera, and was mounted to infrastructure 
at approximately 2.2m (shown in Fig. 2). The experiment was staged in Townhall Station 
Sydney, Australia. Studies were conducted at four locations within the station. Platform 
Locations: three thoroughfare locations were elected on a single platform, and one of these 
locations is shown in Fig.2a) as a typical example. The remaining location was in a 
thoroughfare in the main concourse (shown in Fig.2b). As can bee seen from the figure, in 
both cases the SHP was mounted unobtrusively to the infrastructure. 



Influencing Passenger Egress to Reduce Congestion at Rail Stations 
 

7 

Figure 2: Setting for the study a) One platform location and, b) The main concourse location 

 

3.1.2. Procedure & Measurement 

The SHP was installed onto the infrastructure and then set to detect, track and log passersby 
and left unattended to do so for approximately one hour. This was repeated at the four 
aforementioned locations. The co-ordinate positions of all detections of each person were 
autonomously logged by the SHP. Each person typically would have between 20–50 logged 
positions (depending on their walking speed) as they passedby the SHP. This series of 
logged person-specific co-ordinate positions constituted the persons path. 

3.1.3. Results 

Paths from the 368 detected and tracked passengers were analysed with two measures 
representing each person extracted; their Mean Speed  and a non-
dimensional number encapsulating their magnitude and frequency of changes in direction 
(Directional Hesitation ). The k-means statistical clustering method 
using cosine distance was conducted on this measure set; the resulting statistically valid 
clusters are shown in Fig. 3. Importantly, no significant cluster shape variation was detected 
between the data from the four locations, suggesting station wide consistency in behaviour. 

Figure 3: The three anthropologically identified user-groups evident in k-means statistical 
clustering of the empirical measures 
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These results demonstrate that the user-groups defined through the preliminary 
anthropological investigation were autonomously observable and statistically valid. K-means 
statistical clustering identified three statistically valid robust clusters indicating behaviour 
consistency between locations within the station, and with the anthropologically observed 
clusters. This provides support for our H1/P1 that passengers’ user-group demographic can 
be autonomously determined from in situ observations of walking characteristics. 

3.2 Part 2 – Influence in a Public Space 
In order to evaluate the effect of the previously described influence, we first conducted a field 
study with commuters at a major public train station; Perth Station in Perth, Australia. As 
commuters moved within the train station, one of three levels of information systems – Static, 
Dynamic, and Responsive PI systems – attempted to influence their behaviour, and the 
subsequent effect was measured. The focus of this part of the study was on addressing H2, 
however H3 was also preliminarily explored. The following sub-sections describe the 
participants, experimental design and procedure, evaluation measures and hypotheses. 

3.2.1. Participants & Setting 

There were 189 participants randomly selected and directly measured from a larger total 
number of passersby – 84 in Location 1 and a further 105 in Location 2. They were typical 
rail commuters. There was no remuneration for participation nor effort to recruit participants. 
We used the influencing device shown in Fig. 1a) and Fig. 1b), as depicted in Fig. 4. The 
experiment was staged in Perth Central Station – a major public train station in Perth, 
Australia. Studies were conducted at two locations within the station. Location 1: a long 
public thoroughfare corridor (shown in Fig. 4a), and Location 2: a blind corner subject to 
passenger flow cross over (shown in Fig. 4b). As can bee seen from the figure, in both cases 
the influencing device was placed at roughly the thoroughfare midpoint. 

Figure 4: Setting for the Part 2 study a) Location 1 and, b) Location 2 

 

3.2.2. Procedure & Measurement 

The study was designed with three levels of information systems – Static, Dynamic, and 
Responsive – which were implemented as described in Section 2.2. All other acts/cues were 
consistent throughout the trials. A Wizard-of-Oz study was constructed. The influencing 
device was cycled through the three levels of information system, with 4 independent trials 
conducted at Location 1 (total of 84 trials) and 5 each at Location 2 (total of 105 trials) at 
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each level. Each trial commenced with the influencing device being reset, and a commuter 
passerby being randomly selected by the experimenters. In the case of Responsive the 
experimenters tracked the passerby and triggered the influencing device’s cue as the 
passerby crossed into the Social Interaction Zone. Participants’ change in distance from their 
originally measured position, and relative to a zero-axis which was parallel to the passage 
and ran through the influencing device was used as the measure, as shown in Fig. 5. Three 
repeated measures were taken for each participant. The first, at the Entry point of the Social 
Interaction Zone relative to the influencing device. The second, at the Pass point of the 
influencing device, and the third, at the Final measure point which was the exit point of the 
influencing device’s Social Interaction Zone. 

Figure 5: Influencing people leftwards at a) Location 1 and, b) Location 2 

 

3.2.3. Results 

A total of 84 trials (28 trials for each of Static, Dynamic, and Responsive) were conducted at 
Location 1 and a total of 105 trials (35 trials for each of Static, Dynamic, and Responsive) 
were conducted at Location 2; 3 repeated measures were taken in each trial. A relatively 
steady stream of commuters flowed past during the trials, and approximately 5 commuters 
passed by per 1 selected to facilitate a trial. The experimenters did not attempt to control the 
number of participants or observers for the trials, and participants were randomly selected. 

Figure 5 shows the average of the three repeated measures for the Static, Dynamic, and 
Responsive cases at Location 1 and 2. A mixed design ANOVA was performed for each 
location. The within subject main effect for the 3 measure points was significant in Location 1 
and 2, F=67.64, p<0.001 and F=99.43, p<0.001 respectively. The between subject main 
effect for the 3 levels was also found significant in Location 1 and 2, F=259.44, p<0.001 and 
F=49.60, p<0.001 respectively. Pairwise comparisons were conducted between the 3 levels. 
Significant differences were found between Static and Dynamic (Location 1 – mean 
difference = 0.63m, p=0.018, Location 2 – mean difference = 0.54m, p=0.05), Static and 
Responsive (Location 1 – mean difference = 1.18m, p<0.001, Location 2 – mean difference = 
1.175m, p<0.001), and Dynamic and Responsive (Location 1 – mean difference = 0.55m, 
p=0.039, Location 2 – mean difference = 0.64m, p=0.017). Pairwise comparisons also 
revealed significant differences between the P and F measure points (Location 1 – mean 
difference = 0.56m, p<0.001, Location 2 – mean difference = 0.94m, p<0.001); relative to 
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measure point E. These results support our hypothesis (H2) – that people’s movement 
behaviour in public spaces can be influenced using the Robot Centric HRI paradigm. 
Specifically, participants’ deviation was found to be statistically in the direction of intended 
influence as they moved towards and past the influencing device in both Location 1 
(F=67.64, p<0.001) and Location 2 (F=99.43, p<0.001). The significant movement between 
the P and F measure points (Location 1 – mean difference = 0.56m, p<0.001, Location 2 – 
mean difference = 0.94m, p<0.001) relative to measure point E suggests an ongoing 
influence effect. 

Further, the influence effectiveness was significantly different between the three levels in 
Part 2 of the study (Static, Dynamic, and Responsive) in both Location 1 (F=259.44, 
p<0.001) and Location 2 (F=49.60, p<0.001), with Dynamic significantly more effective than 
Static (Location 1 – mean difference = 0.63m, p=0.018, Location 2 – mean difference = 
0.54m, p=0.05), and Responsive significantly more effective than Dynamic (Location 1 – 
mean difference = 0.55m, p=0.039, Location 2 – mean difference = 0.64m, p=0.017). This 
demonstrates, as per prediction P2, that passenger information systems utilising the Robot 
Centric HRI paradigm (Responsive) will have greater influence on participants than those 
utilising the traditional HRI paradigm (Static and Dynamic). These results suggest that the 
Robot Centric HRI paradigm enabled R-PIS was most able to influence participants into 
conforming to its suggestions. This provides partial support for hypothesis H3 that increasing 
levels of robot interactivity (from Static to Dynamic to Responsive) will result in an increase in 
the effectiveness of its influence. 

3.3. Part 3 – Robot Interactivity and Influence Effectiveness 
Part 3 of the study focused on more deeply exploring H3. A field study was conducted with 
passersby in a university food court. As the passersby approached the influencing device, 
the information system presented as either Static or Responsive, depending on the 
passerby’s initial behaviour, and attempted influence. The subsequent effect was measured. 
Part 2 findings were also reproduced in order to verify that the result was still valid in the 
different setting. The following sub-sections describe the participants, experimental design 
and procedure, evaluation measures and hypotheses. 

3.3.1. Participants & Setting 

Participants (n=84) were randomly selected passersby to the experiment location who were 
traveling towards the influencing device; no particular demographic was evident. There was 
no remuneration nor effort to recruit participants. The experiment was staged in a long 
straight corridor with a blind corner in the university food court. This setting is shown in Fig. 
6a), which presents a snapshot taken during the period of the experiment. The influencing 
device was positioned ∼2m in front of the corner and against the right hand wall, from the 
point of view of the participants’ approach direction. Our SHP was located ∼8m from the 
influencing device on the opposite wall of the corridor, with its field of view directed out 
towards the influencing device. Figure 6b) shows a diagrammatic representation of the 
setting in which the positions of our SHP and the influencing device are shown, along with 
our SHP’s field of view. 

Unbeknownst to participants, there were two entry zones into the experiment, which are also 
depicted in Fig. 6b). Participants who entered the experiment area on the left hand side of 
the corridor were termed to be initially ‘Compliant’ (C) with the desired influence behaviour. 
Participants on the right side of the corridor, on the other hand, were termed ‘Non-Compliant’ 
(NC). Participants who were moving down the center of the corridor between these two 
zones (−0.2m – 0.2m) were considered neither C nor NC and were excluded. 
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Figure 6: The Part 3 study setting and setup; shown in a) and b) respectively 

 

3.3.2. Procedure & Measurement 

There were two cases for the robot-issued cue – Responsive and Static. These cases were 
randomly counterbalanced with the C and NC participants: in some trials the Static 
information system was presented to C participants and the Responsive cue was presented 
to NC participants, whilst in other trials this was reversed, other acts were consistent. Each 
trial commenced with the random selection of a case, and began when a participant walking 
down the corridor was detected by our SHP as having entered the Public Zone and was 
Read as either C or NC, depending on which entry zone they were located in; as shown in 
Fig. 6b). Depending on the case, the influencing device was set to either Static or 
Responsive. The participant’s position was subsequently tracked via our SHP, and, in the 
Responsive case, the influencing device’s cue was triggered as they crossed into the Social 
Interaction Zone. As in Part 1, the participants’ change in distance from their originally 
measured position, and relative to a zero-axis which was parallel to and in the center of the 
corridor, was used as the measure. As the participants would have had to move in the 
negative direction to cut the corner, and the positive direction was in line with the attempted 
influence direction, a less negative change in distance equated to greater influence. Two 
measures were taken for each participant. The first at the Entry point of the Social Interaction 
Zone relative to the influencing device. The second at the Final detection point – at which 
they passed out of the range of the person detection system – which was approximately 1m 
past the influencing device. 

3.3.3. Results 

In total, 100 trials were conducted. Trials in which the participant was lost by the person 
detection system before reaching the influencing device were not considered in the results, 
leaving 84 trials for analysis. There were 56 C and 28 NC participants. A total of ∼2,700 
person location readings were autonomously logged during the experiment, with an average 
of ∼32 person location readings logged per trial. Figure 7 shows the average of the measure 
for C and NC participants in the Static and Responsive cases. A two way ANOVA revealed a 
significant main effect between C and NC participants, F=1,614.91, p<0.05, mean difference 
= 0.21m, and a borderline significant main effect between Static and Responsive cases, 
F=121.02, p=0.058, mean difference = 0.058m. The interaction effect was not significant. 
Prediction P2 was further supported by these results (which first reproduced the results from 
Part 2 in order to verify the findings). Specifically, Responsive was found to result in 
borderline significant greater influence compared to Static (F=121.02, p=0.058, mean 
difference = 0.058m). The borderline result is potentially due to the exclusion of participants 
who were neither C nor NC (i.e. in the center of the corridor). 

These results provide support for prediction P3 that Reading an additional behavioural cue 
will yield insights useable to moderate Elicit to increase the effectiveness of the robot’s 
influence (in Part 3 of the study, an additional Read of the participant’s entry position into the 
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Social Interaction Zone). Specifically, a significant difference was found between the 
influence on C and NC participants (F=1,614.91, p<0.05), with NC participants influenced an 
average of 0.21m more than C participants. This result has implications for the design of 
Elicit influence strategies. For instance, consider the case where ‘too much’ influence may 
have a negative repercussion. The robot, in that case, may refrain from presenting Elicit cues 
to ‘more influenceable’ people observed to be already near this threshold. 

Figure 7: Influence reducing the extent of people cutting the corner 

 

4. Conclusions and Future Work 
The empirical results presented in this paper provide support for our three hypotheses and 
our predictions. In Part 1 study, we focused on quantitively validating the findings from an 
anthropological observations based investigation which defined three user-groups of 
application-space meaning. A field study was conducted in four locations in a major 
Australian public train station in which participants (n=368) were autonomously detected and 
tracked by our SHP. We found that measures autonomously extracted from empirically 
acquired data resulted in reliable and statistically valid robust clusters indicating behaviour 
consistency between locations within the station, and that were consistent with those 
identified anthropologically. Thus showing the feasibility of autonomously extracting 
behavioural indicators from observation and mapping these indicators to higher-levels of 
meaning; in this case user-group demographics. The results demonstrate the feasibility of 
robust real-time autonomous passenger user-group demographics classification down to the 
individual passenger level. 

In Parts 2 & 3 of this study, we focused on quantitively investigating whether increasing a 
robot’s interactivity (that is, its ability to Read behaviour, then moderate its Elicit strategy 
based on this information and known behaviour-to-meaning mappings) will result in an 
increase in the effectiveness of its influence (i.e. its ability to target its influence to achieve 
specific desired outcome(s)). A two-part study (total n=273) was conducted in both a major 
Australian public train station (n=84 + 105) and a university (n=84). Passersby were exposed 
to a robot designed to influence their passage, which had various levels of interactivity. The 
results demonstrated that the influencing device’s use of the Robot Centric HRI paradigm to 
enable a R-PIS, saw it most able to influence participants into conforming to its suggestions 
and highlighted nuances of the interplay between interactivity and influence. 

Considering the results holistically, we found that an increase of the robot’s interactivity led to 
a multi facetted view of the robot’s ability to influence, in this case the passage deviation of 
passersby. The intricacies of these findings have implications for HRI in this target 
application space. For instance, in the pursuit of achieving operator’s goals it may not always 
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be the appropriate course of action to design for maximum influence as over-influence or 
rejection may occur. For instance, if relatively small movement deviation is desired then a 
strategy utilising less influence may be employed as too much influence may have an 
undesired effect such as sending the passenger past the goal; which when recognised by the 
passenger increases the likelihood of future rejection. Or similarly, if a passenger is identified 
as a Business person the system may pursue a different influence strategy and present 
entirely different information to achieve its goal than if that passenger were a Tourist; e.g. 
information pointing to the next service versus information pointing to a local tourist attraction 
- both of which intend to redirect that passenger’s egress. This interplay between levels of 
interactiveness and information delivery modes guided by self derived knowledge generated 
in situ and in real time provides the underpinnings for supporting multiple operator derived 
multiple influence-objectives with the feasibility to change regularly; i.e. R-PIS. 

The importance of the findings presented here within is in that they evidence the feasibility of, 
and give shape to, a R-PIS that is capable of proactively, and in real time, identifying 
meaningful attributes of a passenger with which information delivery is desirable and then 
exploiting these attributes to most effectively communicate operator’s objective - to the point 
of influencing said passenger’s behaviour. These findings promise the resulting R-PIS 
usefulness for daily operations where potentially multiple influence-objectives which change 
regularly, exists; as opposed to static egress influencing devices such as barriers. 

Limitations – That presented has a number of limitations, the most pressing perhaps being 
that this study lacked an exploration of habituation to the influencing device and the 
subsequent effect on its ability to influence in actual congested train stations. Additionally, 
measurement inaccuracies potentially occurred, and differences in behaviour between male 
and female participants were not accounted for. Despite these limitations, however, the 
results of this study suggest there is value in increasing the interactivity of robots via the 
Robot Centric HRI paradigm, and furthermore – by increasing robots’ ability to Read 
behavioural cues and utilise behaviour-to-meaning mapping to moderate their Elicit 
strategies, the ability of the robot to target its influence to achieve specific desired 
outcome(s) can be greatly increased. 

Future work will focus on further investigating the interactivity of robots, particularly other 
behavioural cues the robot could Read to more intelligently moderate its Elicit strategy in situ 
in congested train stations. For example, an understanding of where participants gaze is 
directed can enable the robot to communicate intentionally to people in the environment 
through an understanding of where people’s attention is directed (as discussed in [Caraian 
and Kirchner, 2014b]). Additionally, the effect of commuter habituation on a robot’s ability to 
influence will be explored. 
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