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Abstract 

Traditionally, supply networks are modelled as multi-agent systems, in order to represent 
explicit communications between various entities involved. However, due to the increasingly 
complex and interconnected nature of the global supply networks, a recent trend of research 
work has focussed on modelling supply networks as complex adaptive systems. This approach 
has enabled researchers to investigate various topological properties which give rise to 
resilience characteristics in a given supply network. This paper presents a critical review of the 
published research work on this field. Key insights provided by this paper include; (1) the 
importance of defining the concepts of ‘resilience’ and ‘disruptions’ as measurable variables; 
(2) the limitations of existing network models to realistically represent supply networks; (3) 
potential improvements to the currently used growth mechanisms, which rely on node ‘degree’ 
to derive attachment probability instead of the more realistic and relevant node ‘fitness’; (4) 
importance of incorporating operational aspects, such as flows, costs, and capacities of 
connections between the nodes in addition to the topological aspects; and (5) derivation of a 
new set of resilience metrics capturing operational as well as topological aspects. Finally, a 
conceptual approach incorporating the above improvements to the existing supply network 
modelling approach is discussed.  
 

1. Introduction 
 

In today’s highly interconnected world, global supply chain networks (SCNs) play a vital role in 
fuelling international trade and economic growth. Due to the interconnectedness of global 
businesses, which are no longer isolated by industry or geography, any disruptions to supply 
chains, such as natural disasters, acts of war and terrorism, and even labour disputes are 
becoming increasingly complex in nature and global in consequences (Manuj and Mentzer 
2008). These disruptions can ripple through global supply chains, magnifying the original 
damage. Even relatively minor disturbances, such as labour disputes, ground congestion or 
air traffic delays can result in disproportionately severe disruptions to local and international 
trade. Therefore, this ‘fragility of interdependence’ creates unprecedented risks to global and 
local economies (Vespignani 2010). 

Up until the turn of the millennium, the primary focus of supply chain management was on 
increasing efficiency by means of globalization, specialisation and lean supply chain practice. 
Although, these practices enable cost savings in daily operations, they have also made the 
supply networks more vulnerable to disruptions (World Economic Forum 2013). Under a low 
probability-high impact disruption, lean supply chains shut down in a matter of hours, with 
global implications. Supply concentration and IT reliance make the supply chains vulnerable 
to targeted attacks, where critical nodes are impacted.   

World Economic Forum (2013) presented Accenture’s expert group research findings on how 
the recent trends in supply chain management practices have shifted risk distributions. Table 
1 summarises these effects.  
 
 

mailto:s.perera@econ.usyd.edu.au


2 
 

Table 1: Trends in Supply Chain Management Practices (World Economic Forum 2013) 

Trend Example Risk Impact 

Globalization Outsourcing, offshoring Locally concentrated risks propagate globally, 
involving multiple actors 

Specialization Geographical 
concentration of 
production 

Global production can be disrupted by a local event 

Complexity Product/network 
complexity 

Reliance on multiple parts/players in diverse 
locations reduces visibility and adds latency into 
monitoring systems 

Lean 
processes 

Single sourcing, buffer 
stock reduction 

While initially efficiency is improved and costs are 
lowered, there are fewer alternatives in the case of 
disruption 

Information 
availability 

Track and trace Systems increasingly reliant on information flow 

Government 
legislation 

Air cargo screening Measures can impede the efficient flow of the supply 
chain and transport networks 

 

It is evident that both practitioners and scholars in the field increasingly recognise the 
importance of building resilience into supply chains. A recent trend of publications, by both 
academic and industry communities, reveals the importance of the concept of resilience in 
global supply chains. Researchers in the field have acknowledged the increasing complexity 
of supply chains and have started investigating and modelling what were traditionally viewed 
as linear supply systems as ‘complex systems’ (Wycisk et al. 2008). Recently, increasing focus 
is given to the modelling of supply networks as ‘complex adaptive systems’, in order to examine 
the resilience characteristics offered by various complex network topologies (Surana et al. 
2005).  

The aim of this paper is to present a comprehensive review of the published research, mainly 
in the last decade, in fields related to the modelling of supply chain resilience as complex 
adaptive networks. Clarification of various ideas relating to supply chain resilience is provided 
and the approaches used by various researchers to model and understand the concept of 
supply chain resilience, using complex adaptive systems perspective, is discussed. Ultimately, 
this review paper aims to establish a stepping stone for the development of a comprehensive, 
novel conceptual framework for assessing supply chain resilience using complex adaptive 
network modelling techniques.  

2. Literature Review 
 

This section first investigates the concept of supply chain resilience, in the light of various 
definitions provided within the contemporary literature. Subsequently, the research work 
undertaken in the area of supply chain resilience modelling, particularly from a complex 
systems topology perspective, is discussed in more detail.   
 

2.1  The Concept of Supply Chain Resilience 
 

Surana et al. (2005, p. 4235) define the function of a supply chain as to ‘transfer information, 
products and finance amongst suppliers of raw materials, manufacturers, distributors, retailers, 
and consumers’. Therefore, an efficient supply chain permits the goods to be produced and 
delivered in the right amounts, at the right time, to the right locations efficiently and reliably 
(Christopher and Peck 2004). In line with the above, a resilient supply chain should respond 
quickly and effectively to a given perturbation such as a change in supply or demand, or to the 
failure of an individual component within the overall system due to manmade (war and terrorist 
attacks) or natural (hurricanes, tsunamis, earthquakes, floods, etc) disasters.  
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Up until the turn of 21st century, the key focus of supply chain management was to create 
efficient supply chains with high speed/low cost production and delivery. As a result, many 
companies have adopted centralised manufacturing and distribution facilities to take 
advantage of economies of scale arising from such systems. However, when demand for a 
particular product fluctuates unexpectedly, these companies are unable to respond in time 
(Lee, 2004). In light of the experience from 9/11 terrorist attacks, and other manmade and 
natural disasters which occurred within the last 10 to 15 years, the globalised supply chain 
operators have realised the importance of building resilient supply chains to withstand high 
impact-low probability disruptions. Therefore, the focus has recently been shifted from supply 
chain efficiency to supply chain agility (more broadly defined as supply chain resilience).  
 
The lack of historical data on the effects on supply chain operations from these high impact-
low probability events has made it difficult to develop a common resilience framework for SCNs. 
Therefore, most researchers rely on simulation models to understand this phenomenon. 
Alternatively, the researchers can extrapolate the effects low impact-high probability 
disruptions to supply chains, for which they have the benefit of hindsight, in order to estimate 
the impacts of high impact-low probability events (McFarlane and Sheffi 2003). 
 
The concept of resilience goes in parallel with the concept of disruption as identified by the 
researchers in a given context. A review of contemporary literature indicates presence of 
ambiguity and confusion in how the terms ‘resilience’ and ‘disruption’ are defined within the 
context of supply chains. Table 2 summarises the attempts by researchers, within the field of 
supply chain research, to define the concepts of ‘resilience’ and ‘disruption’. 
 

Table 2: Concepts of ‘Resilience’ and ‘Disruptions’ as defined by various researchers 

Reference Definition of Disruption Definition of Resilience 

Kim et al. 
(2015) 

Supply network disruption is 
defined as a situation where 
there no longer exists a walk 
between the source(s) and sink 
nodes as a consequence of a 
disruption(s) in nodes or arcs, 
i.e.: the supply network 
becomes disconnected.  

Supply network resilience = The total number of 
node or arc disruptions, which does not result in a 
supply network disruption, divided by the total 
number of node or arc disruptions. 

Levalle and 
Nof (2014) 

No formal definition provided 

Flow from one agent to another must comply with 
a service level agreement - i.e. A set of pre-
arranged, mutually agreed terms of service that 
describe the required characteristics of the 
supplied flow. The level of compliance to these 
pre-arranged conditions is defined as the quality of 
service (QOS). Resilience is defined as the 
inherent ability of a supply network agent to (1) 
anticipate errors and conflicts, (2) prevent them 
from creating disruptions to normal operation and 
(3) overcome disruptions with minimum QoS loss, 
within sustainable use of resources. 

Zhao et al. 
(2011a) 

Disruptions are identified as 
loss of some structures or 
functions; i.e.: node and/or link 
removal within the SCN. 

Resilience is defined as the ability of the supply 
chain to maintain operations and connectedness 
under the loss of some structures or functions (this 
is simulated by removal of nodes). 

Ponomarov 
and 
Holcomb 
(2009) 

A formal definition of disruption 
has not been provided. Sources 
of disruptions are discussed.  

Resilience is defined as the adaptive capability of 
the supply chain to prepare for unexpected events, 
respond to disruptions, and recover from them by 
maintaining continuity of operations at the desired 
level of connectedness and control over structure 
and function. 
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Sheffi and 
Rice (2005) 

The term ‘disruption’ has not 
been formally defined. 
However, a typical 'disruption' is 
characterised by 8 distinct 
stages - (1) preparation, (2) the 
disruptive event, (3) first 
response, (4) initial impact, (5) 
full impact, (6) recovery 
preparations, (7) recovery and 
(8) long term impact.  

Resilience is defined as the ability to bounce back 
from a disruption. Resilience can be improved by 
either creating redundancy or by increasing 
flexibility.  

Christopher 
and Peck 
(2004) 

Disruption is considered as an 
exposure to serious 
disturbance. 

Resilience is defined as the ability of a system to 
return to its original state or move to a new, more 
desirable state after being disturbed (flexibility and 
adaptability aspects are built into this definition). 

Dalziell and 
McManus 
(2004) 

No formal definition provided. 

Authors propose using the term 'resilience' to 
describe the overarching goal of a system to 
continue to function to the fullest possible extent in 
the face of a stress to achieve its purpose, where 
resilience is a function of both the vulnerability and 
of the adaptive capacity of the system.  

 

From the summary presented in Table 2, it is evident that no clear consensus exists among 
the researchers on the exact definition of the term ‘resilience’. Some researchers define 
resilience as an inherent property/ability within the supply network (Levalle and Nof 2014) while 
the others identify it as a goal for the overall system (Dalziell and McManus 2004). Some 
describe resilience as both an inherent property and a dynamic capability of the overall system 
(Christopher and Peck 2004; Ponomarov and Holcomb 2009). 
 
Although most researchers define the term ‘resilience’ in unique ways, only a few have 
attempted to link this concept with a formal definition of ‘disruption’ within the context of supply 
chain operations. However, from the context of these researchers, it can be assumed that the 
term ‘disruption’ is used to describe a significant unforeseen variation to business as usual 
operations. Therefore, it is important to recognise ‘business as usual operations’ within the 
context of supply chain operations since any business will likely have variations to their 
operations on a daily basis. As “you can’t manage what you don’t measure”, it is important to 
establish the term ‘disruption’ as a measurable variable, in order to effectively control and 
mitigate the unfavourable effects arising from such disruptions. This is particularly relevant in 
scenarios where post disruption supply network rewiring is sought – at which stage the rewiring 
costs (costs associated with establishing new relationships/contracts) must be compared 
against the costs arising from loss of service due to the disruption.  
 
Longstaff et al. (2010) define resilience in the context of ‘communities’. This definition presents 
resilience as a function of robustness and adaptive capacity (see Figure 1). As can be seen 
from the figure, the Y-axis of the graph represents the ‘robustness’ of the system – which 
essentially reflects how difficult it is to disrupt the overall system (i.e. the difficulty of pushing 
the system below the normal operational capacity by a set threshold). The X-axis of the graph 
indicates the ‘adaptive capacity’ of the system, which represents how quickly the system can 
‘bounce back’ to its normal operations once a disruption has occurred. The resilience of the 
system is therefore the area under the graph. Hypothetically, from the above definition, two 
separate systems could have an equal amount of resilience, but a different mix of robustness 
and adaptive capacity. Moreover, the relationship between the robustness and the adaptive 
capacity, as indicated below, suggests that they are inversely related to each other – i.e. at a 
given constant level of resilience, increasing the system robustness will reduce its adaptive 
capacity and vice versa.  
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Figure 1: Concept of ‘Resilience’ defined as a Function of Robustness and Adaptive Capacity 

(Longstaff et al., 2010) 

 

 

2.2 Complex Systems Modelling of Supply Chain Resilience 

Most research work, in the area of supply chain resilience, has focussed on qualitative 
strategies that could be adopted at each level within a supply chain to minimise the adverse 
impacts of disruptions (Christopher and Peck 2004; Christopher and Rutherford 2004; Dalziell 
and McManus 2004; Jüttner 2005; Sheffi and Rice 2005; Craighead et al. 2007). 
 
In addition to the above, quantitative work involving the simulation of supply chains is 
developed by a number of researchers. Traditionally, the supply networks are modelled as 
multi-agent systems, in order to represent explicit communications between various entities 
involved (Thadakamaila et al. 2004). However, a recent research trend has focussed on 
modelling supply networks as complex adaptive systems. Such an approach has enabled the 
researchers to investigate various topological properties of different networks which give rise 
to resilience characteristics in a given supply network.  
 
Moreover, recent advances in network theory have further encouraged the researchers to 
adopt a complex network perspective in modelling supply chain operations. This is evident in 
the work published by: Thadakamaila et al. 2004; Nair and Vidal 2011; Zhao et al. 2011a; Zhao 
et al. 2011b and Kim et al. 2015. Complex network perspective can be adopted to assess the 
supply chain operations, if the level of analysis considers the overall supply network level.  

Owing to the advancements in information technology and globalization in the 21st Century, 
supply chains which once resembled linear flows of goods from manufacturers to customers, 
have now evolved into dynamic and complex supply networks comprising various interacting 
entities. A supply network consists of nodes, which represent spatially stable entities (such as 
manufacturer, distributers, warehouses and retailers), and links, which represent dynamic 
interactions between nodes (such as transportation, communication and logistic routes 
between two or more nodes).  

Broadly classified, the complex network modelling of SCNs has mainly focussed on the 
following network topologies for benchmarking purposes; 

1) Random graphs (Erdȍs and Rényi 1959): where vertices are randomly connected to 
each other. 
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2) Small-world networks (Watts and Strogatz 1998): most nodes of such a network are 
not neighbours of one another, but most nodes can be reached from every other node 
by a small number of steps.  

3) Scale-free (Barabási and Albert 1999): degree distribution follows a power law, at least 
asymptotically. 

 
The key characteristics of the above network topologies are presented in Figure 2.  

Many researchers have developed new ‘hybrid’ network topologies which incorporate various 
characteristics of one or more basic network structures identified above (Thadakamaila et al. 
2004; Zhao et al. 2011a; Kim et al. 2015). By adopting such a ‘complex network view’ of supply 
chains, these researchers have studied the resilience of supply networks from a network 
topological perspective.  

2.2.1 Attachment Rules 

The variations to basic random and scale-free network models can be generated by various 
network growth models. A given network growth model governs the evolution of complex 
networks by specifying the way in which the new nodes connect with the existing ones in the 
network (Zhao et al. 2011a). This process is referred to as ‘attachment’ and therefore the 
various network growth models comprise various ‘attachment rules’ which subsequently 
generate networks with distinctive topologies. By accounting for growth mechanisms, these 
network models are able to represent dynamical and open system characteristics of real life 
SCNs, where nodes enter and exit the network over time (Hearnshaw and Wilson 2013). 
However, in contrast with the random and scale-free network models, the small-world networks 
imply a fixed number of nodes and therefore cannot be used to model network growth. Small-
world networks are of limited use when growth is involved in the network (typically the case in 
real world supply networks).  

Figure 2: Comparison of Random, Small-World and Scale Free Networks (Thadakamalia et al. 

2004)  
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For example, in random networks, the evolution is governed by a random attachment model, 
in which pairs of nodes are randomly connected with each other at a pre-defined probability 
level (Erdȍs and Rényi 1959). In contrast, scale-free networks evolve through a preferential 
attachment model which stipulates that the probability of attaching a new node to an existing 
node which is directly proportional to the degree (the number of connections) of the existing 
node (Barabási and Albert 1999). The preferential attachment model, in principle, represents 
the ‘rich get richer’ concept and therefore the resulting scale-free network topology can be 
used to model many real world networks, such as the World Wide Web, power grids, metabolic 
networks and social networks (Surana et al. 2005). This concept explains the existence of 
‘hubs’ (a few nodes with a large number of connections), which is a unique feature within scale-
free networks (Barabasi and Bonabeau 2003). 

2.2.2 Network Resilience Metrics 
 

Each of the complex network topologies discussed above comprise various resilience against 
failures levels1. Network failures can be categorised either as ‘random failures’ or ‘targeted 
attacks’. Random failures entail the same probability of failure across each node within a given 
network. By contrast, in a ‘targeted attack’ high degree nodes are compromised with a higher 
probability (Ruj and Pal 2014). 

It has, so far, been established that the random networks respond similarly to both random 
failures and targeted attacks. In comparison, the scale-free networks are resilient against 
random failures but are highly sensitive to targeted attacks. This is due to the presence of hubs 
(most connected nodes) in scale-free networks, which are usually the nodes targeted by an 
attacker. As per the above, random and scale-free network topologies represent two 
characteristically distinct network structures which operate in unique ways under random 
failures and targeted attacks. A number of researchers have modelled the operations of 
various SCN topologies under both random failures and targeted attacks, and attempted to 
establish an optimal topology which can withstand each type of failure, without compromising 
the overall network functionality.  

Each research study has established a set of resilience metrics, in order to assess and 
compare the resilience of each network topology simulated under random failures and targeted 
attacks. These resilience (or ‘robustness’, as used by some researchers) metrics are variations 
of the existing standard topological metrics from graph theory. Some of the most common 
network topology metrics are outlined in Table 3. Costa et al. (2007) and Rubinov and Sporns 
(2010) provide a comprehensive range of measurements used for characterization of complex 
networks.  
 

Table 3: Common network topology metrics (Zhao et al. 2011b) 

Topology level metric Description of the metric 

Characteristic path length. The average of the shortest path length between any two nodes. 

Size of the largest connected 
component of a network. 

The number of nodes in the largest connected component of a 
network.  

Average path length in the 
largest connected 
component. 

The average of the shortest path length between any two nodes 
in the largest connected component of a network. 

Maximum path length in the 
largest connected 
component. 

The maximum path length between any two nodes in the largest 
connected component of a network.  

  

The above metrics consider the roles of separate entities (nodes and links), within a distribution 
network, to be homogeneous. Such an assumption would be far-fetched, since the entities 
within a real-life supply network play different roles with different characteristics – for example, 

                                                           
1 The term ‘failure’ is used to identify the removal of nodes and/or links within a network. An important distinction between ‘failure’ and 
‘disruption’ is that under a disruption, the affected node or link could continue to operate, even partly.  
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the distance between two supply nodes or two demand nodes are not as important as that 
between a supply and a demand node (Zhao et al. 2011b). Therefore, the researchers (such 
as Thadakamaila et al. 2004; Zhao et al. 2011a and Zhao et al. 2011b) in the field have 
developed new metrics which realistically represent the heterogeneous roles of entities within 
the supply network. These metrics include variations to one or more of the basic network 
topology metrics, by adding a flavour of supply availability, connectivity and accessibility.  

Table 4 summarises published work in this area, considering various supply network 
topologies and their resilience measured by various metrics.  
 

Table 4: Supply Network Topologies and Resilience Metrics 

Reference Work Undertaken Supply Network 
Structures 
Considered 

Resilience Metrics 
Used 

Kim et al. 
(2015) 

This differentiates between 
node/arc level and network 
level disruptions. Four basic 
supply network structures are 
compared to obtain results for 
resilience under disruptions. 

Four network 
structures are 
analysed; (1) Block-
diagonal, (2) Scale-
free, (3) Centralized 
and (4) Diagonal 

Resilience definition 
proposed by the 
authors (See Table 1) 
is used as a single 
metric. 

Thadakamaila 
et al (2004) 

Four survivability components 
are assessed for three different 
network topologies; (1) 
Robustness, (2) 
Responsiveness, (3) Flexibility 
and (4) Adaptivity. Four proxy 
metrics are used to represent 
each of the above components. 

Three complex network 
models are simulated 
(random, scale-free 
and ad-hoc attachment 
based topology) and 
their survivability 
components compared 
by simulating removal 
of nodes from the 
network. 
 

Characteristic path 
length, Clustering, 
Robustness to random 
and targeted failure 
and Efficient rewiring. 

Zhao et al 
(2011a)  

New network resilience metrics 
that reflect heterogeneous roles 
of nodes in supply networks are 
used in a real life military 
logistic network. A hybrid and 
tunable network growth model 
called Degree and Locality-
based Attachment (DLA) is 
proposed. Computer 
simulations are undertaken to 
compare resilience of several 
supply network topologies, 
which were developed by using 
different growth models. 

Four networks are 
analysed; (1) Random 
(with random 
attachment), (2) Scale 
free (with preferential 
attachment), (3) 
Hierarchy + (with 
connections of nodes 
at same level in the 
hierarchy) and (4) DLA 
(with degree and 
locality based 
attachment). 

Availability (supply 
availability rate), 
Connectivity (size of 
the largest functional 
sub-network (LFSN)), 
Accessibility (average 
supply path length in 
the LFSN, max supply 
path length in the 
LFSN). 

 
 

3. Discussion of Reviewed Literature  
 

From the literature presented above, the importance of defining the concept of resilience, in 
the context of supply chains, is evident. The definition of ‘resilience’ should be established in 
parallel with the definition of ‘disruption’. Another important distinction should be noted 
between the concepts of failure and disruption – the former represents a fully compromised 
node or a link with no capacity while the latter represents a scenario where the affected node 
or the link can operate, at least partially. Furthermore, depending on the structure of the overall 
supply network, disruptions can be experienced in various forms, such as; supply disruptions, 
logistics disruptions, coordination disruptions and demand disruptions (Yi et al. 2013). These 
various disruptions can be attributed to either nodes or links or both, for modelling purposes.  
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Figure 3 illustrates the general methodology used by researchers to simulate random and 
targeted disruption to supply networks in order to assess and compare the resilience of various 
topologies (Thadakamaila et al. 2004; Zhao et al. 2011a; Zhao et al. 2011b; Kim et al. 2015).  

Various metrics are proposed by researchers to assess the supply chain resilience. For 
example, Kim et al (2015) derive a single metric for assessing supply network resilience, 
although this metric fails to account for different node and link level capabilities. Zhao et al 
(2011a) introduce a number of metrics which recognise the fact that nodes within a given 
network play heterogeneous roles. These metrics include availability, connectivity and 
accessibility characteristics of each network structure considered. Although it is possible to 
combine all the resilience metrics to a single objective function in order to optimise it, the focus 
is on investigating each component, which contributes to supply network resilience, separately. 
Whilst this approach provides a better understanding of supply network’s performance, under 
disruptions, from different perspectives (Zhao et al. 2011a), a single resilience metric would 
enable convenient comparisons to be undertaken between the resiliency of various network 
structures. However, such an approach will require the allocation of weights to each aspect of 
resilience based on their respective importance as determined by the application (for example, 
in a military logistics system, more importance will be placed on supply availability than on 
connectivity).  

Figure 3: General Simulation Methodology  

 

In relation to the growth mechanisms adopted to generate scale-free networks, the rich-gets-
richer concept reflected within the mechanism of preferential attachment represents the 
competitive advantage (also known as the first mover advantage) of the first firm to establish 
itself within the supply network (by forming exchange relationships), compared to the late 
entrants. The above mechanism, however, inaccurately assumes that all firms within the 
supply network are homogeneous in nature with no differentiation (Hearnshaw and Wilson 
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2013). In addition, the key requirement of the preferential attachment rule is that every new 
node joining the network must possess complete and up-to-date information about the degrees 
of every other existing node in the network. Such information, is unlikely to be readily available 
in a real world setting – for example, when considering a manufacturer for a new partnership, 
information about the overall reputation of that supplier may be more accessible than the 
number of their current suppliers and clients (Smolyarenko 2014). Furthermore, as Newman 
(2003) stipulates, the Barabasi Albert (BA) model is a model of an undirected network – 
whereas the real life SCNs would include directed relationships (e.g.: delivery of physical 
goods).  

Although the growth of random networks is driven by a random attachment model, in reality 
supply network formation (connection of nodes with others) is governed by a set of objectives 
which are far from random. In addition, the static network structure (with no growth model due 
to the fixed number of nodes) offered by small-world networks, in combination with the topology, 
which represents locally clustered nodes connected by a few long-distance arcs, do not 
typically represent real world supply networks. Consideration of such networks, which are 
rarely found in practice, is not suitable for deriving managerial implications for real supply 
networks.  

The most common application of the complex network theory to real supply chains entails 
seeking improvements to resilience of the supply network. Therefore, these supply systems 
represent existing networks, to which improvements are sought – in terms of substituting a 
new node (or a link) to a failed or a disrupted one within the network. However, it should be 
realised that the supply networks, for which the resilience testing is sought, already possess a 
unique structure that may have evolved over time based on a non-generalizable growth model. 
Despite the large amount of published research in the field of supply chain resilience within the 
past few years, there is limited empirical validation of the conceptual findings, particularly in 
the arena of complex network modelling. 
 
In this paper, we argue that the attachment rule (or the growth model) of the supply network 
should consist of a weighted attribute mechanism whereby each organisation (i.e. an existing 
supply network) can select a new node to attach to, based on its characteristics. These 
characteristics could include quantitative aspects (such as: labour/product costs, distance etc 
- which can be consolidated into a single generalised cost function) and qualitative aspects 
(such as: reliability, relationship, reputation, etc). This concept is discussed further in the next 
section. In addition to the above, literature also varies in terms of level of analysis; from 
individual firm level to a single supply chain level to the overall supply network level (Kim et al. 
2015). Therefore, it is important to recognise that the findings from a study undertaken at the 
supply network level may not necessarily be applicable for a scenario involving an individual 
firm and/or a single supply chain. Distinguishing the level of analysis of a given study allows 
practitioners to generalize valuable research findings at a particular level to which the findings 
are applicable.  

4. Future Research Avenues 
 

The rapidly increasing complexity of global supply chains has resulted in a recent shift towards 
decentralised systems capable of autonomous behaviour. These systems (referred to as 
‘smart systems’) are able to make independent decisions about production, distribution and 
transportation (Scholz-Reiter and Freitag 2007). Although this smart technology has the ability 
to streamline the supply chain operations, resulting in significant cost savings to the global 
companies, the algorithms required to manage these systems as a whole, have not been fully 
developed. Research work published by Vespignani (2010) and Wycisk et al. (2008) have 
noted that the use of smart systems, which optimise individual components of the overall 
system, can aggravate the vulnerability of modern supply chains to perturbations in the volatile 
and turbulent global markets. Therefore, trade-offs between different variables within the entire 
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system must be considered to achieve the optimal solution for a given supply network. As such, 
a holistic view of the overall supply network must be adopted, in the future, so that a system 
optimal solution, in terms of resilience, can be achieved. In this regard, the use of complex 
network theory to model real world supply networks is justified.  
 
It is evident from the contemporary research work reviewed and presented in this paper that 
complex network theory can be effectively utilised to create an abstraction of the real SCNs by 
representing individual entities within the supply network (such as suppliers, manufacturers, 
distributers, retailers, etc) as nodes and the relationships between them (deliveries, financial 
transactions, information flows, contracts, etc) as links. Table 5 illustrates the main findings 
and proposed future work from the key papers reviewed. 

From the findings and future research proposals noted in the literature reviewed, as 
summarised in Table 5, it is evident that most of the previous research work undertaken in the 
field of modelling supply chains as complex adaptive systems have given primary 
consideration to network topology aspects. However, it must be noted that in addition to the 
network topology, the properties of individual constituents and the nature of their interactions 
also play a major role in characterizing the resilience of the overall supply network.  

Table 5: Future Research Proposed in Literature 

Reference Main Findings Future Work Proposed 

Kim et al. 
(2015)  

In terms of resilience, it was found that Scale 
free>Centralized>Diagonal>Block-diagonal. 
The network-level metrics of betweenness 
centrality and centralization were found not 
correlating with resilience. The proposed 
approach clearly differentiates a node/arc 
disruption from a network disruption. Also, it 
was found that redundancy may not always 
lead to higher resilience. 

All nodes and arcs having same 
probability of failure could be improved 
to reflect variable probabilities 
assigned arcs/nodes depending on 
their importance within the network. 
Functional and operational 
characteristics of arcs/nodes could be 
incorporated into the model. Also, 
partial functioning of nodes and links 
and potential rewiring mechanisms 
could be explored. 

Thadakam
aila et al. 
(2004) 

For random attacks, the proposed network 
model is almost equal in robustness to scale 
free networks > random networks. For 
targeted attacks, the size of the largest 
connected component decreases much 
faster for the proposed network than other 
two. However, the proposed network 
performs better on the other two robustness 
measures. 

Modification of the growth mechanisms 
to represent more realistic scenarios. 
The adaptivity of the network relates 
more to node functionality than to 
topology - the node functionality should 
facilitate the ability to rewire. 

Nair and 
Vidal 
(2007) 

Examined the robustness of individual 
network topologies by undertaking paired 
sample t-test for each network topology 
considered. Long average path lengths 
between nodes were found to be detrimental 
to the network's robustness against 
disruptions. Shorter average distances 
between nodes in the network allow faster 
propagation of products/info thus aid in 
enhancing the responsiveness of the supply 
network in the event of disruption. 

The supply network robustness should 
be evaluated from multiple outcome 
metrics. Furthermore, it is important to 
consider various performance metrics 
such as inventories, backorders, total 
costs for a better understanding about 
network robustness. 

Within the past decade, a significant amount of effort is devoted to the study of measurement 
of node degree distributions, formulation of theories to describe the underlying growth 
mechanisms, effects of degree distribution and growth mechanisms on network resilience (by 
simulating addition and/or removal of nodes and links) and other related phenomena. Such 
investigations indeed further our understanding of the effects of network topology on supply 
chain resilience. However, such an approach is considered more suitable for a ‘naturally 
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occurring’ networks, whose structure evolves under an autonomous mechanism (endogenous 
to the system). Several examples of such systems include the internet, World Wide Web and 
social networks (Ghoshal 2009). The evolution of the aforementioned systems are distributed 
in nature, with no intervention by a central authority. In contrast, the evolution of a supply 
network is dependent on the interests of the overall organisation controlling the operations (e.g, 
the supply chain of Coca Cola would represent interests and priorities of this organisation). 
Furthermore, the nodes in supply networks, include various attributes (such as capacity, cost, 
qualitative features, etc). As such, important insights to supply network operations and 
resilience can be obtained by including the above operational aspects of nodes within the 
network model.  

In addition, the links in the network which represent exchange relationships between individual 
entities also include important features. Hitherto, the focus of modelling is on unweighted and, 
for the most part, undirected complex networks (where links between nodes are either present 
or not, as a binary variable). However, many real world networks exhibit large heterogeneity in 
the capacity and intensity of the connections (links) between the nodes. Rui and Ban (2012) 
state that empirical observations have illustrated the existence of nontrivial correlations and 
associations between link weights and topological quantities in complex networks. In the 
context of supply networks for example, the connection, be it a physical flow or a relationship, 
between one organisation and others are deemed to have variability in terms or the strength 
and importance (some exchange relationships may be more important compared to the others).  

Therefore, the supply network can be better reflected and understood in terms of weighted 
networks, so that the heterogeneity in capacity and intensity in various connections are 
captured accurately in the model. This weighting of links can be a function of volume, frequency 
and criticality of flows in a given period (Hearnshaw and Wilson 2013). The final network will 
include links which carry a numerical value representing the strength of the connection 
between the two nodes at each end (Boccaletti et al. 2006). A summary of complex network 
measures for weighted and directed networks is presented in Rubinov and Sporns (2010). 

It is therefore imperative to consider the above operational features in any modelling approach 
to obtain meaningful insights on the behaviour of real life supply networks. In following the 
above approach, the heterogeneity between the individual constituents of the overall supply 
network can be more realistically modelled. It should also be noted that the resilience metrics 
will also need to be updated in light of the incorporated node/link operational characteristics. 
Cox et al. (2011) define categories specific to static and dynamic resilience metrics in the 
context of transportation system operation (as opposed to the network topology). Some of 
these metrics include; conservation of service, input substitution, inventories, excess capacity 
and relocation. An assessment undertaken against the above set of metrics will accurately 
represent the resilience of a given supply network in light of both topology and operations. 
  
Most real world supply networks include a fixed number of firms (systems which do not 
continuously grow). However, modelling fixed number of firms is difficult since the static models 
do not exhibit a power law connectivity distribution (Barabasi and Bonabeau 2003). In this 
regard, some promising research work is undertaken in the recent years, to overcome the 
difficulty of generate scale-free networks topologies for networks with a fixed number of nodes, 
by means of either continuously adding links to represent new exchange relationships (Paperin 
et al. 2008) or through continuous rewiring of existing exchange relationships (Xie et al. 2008). 
The implication of the connection dynamics above translates to real world events as follows; 

1) The continuous addition of links can be described as the ongoing relationships, at 
various time periods, between different firms within the overall system (a manufacturer 
for example can have more than a single supplier); and 

2) The continuous rewiring of existing links can be described as the ongoing exchange 
behaviour where firms within the supply network rotate contracts among the available 
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pool (for example, supplier contracts tend to be rotated among various suppliers over 
time, such as periodic retendering of supply contracts). 

 

Hearnshaw and Wilson (2011) note the following limitations in using the ‘preferential 
attachment’ growth mechanism presented in the BA model for modelling real world supply 
networks; 

1) The network growth, while imperative to model real world supply networks, may not 
necessarily be applicable for the majority of the cases where supply chains do not 
continuously grow – i.e. most supply chain systems are likely to include a relatively 
fixed number of firms over extended periods of time; 

2) The preferential attachment assumes that acquisition of new exchange relationships 
by a given firm is determined solely by the number of its existing exchange 
relationships. This assumption implies that the number of exchange relationships for a 
given firm is a function of their duration within that supply network. Li (2009) has 
presented significant exception to the above idea using Google as an example – 
despite being a late entrant, Google has managed to dominate the search engines for 
the World Wide Web by establishing much more exchange relationships. As such, a 
need exists to represent the ‘fitness’ of the firm to explain behaviour where new entrants 
dominate the supply chain within a relatively short period of time, such as Google.  

3) Growth by preferential attachment produces a decaying clustering coefficient as the 
network expands. This may not a realistic representation of exchange relationships in 
real supply networks.  

 
As such, the preferential growth mechanism requires several modifications to account for 
modelling of the real supply chains. Ghadge et al. (2010) develop a lognormal fitness 
attachment model which accounts for the various factors that contribute to the likelihood of a 
new node being attracted to an existing node within a network. In the BA model, the attachment 
probability is based on the degree of the existing node (number of existing connections), and 
within the context of supply networks, this is a proxy for the existing impact that particular entity 
(organisation) has on the overall industry. However, within the supply network context, when 
deciding to connect to a new node, various attributes of this node will certainly be considered 
(be it the cost, reliability, efficiency, reputation, etc). As such, an attachment rule, which 
considers the node ‘fitness’ is deemed more relevant for modelling real life supply networks.  

In the model proposed by Ghadge et al. (2010), the fitness Φi which represents the propensity 
of node i to attract links is formed multiplicatively from a number of attributes {Φ1, Φ2,…., ΦL}. 
Subsequently, it is assumed that the number of attributes affecting a node’s attractiveness is 
sufficiently large and are statistically independent. Therefore, the overall fitness Φi will be 
lognormally distributed, regardless of the type of distribution of individual factors (Nguyen and 
Tran 2012). The above attachment rule, named the ‘Lognormal Fitness Attachment’ (LNFA), 
is almost identical to the BA model – the key difference being that information on node fitness 
is substituted in place of node degree information. Based on the BA model, the degree of a 
new node at the time it joins the network is small, and therefore this node has to exist within 
the network for a long period of time before it may become a preferential choice for the future 
new nodes to attach to. In LNFA, a new node which has a large fitness, despite being in the 
network for a short period of time, can make itself a preferential choice for the other new nodes 
entering the network (Nguyen and Tran 2012).  The above is a reasonable representation of 
real life network growth as attractiveness of a node may not result from the number of nodes 
it is connected to, rather it is the general ‘fitness’ of this node that is significant (see the Google 
example earlier in this section).  

The LNFA includes a tunable parameter Ϭ, which can be manipulated to generate a large 
range of real world networks. At one extreme, when Ϭ is zero, all nodes have the same fitness 
and therefore at the time a new node joins the network, it chooses an existing node as a 
neighbour with equal probability – thus replicating the random graph model with an exponential 
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degree distribution. On the other hand, when Ϭ is increased beyond a certain threshold, a very 
few nodes will contain very large level of fitness while an overwhelming majority of nodes 
include extremely low levels of fitness. As a result, the majority of new connections will be 
made to a single or a very few nodes which have high levels of fitness. The resulting network 
therefore resembles a monopolistic/”winner-take-all” scenario, which can also be observed in 
real world. Between the above two extremes (exponential and monopolistic) lies a spectrum 
of power-law networks which can closely represent the operations of real world complex 
networks.  
 

5. Conclusions 

This paper has presented a comprehensive and critical review of the previous research work 
undertaken in the arena of complex adaptive systems modelling of supply chain network 
resilience. Although the complex network theory offers a rich conceptual representation of the 
supply network principles, a number of potential improvements to the existing modelling 
approach are identified and are proposed as future research avenues. Furthermore, 
clarification is provided for the concept of ‘resilience’, which is to be used in parallel with the 
concept of ‘disruption’.  

The next phase of this work entails the incorporation of the proposed methodological 
improvements in a simulation model to obtain the findings on supply network resiliency. This 
model can then be tested empirically for on a supply network within a specific domain.  
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