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Abstract 

The failure of recent public transport projects raises concerns regarding the reliability of 
public transport demand models. One shortcoming of the practical demand models is that 
their results are presented using point estimation. By contrast, transport modellers could 
present their prediction using interval estimation. This would help decision-makers 
understand the whole distribution and quantify the downfall risk associated with public 
transport projects by controlling "Optimism Bias". This paper presents a case study to 
quantify the risk of using a mesoscopic model for public transport - Public Transport Project 
Models (PTPM).  

In a nutshell, PTPM employs a Nested Logit Model (NLT) that takes two sources of inputs: 
level of services (e.g. travel distance) and parameters. The parameters are estimated using 
maximum likelihood methods based on the observed mode choices derived from the 
Household Travel Survey. The estimation of some parameters relies on only a handful of 
noisy observations which are barely adequate to faithfully represent the whole population. 
Modellers need to quantify the relationship between their choice of parameters and the 
patronage prediction. One approach is to rank the parameters according to their influence on 
the final result. However, one of challenges of parameter ranking is the difficulty of 
analytically deriving the first deviation of the given NLT. Numerical simulation, e.g. Monte 
Carlo, is a rather easy approach to calculate the first deviation. This paper demonstrates how 
the high-performance PTPM carries out thousands of simulation runs to construct the 
patronage distribution by responding to different distributions of parameters. 

 

1. Introduction 

Public transportation systems are increasingly complex, incorporating diverse travel modes 
and services. Of thirty-five public transit projects that Martin Wachs of the RAND 
Corporation, has  studied in the US, thirty-three overestimated patronage and twenty-eight 
underestimated costs (Martin 2009). Transport modellers need to quantify the relationship 
between their choice of parameters and the resulting patronage prediction.  

The Strategic Travel Model (STM) is a world class tool, used for projecting travel patterns in 
Sydney, Newcastle and Wollongong under different land use, transport and pricing scenarios 
(James, Andrew et al. 2011). In 2011, BTS developed a mesoscopic model, Public Transport 
Project Model (PTPM), to address a few limitation of the STM. The STM is inefficient when 
applied to local public transport projects because of its lack of detail and flexibility. The PTPM 
is built on the output of STM, and has a focus on public transport and public transport 
demands. The PTPM gives extra flexibility to model specific public transports projects by 
improved accuracy and a better level of detail (David 2011). First, it is based on good 
observed local surveys of public transport travel patterns and transaction records, and thus 
able to capture local travel behaviours and demonstrate an accurate representation of travel 
patterns in the corridor of interest. Secondly, it is specifically designed to have shorter run 
times making it easier to run many tests of alternative schemes and scenarios. Thirdly, it is 
capable of addressing behavioural factors not included in the strategic model, such as 
crowding and improved modelling of rail access by car (park-and-ride and kiss-and-ride). The 
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PTPM has been applied to major public transport projects, including the North West Rail 
Link. The study area of the North West Rail Link project covers some Greenfield areas, e.g. 
Rouse Hill and Kellyville. These areas are witnessing large population and employment 
growth. Due to the lack of existing public transport facilities, the local residents are using car 
access to the rail stations. All these features distinguish this project from other public 
transport projects in NSW.  

The PTPM employs a Nested Logit Model (NLT) to forecast the public transport demand for 
the study area. The NLT combines the level of services (e.g. travel distance) and parameters 
to estimate the mode shares. The physical travel skim is directly observable, but the 
parameters are estimated by Maximum Likelihood Estimation methods (MLE) according to 
the observed mode choices collected by the Household Travel Survey (HTS).  

The Household Travel Survey (HTS) is the largest and most comprehensive source of 
personal travel data for the Sydney Greater Metropolitan Area (GMA). This survey is a 
benchmark for best practice in travel surveys in Australia and around the world, as well as 
being the longest running continuous household travel survey in the country. However, the 
PTPM requires more detailed and comprehensive representations of the transport users, and 
some of requirements are beyond the current HTS:  

1) Incompleteness of survey data 

The HTS has low spatial coverage and low temporal coverage. The HTS interviewed 
approximately 8,500 people in 3,500 households annually over the last ten years (BTS 
2012). Compared with a population of over 3 million people in Sydney, this survey covers 
only a small portion of travellers. It is also well-known that travellers have different 
preferences between work days and weekends, or between inter-peak and peak time within 
a day. This requires even more data to represent the variance of an individual traveller.  

The PTPM estimates 4 demand matrices (for different purposes) each of which contains 
2690*2690=7,236,100 OD pairs. By considering the relatively small sample size (85,000 out 
of 7,236,100), the estimation of some parameters indeed relies on only handful of 
observations which are barely enough to represent the whole population. 

2) Noisy data 

Even though there is a systematic method to minimize the data error, unavoidably, the HTS 
data contains noise due to human errors. These errors can be from data entry mistakes or 
from false claims from the interviewee.  

3) Relevance of data to the future 

All the HTS data represents only the past travel behaviours. It is well-known that travel 
patterns evolve over time due to various social and technology changes.  

All these limitation of current HTS could lead to biased estimation of the underlying true 
parameters. Modellers need to see the impact of any bias introduced in the estimation 
process on the final forecasting. One of the key questions if parameters are improper, is what 
is its influence on the final result? Can modellers rank the parameters based on their 
influence on the final result? Then, based on the rank, modellers can focus on the most 
influential parameters. 

More importantly, this paper demonstrates that the final prediction is presented as interval 
estimation (e.g. confidence intervals) instead of point estimation that is the expected value. In 
statistics, the expected value (the first moment) is inadequate to represent an arbitrary 
distribution. The higher order statistics gives adequate representation of the distribution of 
the patronage prediction. By understanding the whole distribution, the risks associated with 
the project are better understood (Bliemer, Rose et al. 2008). This paper demonstrates a 
method to discover potential over-estimation or under-estimation of patronage, and control 
the so-called "Optimism Bias". One of the key challenges of quantifying the risk and 
uncertainty is that it is difficult to analytically derive the closed-form first deviation of a given 
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NLT. Numerical simulation, e.g. Monte Carlo, is a rather easy approach to calculate the first 
deviation. This paper demonstrates the high-performing PTPM carries out thousands of 
simulation runs to construct the demand distribution by responding to the entire joint 
distribution of parameters. 

A black swan is positive or negative event that is deemed improbable yet causes significant 
consequence (Taleb 2010). The choice of parameters becomes a kind of art, based on a 
sixth sense or superior expertise. Very often the choice is conservative and risk-averse. It 
tends to be average values with the assumption that prediction follows a normal distribution. 
In this way, the risk is often underestimated by the thin tail of the normal distribution. 
Additionally the lack of data availability, the tight project schedule, the complexity of the 
models, and the lack of computing power, all lead to difficulties in estimating the full 
distribution and measuring the full scale of risk. 

2. Nested Logit Tree 

Random utility models (RUMs) state that a decision maker, labeled n, faces a choice among 
J alternatives. The decision maker would obtain a certain level of utility (or profit) from each 
alternative. The utility that decision maker n obtains from alternative j is 𝑢𝑛,𝑗  , j = 1,..., J. This 

utility is known to the decision maker but not by the researcher. The decision maker chooses 
the alternative that provides the greatest utility (Train 2009). This utility function can be 
decomposed as two parts.  

𝑢𝑛,𝑗 = 𝑣𝑛,𝑗 + εn,j 

The first part is the representative utility 𝑣𝑛,𝑗  , and it depends on parameters that are 

unknown to the researcher and therefore estimated statistically. The second part of the utility 
is unobserved by the researchers. It captures the factors that affect utility but are not 
included in representative utility.  

2.1 Unobservable Components of Utility 

The error terms ε are unobserved random variables that are described by a probability 
distribution. In general, this may be a joint distribution of all the error terms, so we use the 

vector εn,j = [εn,j,1 , εn,j,2 , εn,j,3 ]𝑇, which aggregates the error terms for all products.  

Apart from the error terms, other components which are not directly observable include the 
parameters. For example the bus utility function in the PTPM is: 

vb =λ2p * [ivt + αp,b*wait + βp,b*(access+egress time) + γp,b*Int + farep/VoTp,b] 

where αp,b is the wait time weight, βp,b is the acess-egress time factor, and is γp,b the 
interchange penalty. All these parameters are estimated by observing the travel behaviours. 

2.2 Public Transport Project Model 

The Public Transport Project Model (PTPM) includes a Nested Logit Structure (NLT) for 
mode choice purposes. The NLT is illustrated in the diagram below, showing the options that 
will be covered.  Level-of-service elements are included at all levels. Also shown is where the 
matrix-based public transport fares and vehicle operating costs are introduced.  For car 
access and bus/walk access to rail, the best 2 station options are incorporated in the model. 
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Figure 1 The nested logit structure as implemented in the PTPM 

 

The structure and parameters of the PTPM mode choice model are developed from existing 

local and international knowledge. STM 3 is the most recent multimodal modelling estimation 

exercise in Sydney and provides the most sensible starting point to determine the details of 

the PTPM mode choice model specification. The STM 3 coefficient values are given in Table 

1. The STM 3 uses the Maximum Likelihood Estimation (MLE) to estimate the coefficients 

based on the Home-based Travel Survey (HTS). The STM 3 has 2690 internal travel zones 

which is the smallest measurement unit. The STM 3 is split into 7 purposes, so the STM 

estimates at least 7 demand matrices each of which contains 2690*2690 OD pairs. The HTS 

interviewed approximately 8,500 people in 3,500 households annually over the last ten years 

(BTS 2012). Clearly the data fed into the STM is not sufficient to cover the whole Sydney 

area. An under-sample can cause the final estimation to be biased towards very few 

observations. More importantly, the HTS collected data over the past 10 years. Due to 

dramatic demographic and economic changes (e.g. an immigration influx and financial 

crisis); the current travel behaviour can be significantly different from 2000s.  

Table 1 STM3 Coefficients 

Level-of-Service 
Parameter 

Mode 
Coefficient 

HBW HBEB 
HBEd 

Pri 
HBEd 
Sec 

HBEd 
Tert 

HBS HBO 

First (or overall) 
wait time 

train 4.42 4.03 0.34 0.34 1.72 1.79 0.86 

bus 2.46 2.42 0.42 0.32 1.51 2.63 2.04 

Other wait time 
train 3.30 

    
0.92 

 
bus 1.83 

    
1.35 

 
Access/egress 
time (walk, bus) 

train 2.73 4.18 0.23 0.23 0.32 0.91 0.20 

bus 1.51 2.51 0.29 0.22 0.28 1.33 0.47 

Access/egress 
time (car) 

train 3.24 3.99 
 

0.61 fixed fixed fixed 

Mechanised mode  
trips 

Car Driver Car passenger Public Transport 

No-rail fares No-rail Rail 

PT access fares walk/PT access car access 

KnR PnR 

Rail fares & VoC station 1 station 2 station 1 station 2 

station 1 station 2 
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Boardings 
train 

     
16.1 12.4 

bus 
     

23.7 29.7 

Values of time 

train $4.5-9 $7-13 
 

$16.4 $11.70 $6.18 $5.30 

bus $7-14.5 $9-16 
 

$16.2 $8.90 $3.14 $1.80 

car $12-23 $22-43 
 

$24 $32.70 $9.50 $7.20 

 

Expected values of these coefficients are given in Table 2, based on national and 
international experience. 

Table 2 Coefficient Standard Values 

Level-of-Service 
Parameter 

Target Values Issues 

Overall wait time 
~2.0 

1.4 (ATC) 
Implications of non-generic values. There appear to be 
some unrealistically low and high values. 

Access/egress 
time  

~2.0 
1.4 (ATC) 

Implications of non-generic values. There appear to be 
some unrealistically low and high values. 

Boardings 5-10 mins 
Implications of non-generic values. It is not clear what has 
been assumed if there is no boardings penalty (is it 5mins?).  
The calibrated penalties seem very large. 

Values of time 
Business: ~$42 
Non-business: 

~$11-13 

As discussed in the report, many of these implied values of 
time are different from expectations 

 

3. Case Studies 

It is difficult to derive a closed-form relationship between the parameters and mode shares. A 
Monte Carlo simulation approach is employed to demonstrate the joint distribution in this 
case study. One of major obstacles of carrying out the Monte Carlo simulation for a large and 
complex NLT is the computation time of the model. In this case study, 3,000 runs of 
simulation are carried out to generate sufficient samples to form the distribution. In order to 
get the results within a reasonable time period, the PTPM is written in Visual C++ to 
maximize its performance and reduce the runtime. The original PTPM is written in Python, 
and each run takes 30 mins. The C++ version of PTPM takes less than 1 min to complete 
one run.  

Two sets of parameters are selected: wait time weights (i.e. Alpha) and boarding or 
interchange penalties (i.e. Gamma). Both wait time weights and boarding penalties are 
included at three levels of the NLT: Kiss and Ride, Bus access to rail, and Bus only.   

 The Alpha for Kiss and Ride is for the wait time between the rail station and destination 
zone, including the wait time for rail and wait time for connecting bus at the egress leg 
etc.  

 The Alpha for Bus access to rail is for the wait time between original zone and the rail 
station, including only the wait time for bus to access rail.  

 The Alpha for Bus only is for the wait time between original zone and the destination 
zone, including all the wait time in the trip.  

 The Gamma for Kiss and Ride is for the boarding between the rail station and destination 
zone, including the first boarding for rail and boarding for connecting bus at the egress 
leg etc. 

 The Gamma for Bus access to rail is for the boarding between original zone and the rail 
station, including only the boarding for bus to access rail.  
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 The Gamma for Bus only is for the boarding between original zone and the destination 
zone, including all the boarding in the trip. 

In this case study, a uniform distribution between 0 and 4 is assumed for the Alpha, and a 
uniform distribution between 0 and 20 is assumed for the Gamma. This assumption is based 
on the STM3 coefficients (see Table 1), which is estimated by MLE, and Coefficient Standard 
Values (see Table 2), which is specified by the experts using their experience.  

Figure 1: Distribution of Alphas: the x-axis is the value of the parameters, and the y-axis is the 
frequency.  

 

Figure 2: Distribution of Gammas: the x-axis is the value of the parameters, and the y-axis is 
the frequency. 

 

These parameters must be mutually independent each other. The correlation between 
parameters are measured and displayed at the table below (Table 3). All the correlation 
values are well less than 0.05. It indicates the independence between the parameters.  

Table 3 Correlation between Choices of Parameters:  

 Alpha Knr Alpha Rbw Alpha Bus Gamma Bus Gamma Knr Gamma Rbw 

Alpha Knr 1 0.015266 0.010492 0.007133 0.011663 -0.02407 

Alpha Rbw 0.015266 1 0.000761 -0.00347 0.002467 -0.0098 

Alpha Bus 0.010492 0.000761 1 0.01372 0.017285 0.03607 

Gamma Bus 0.007133 -0.00347 0.01372 1 -0.01385 -0.02945 

Gamma Knr 0.011663 0.002467 0.017285 -0.01385 1 -0.02366 

Gamma Rbw -0.02407 -0.0098 0.03607 -0.02945 -0.02366 1 
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The PT mode share is a demand-weighted average of all PT mode shares across the 
2690*2690 OD pairs. After 3,000 runs, the expected value is 19.52% and standard deviation 
is 4.18%. The figure below displays the distribution of average PT mode shares of these 
3,000 simulation runs. Clearly, the distribution is not a normal distribution. The best fitted 
distribution is the Beta distribution (alpha = 18.44 and beta = 75.98). When the Alphas are 
set as 2 and the Gammas are set as 10, the estimated PT mode share is 17.6%. The 
majority of this distribution is between 12% and 32%, while its peak skews towards the lower 
end. More importantly, there is still around a 16% chances to have PT share less than 15%, 
which is a standard deviation away from the expected value at the lower end.  

One explanation is that while the wait time weight and boarding penalty increase from zero, 
the PT share will decrease rapidly from around 36%. But at the high end of the parameter 
range (4 for wait time weight, and 20 for boarding penalty), the impact of the parameter 
change diminishes. Therefore, a large portion of PT mode shares concentrates on the lower 
half. For the decision-makers, this distribution indicates that the PT model share is around 
19.25%, and is within the range 12% - 32%. 

Figure 3: Distribution of Mode Shares: the x-axis is the value of the mode shares, and the y-
axis is the frequency. 

 

The second part of the case study is the parameter ranking, and demonstrates an 
experiment to measure the impact of an individual parameter choice on the mode shares in 
the PTPM. This experiment addresses an open question: which parameter has the highest 
influence on the mode share and demand?  
The same two sets of parameters as shown in the previous section are chosen to 
demonstrate their influence on the average mode share cross the whole Sydney: The first set 
consists of the wait time weights (i.e. Alpha) for Bus only, Bus/Rail, and Kiss and Ride, and 
follows a uniform distribution between 0 and 4. The current setting in the PTPM is 2.5 for all 
three parameters. The second set of parameters consist of boarding penalties (i.e. GAMMA) 
for Bus only, Bus/Rail, and Kiss and Ride, and follow a uniform distribution between 0 and 
20. The current setting in the PTPM is 5 for bus only, and Kiss and Rail, and 10 for Bus/Rail.  

The PTPM calculates the difference between the mode shares of base year and future year 
to estimate the PT demand of future year. In the following experiment, the formula is:  
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Demand = Base year STM demand * (Future Year Mode Share – Base Year Mode Share) 

Figures 4 and 5 display the relationship between PT share and individual parameters. Apart 
from that, a linear regression between PT share and parameters is displayed below (Table 4) 
to rank the parameters. According to Table 4, the wait time weight of the Kiss-and-Ride has 
the largest influence on the PT share. That is around -0.025. That means if we increase the 
wait time weight of the kiss-and-ride by 1, the PT share will drop 2.5%.  

Moreover, the relationship between the Alpha of Kiss and ride and mode share is clearly 
non-linear. The mode share drops more quickly when alpha is set less than 2.5 than after 
alpha is set larger than 2.5. In contrast, the Gamma of Bus only almost has no influence on 
the mode share.  

Figure 4 Impact of individual parameters on PT Share: the x-axis is the value of the parameters, 
and the y-axis is the PT mode share. 

 

Figure 5 Impact of individual parameters on PT Demand: the x-axis is the value of the 
parameters, and the y-axis is the number of PT trips. 
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Table 4 Linear Regression between PT shares and Parameters 

Regression Statistics 

Multiple R 0.975439983 

R Square 0.95148316 

Adjusted R Square 0.951369651 

Standard Error 0.009212553 

Observations 3000 

 

  Coefficients 

Intercept 0.320115166 

ALPHA_KnR -0.025739749 

ALPHA_RBW -0.005321281 

ALPHA_Bus -0.003690901 

GAMMA_Bus -0.000270005 

GAMMA_KnR -0.004514769 

GAMMA_RBW -0.000867965 

 

The relationship between rail share and individual parameters are displayed in Fig 6 and 7. 
The rail mode is one level below the PT mode in the NLT structure. The bus mode competes 
with the demand for rail mode. The lower values of Alpha and Gamma of Bus mode reduce 
the rail mode share, as more people shift from rail to bus. But the shift is very small.  

Figure 6 Impact of individual parameters on Rail Share: the x-axis is the value of the 
parameters, and the y-axis is the rail mode share. 

 

 

Figure 7 Impact of individual parameters on Rail Demand: the x-axis is the value of the 
parameters, and the y-axis is the number of rail trips. 
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5. Conclusion:  

This paper demonstrates a case study of quantitatively measuring the risk (or uncertainty) 
associated with a mesoscope model of public transport project. The experiments clearly 
demonstrate: first, the model share does not follow a normal distribution, and the assumption 
of the normal distribution may help to understand the risk; secondly, the relationship between 
individual parameters and mode share is always non-linear or close to linear; thirdly, the 
influence of parameters on the mode share are not the same. Some parameters have far 
greater influence than others. For example, the influence of Alpha of Kiss and Ride is 95 
times of the influence of the Gamma of Bus only. Instead of examining all the parameters, 
transport modellers could focus on the most important parameters.  

The major obstacle of carrying out the Monte Carlo simulation is the runtime. It requires 
modellers to have advanced computing skills and high performance computers. This paper 
demonstrates the benefit of the simulation, and measures the downside risk for public 
transport projects to avoid large scale failure.  
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