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Abstract 

Dwell time at the busway station has a significant effect on bus capacity and delay. Dwell 
time has conventionally been estimated using models developed on the basis of field survey 
data. However field survey is resource and cost intensive, so dwell time estimation based on 
limited observations can be somewhat inaccurate.  

Most public transport systems are now equipped with Automatic Passenger Count (APC) 
and/or Automatic Fare Collection (AFC) systems. AFC in particular reduces on-board 
ticketing time, driver’s work load and ultimately reduces bus dwell time. AFC systems can 
record all passenger transactions providing transit agencies with access to vast quantities of 
data. 

AFC data provides transaction timestamps, however this information differs from dwell time 
because passengers may tag on or tag off at times other than when doors open and close. 
This research effort contended that models could be developed to reliably estimate dwell 
time distributions when measured distributions of transaction times are known. Development 
of the models required calibration and validation using field survey data of actual dwell times, 
and an appreciation of another component of transaction time being bus time in queue. This 
research develops models for a peak period and off peak period at a busway station on the 
South East Busway (SEB) in Brisbane, Australia. 

1. Introduction 

Smart card fare collection system is a mode of Automatic Fare Collection (AFC) where it has 
overtaken other fare collection systems such as magnetic strip and paper tickets due to its 
reliability to both transit passengers and operators. Smart card transaction data gives the 
opportunity to find transaction time at particular bus stop for specific buses individually (Sun 
and Xu, 2012).  

South East Queensland’s (SEQ) transit agency, TransLink Division, introduced a touch 
contact smart card called ‘go card’ in 2009 (Jaiswal et al., 2007). According to TransLink, 
more than 80 percent of public transport trips are now made using go card (2011). 

The use of smart card reduces the vehicle stopping time significantly. According to 
TransLink, smart card use reduces individual boarding time from upwards of 11s to 3s, which 
translates to a time saving of up to seven minutes on an average bus trip (Translink, 2011). 
The other advantage with smart card is richness of transaction data. This provides much 
larger volumes of personal travel data than it is possible to obtain from other data sources. In 
addition to that smart transaction data give access to continuous trip data covering longer 
period of time which is not possible to reach with existing methods (Bagchi and White, 2005). 
Therefore, TransLink’s South East Busway (SEB) has been selected to conduct this 
research. 
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Dwell time at stops is understood to be an important component, which can impact on travel 
time in transit systems and particularly on bus operations (Milkovits, 2008). The dwell time is 
the time that a transit vehicle spends at a station or stop while passengers board and alight. 
Although dwell time is highly correlated with passenger boarding and alighting, dwell time 
differs with stop characteristics such as platform height, door width, fare collection method, 
internal layout of vehicles, occupancy of vehicles, etc (TRB, 2003a). 

The objective of this paper is to develop a model to estimate dwell time using smart card 
data calibrated using observed dwell time measurements. 

2. Literature Review 

Earlier research on dwell time is mainly focused on manually collected data and used to find 
the impact of fare type, boarding and alighting passengers, crowding, and vehicle 
configuration. Levinson (1983) found that dwell time is equal to 5s plus 2.75s per boarding or 
alighting passenger in a no-fare bus system until passengers exceed the seating capacity, at 
which point the service time increases (Levinson, 1983). Guenthner and Sinha (1983) found 
a 10s to 20s penalty for each stop plus a 3s to 5s penalty for each passenger boarding or 
alighting (Guenthner and Sinha, 1983). However most of early dwell time models were 
developed by using limited samples. Another dwell time model was proposed by Puong in 
2000, showing linear effects in passenger boarding and alighting but with nonlinear effects in 
the on-vehicle crowding level (Puong, 2000). 

Later, the Transit Capacity and Quality of Service Manual 2003 (TCQSM 2003) highlighted 
that dwell time is an important measure in capacity and service planning. TCQSM 2003 gave 
a standard value for dwell time calculation with passenger service times of 3.5s with 
smartcards and 4.2s with magnetic stripe tickets (TRB, 2003a). In addition to that, crowded 
situations and bus type differences are accounted by adding or subtracting 0.5s to or from 
each service time. 

Jaiswal et al. introduced time lost into the dwell time model (Jaiswal et al., 2009). The time 
lost by the bus is a loading area specific parameter and is included to account for the 
requirement that the passenger walk along a lengthy Bus Rapid Transit (BRT) station 
platform to reach the bus entry door. The differences between boarding and alighting times 
at three loading areas at one station were analyzed in their research. They have come up 
with following conclusions: a) passenger per boarding time was 5.9s: b) the least time lost 
resulted from the mid-loading (the second) area, while the greatest time lost resulted from 
loading at the third area: and C) 85% of the time lost calculated for each of the three loading 
areas was 7.2s, 4.5s, and 8.7s (Jaiswal et al., 2009, Jaiswal et al., 2010). 

More recently, bus dwell time analysis was carried out using on-board video by Fricker, and 
he developed a linear relationship for the dwell time as number of standees of the bus, 
number of passengers alight from front door and number of boarding passengers (Fricker, 
2011). However their forecast does not include a value for number of passengers alight from 
front door. Li et al. (2012) introduced dwell time estimation models for BRT stations using 
traditional survey method (Li et al., 2012). They found that dwell time follows a logarithmic 
normal distribution with a mean of 2.56 and a variance of 0.53. However, conducting a long 
survey to see the dwell time distribution can be time consuming and costly. 

Even though there are some good dwell time models found in the literature, they have limited 
applicability. Therefore a simple and robust model to estimate dwell time is required. This 
specific research is designed to develop a dwell time estimation model from smart card data. 
Structure of the paper starts with busway station selection for the study them followed by 
methodology, data investigation, dwell time model development, model validation and finally 
the conclusion. 
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3. Study Station Selection 

Buranda station on the SEB is selected for this study. Buranda experiences high passenger 
exchange and some bus queuing on the inbound platform during the morning peak period 
and outbound platform during the evening peak period. Therefore it is perfectly suitable to 
develop a dwell time model.  

Buranda is the fourth of 10 stations along the 16km South East Busway (SEB) and is 4.4km 
south of the Brisbane CBD Queen Street Bus Station and situated just outside of the inner 
busway stations (Bitzios et al., 2009). It has one platform in each direction, and on each 
platform three off-line linear loading areas and a passing lane. With a suburban railway 
station situated on ground level above, Buranda is an important bus/rail interchange (Figure 
1). Furthermore, it is a junction station between the north-south SEB, the 4km Boggo Road 
Busway (BRB) which connects to the SEB via a signalized T intersection to the north, and 
the 1.0km Eastern Busway (EB) which connects to the SEB via a signalized T intersection to 
the south. BRB contains four stations with its western terminus station of University of 
Queensland being one of Brisbane’s second most significant transit destinations after the 
CBD. EB contains two stations and at its eastern end connects to the high volume Old 
Cleveland Road on-street bus commuter corridor. All buses through Buranda station are 
managed by TransLink. 

Figure 1: Buranda Busway Station Layout 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Black line indicates the sections of SEB, EB and BRB and purple dots indicate Queens Street, 
Cultural Center, South Bank, Mater hill and Buranda station from top to bottom of the figure (source: 
www.translink.com.au, www.google.com.au) 

Although there are three loading areas on the platform, a fourth itinerant loading area is 
created during peak periods when bus drivers are able to pull into it and dwell using only the 
front door to serve passengers.  

3.1 Bus Operation at Buranda 

Buses passing through Buranda station are operated by Brisbane Transport, Logan City Bus 
Services, Mount Gravatt Transport, Park & Ridge Transport and Veolia Transport under 
contracts to TransLink. There are three major service patterns in Buranda (FTA, 2008): 
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 Bus Upgrade Zone (BUZ) high frequency bus services operating at least every 10 
minutes during peak periods and at least every 15 minutes during off-peak periods, 
seven days a week.  

 All-stops services, with variable frequencies and spans of service.  

 Weekday peak hour, peak direction CBD focused express services that have limited 
stopping patterns. 

3.2 Fare collection systems at Buranda 

There are two methods of fare collection implemented on the SEB. The most popular 
amongst passengers is the smart card. Usually, smart card passengers have to tag on using 
their valid smart card when boarding and tag off when alighting. Each bus is equipped with 
two smart card readers (two channels) per door. Passengers can alight from either front or 
rear door but boarding is only permitted through the front door. All fare processing is off-
board. 

The secondary method of fare collection is by paper transfer ticket. A passenger without a 
smart card may purchase their paper transfer ticket from the bus driver on boarding, or show 
the driver a valid paper transfer ticket. They need not show their ticket on alighting. Only a 
small proportion of passengers still use paper tickets as they are priced at a 30 percent 
premium over smart card fares. This method is not permitted on prepaid services which are 
prevalent during peak periods. 

4. Methodology 

The primary objective of this paper is to develop a dwell time model and bus queuing time 
model using smart card data. Figure 2 illustrates this process, which includes two phases. 
The first phase is to develop a gross dwell time model, a net dwell time model and a bus time 
in queue model, all for a peak time period. The second phase is to develop a net dwell time 
model for an off-peak time period to validate the peak period net dwell time model.  

Figure 2: Research Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Data Investigation 

Data investigation was carried out in two sections. The first part is to collect field survey data 
and next section is to extract smart card data for same survey periods. 
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5.1 Field Surveys 

A manual counting method was used to observe bus dwell time characteristics at Buranda. 
Field surveys were conducted in April 2013 (16/04/13 to 18/04/13). Surveys were conducted 
for inbound direction from 6:30am to 11:30am. This time slot was selected primarily to 
account morning peak (6:30am-7:30am) and morning off peak (10:00am-11:00am) periods. 
A smart phone application was developed to facilitate this survey. Five specific time 
measurements were made, including: bus arrival time on the available platform loading area, 
door open time, door close time, departure time and time taken by the bus to clear its own 
length. In addition, “bus route number”, “number of doors (1, 2 or 3 doors)”, “vehicle length 
(12m, 14.5m and 18m)” and “next bus in queue (yes or no)” were recorded. This research 
subsequently included data only pertaining to two door buses on the basis that over 80 
percent of TransLink buses have two doors (2013). 

5.2 Smart Card Data Extraction 

Raw smart card transaction data from 16/04/13 to 18/04/13 were filtered in order to remove 
unwanted detail and determine transaction times. A Mat Lab code was developed to 
calculate the transaction time for a bus at the stop, being equal to the last passenger’s 
(board or alight) transaction timestamp minus the first passenger’s (board or alight) 
transaction timestamp. The transaction times were scrutinised to eliminate any erroneous 
transaction times. 

6. Smart Card Based Dwell Time Models 

Figure 3 illustrates the general timeline of a bus observing a busway station. The straight line 
indicates the timeline of actual passenger exchange while the dashed line shows the timeline 
of smart card transaction under one particular scenario. 

Figure 3: Normal passenger operation and smart card transaction at busway station 

 

 

 
 
 
 
 
 

Note: first p represents the first passenger board or alight while last p represents the last passenger 
board or alight 

Once a bus arrives on the platform to serve passengers, the driver opens the door. 
Sometimes passengers can move very close to the approaching bus door and board early up 
to 1s after door opening. Tag on activity can occur between door open and door close times. 
Tag off activity differs. When the bus reaches the geo-fence (which is 50m upstream of the 
busway station), the on-board smart card reader becomes activated for transactions. As a 
result, passengers can tag off between the time when the bus reaches the geo-fence and the 
door close time Figure 3. This study has identified 16 combinations of transaction activity as 
a consequence of four tag-on and four tag-off scenarios (Table 1).  
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Table 1: Smart Card Transaction Scenarios 

 
Tag off scenario 

Tag on Scenario 
B1 commenced early 
and concluded early 
(within 1s of door 
opening) 

B2 commenced late 
(after 1s of door 
opening) 

B3 commenced early 
and concluded late 

B4 none occurred 

 

A1 commenced and 
concluded before bus 
door opened 

B1A1 B2A1 B3A1 B4A1 

A2 commenced after 
bus door opened and 
concluded before bus 
door closed 

B1A2 B2A2 B3A2 B4A2 

A3 commenced before 
bus door opened and 
concluded before bus 
door closed 

B1A3 B2A3 B3A3 B4A3 

A4 none occurred B1A4 B2A4 B3A4 B4A4 

For instance, B3A1 represents: Tag on has commenced early and concluded late, where as 
tag off has commenced and concluded before bus door opens.  

6.1 Peak Period Dwell Time Model Development 

The initial objective is to develop a gross dwell time model for peak period. The gross dwell 
time model includes cases where buses spend time in queue before reaching an available 
loading area. Smart card transaction times were obtained and for each bus classified to 16 
cases mentioned in Table 1. Survey dwell time information, being the time difference 
between door close timestamp and door open timestamp (TRB, 2003b), was cross-matched 
with the smart card transaction times for each bus. Figure 4 shows the smart card 
transaction times and cross-matched dwell times measured during surveys. 

Figure 4: Peak period gross smart card transaction versus survey dwell time relationship 

 

Figure 4 shows that smart card transaction time does not correspond precisely to survey 
dwell time. One key reason for this is that smart card transaction could over or under 
estimate than dwell time due to early tag off after the bus enters the geo-fence but before it 
stops to dwell on the available loading area. This may be exacerbated if the bus needs to 
wait in queue to enter an available loading area. A second key reason is that a single 
transaction results in a zero transaction time while a small number of transactions, such as a 
couple of tag off transactions in rapid succession, may result in very small transaction times. 
The actual dwell times would still be expected to be larger due to the door opening and 
closing time plus the physical processing time per passenger through the door(s). Thus, a 
positive Y axis intercept on Figure 4 is to be expected, as a measure of average minimum 
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dwell time. By inspection of the data of Figure 4 a nonlinear polynomial equation of the form 
of Equation 1 was determined to be most suitable for this peak period gross dwell time 
model: 

        
                                                                   Equation 1 

Where; 

    = dwell time; (s) 
     = smart card transaction time; (s)   

       = curve fitting constants; (s)   

Note that constant   in Equation 1 represents the Y axis intercept, in this case an average 
minimum dwell time. 

In order to determine suitable values of the curve fitting constants in Equation 1, it was 
necessary to reiterate the purpose of the model of Equation 1, which is to provide the best 
estimate of dwell time for a given smart card transaction time. More generally, we wish to 
provide the best estimate of the distribution of dwell times given a distribution of smart card 
transaction times. Our earlier research has shown that dwell time tends to be distributed log-
normally (Widanapathiranage et al., 2013); which was also presumed here for model 
development. 

Two objectives were therefore established to determine values of curve fitting constants in 
Equation 1 that provide the best estimates of (I) average measured dwell time and coefficient 
of variation of measured dwell time, and (II) average of the logarithms of measured dwell 
time and coefficient of variation of the logarithms measured dwell time for distribution shape. 
Numerical optimisation was applied to achieve both of the following objective functions 
together: 

                                    
 
                         

 
              Equation 2 

                              
                          

              
 
                                 

 

                                                

Equation 3 

Where: 
          = average measured dwell time; (s) 

         = average estimated dwell time; (s) 

            = coefficient of variation of measured dwell time; (s) 

           = coefficient of variation of measured dwell time; (s) 

The results of the numerical optimisation for the peak period gross dwell time model are 
provided in Table 2. 

Table 2: Peak period gross dwell time estimation using numerical optimisation 

                   a b c                              R2 on    

16.9s 0.62 0.0016 0.7665 5.7 1.19x10-6 9.66x10-6 0.58 

Table 2 shows that for the values of curve fitting constants determined, objective functions 
are practically zero. Under objective function (I) there is negligible difference between 
average measured dwell time and average estimated dwell time, and negligible difference 
between coefficient of variation of measured dwell time and coefficient of variation of 
estimated dwell time. These are both important quantities in transit capacity and quality of 
service analysis (TRB, 2003b). 

Figure 4 includes Equation 1 with the values of the curve fitting constants from Table 2. It can 
be seen that the second order polynomial fits the data very well.  

Figure 5 illustrates the cumulative distributions of both measured dwell time, and estimated 
dwell time using Equation 1 and the constants from Table 2. By visual inspection, for dwell 
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times larger than 10s, the estimated distribution aligns with the measured distribution very 
closely as is ensured by objective function (II). For small dwell times less than 10s, the 
estimated dwell time distribution differs from the measured distribution due to the average 
minimum dwell time of 5.7s. Traditional capacity analysis relies on average dwell time while 
QoS analysis relies on coefficient of variation of dwell time, so this difference is not critical for 
these purposes. However, should future study require the dwell time distribution for purposes 
such as microscopic simulation, the model should be further scrutinised in this small dwell 
time range. 

The Kolmogorov-Smirnov statistic for the two distributions of Figure 5 was determined to be 
equal to 0.075, which is less than the critical value of 0.093 for a 5 percent confidence level. 
Thus, the null hypothesis that the samples are drawn from the same distribution was not 
rejected 

Figure 5: Peak period gross cumulative distributions of measured dwell time and estimated 
dwell time using Equation 1 and Table 2 constants 

 

Figure 6 illustrates each peak period measured dwell times versus dwell time estimated 
using Equation 1 with Table 2 constants for the matching gross transaction time. While 
spread is evident, the R2 was determined on a line of equality comparison to be equal to 
0.58, indicating that this estimation method can provide for a particular bus a reasonable 
estimate of its actual dwell time if its gross transaction time is known. 

Figure 6: Peak period measured dwell time versus estimated dwell time using Equation 1 and 
Table 2 constants 

 

6.2 Peak Period Net Dwell Time Model Development 

While Equation 1 calibrated using the constants of Table 2 is useful for gross conditions, the 
data needed to be further investigated to establish a dwell time model net of any effect of bus 
time in queue.  
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Any transactions under Tag off scenario (A1) and Tag off scenarios (A3) may overestimate 
the transaction time more than dwell time (Figure 3 and Table 1).  

Some significantly larger transaction times than actual dwell times were observed during the 
peak analysis period. It was reasoned that on these occasions the bus must be in queue 
awaiting an available loading area. A threshold time needed to be established for 
identification of these occasions. With the distance between busway station and geo-fence 
being 50m and for an unimpeded, comfortable bus deceleration rate of 1m/s2 the resultant 
time threshold is an estimated as 10s. 

The selection of 10s buffer period was further investigated from the cumulative distribution 
for A1 and A3 cases. Figure 7 shows the cumulative plot for the A1 cases (B1A1, B2A1, 
B3A1 and B4A1). Less than 30% of buses under A1 cases; have time difference between the 
first tag off and the door opening greater than 10 s. This was also evident for the A3 cases. 

Figure 7: Cumulative distribution plot for A1 cases 

 

Figure 8 illustrates for case B2A1 as an example the relationship between smart card 
transaction time and survey dwell time for (a) all data and (b) excluding data where the bus 
arrives at the geo-fence more than 10s before its door opening time on the available loading 
area. For this case it is clear that a stronger relationship exists between measured dwell time 
and transaction time when the data that is considered to reflect bus queuing conditions is 
excluded. 

Figure 8: Case B2A1 data classification 

 
(a)       (b) 

As a consequence of similar investigation across all cases, the data displayed in Figure 4 
across all cases was filtered to excluded occasions where the bus arrives at the geo-fence 
more than 10s before its door opening time on the available loading area, hence excluding 
bus queuing conditions. Figure 9 illustrates the remaining 84 percent of (gross) data and the 
optimal second order polynomial equation for a net dwell time model determined using the 
numerical optimization method described above. The results of the numerical optimisation for 
the peak period net dwell time model are provided in Table 3. 
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Figure 9: Peak period net smart card transaction versus survey dwell time relationships 

 

Table 3: Peak period net dwell time estimation using numerical optimisation 

                   a b c                              R2 on    

16.7s 0.62 0.0025 0.8027 5.9 2.87x10-7 7.85x10-7 0.71 

Table 3 shows that for the values of curve fitting constants determined by objective function 
(I) and (II) is again practically zero showing negligible difference between average measured 
dwell time and average estimated dwell time, and also negligible difference between 
coefficient of variation of measured dwell time and coefficient of variation of estimated dwell 
time. Comparison of these values with those of Table 2 shows average estimated dwell time 
to be almost identical, and coefficient of variation of estimated dwell time to be identical, 
which means that using this model with net smart card transaction data can reliably 
synthesise the measured dwell time distribution. 

Figure 9 includes Equation 1 with the values of the curve fitting constants from Table 3. It can 
be seen that the second order polynomial fits the data very well.  The Kolmogorov-Smirnov 
statistic for the two distributions of Figure 10 was determined to be equal to 0.085, which is 
less than the critical value of 0.101 for a 5 percent confidence level. Thus, the null hypothesis 
that the samples are drawn from the same distribution was not rejected. 

Figure 10 illustrates the cumulative distributions of both measured dwell time, and estimated 
dwell time using Equation 1 and the constants from Table 3. By visual inspection, for dwell 
times larger than 10s, the estimated distribution aligns with the measured distribution very 
closely as is ensured by objective function (II). Again, for small dwell times less than 10s the 
estimated dwell time distribution differs from the measured distribution due to the average 
minimum dwell time of 5.9s. The Kolmogorov-Smirnov statistic for the two distributions of 
Figure 10 was determined to be equal to 0.085, which is less than the critical value of 0.101 
for a 5 percent confidence level. Thus, the null hypothesis that the samples are drawn from 
the same distribution was not rejected. 

Figure 10: Peak period net cumulative distributions of measured dwell time and estimated 

dwell time using Equation 1 and Table 3 constants 
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Figure 11 illustrates each peak period measured dwell time versus dwell time estimated 
using Equation 1 with Table 3 constants for the matching net transaction time. While spread 
is evident, the R2 was determined on a line of equality comparison to be equal to 0.71, 
indicating that this estimation method can provide for a particular bus a good estimate of its 
actual dwell time if its gross transaction time is known. 

Figure 11: Peak period net measured dwell time versus estimated dwell time using Equation 1 
and Table 3 constants 

 

Comparing the polynomial constants of Table 2 and Table 3, for all transaction times the 
dwell time estimated by the net model is greater than that estimated by the gross model. 
Alternatively, for a given dwell time the corresponding transaction time from the net model 
will be less than the corresponding transaction time from the gross model, as illustrated in 
Figure 12. The difference between the two transaction times represents the effect of 
excluding transactions corresponding to bus queuing conditions, and thus provides an 
estimate of bus time in queue as a function of dwell time, given by Equation 4: 

                                                    Equation 4 

Where: 
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    = net smart card transaction time; (s)   

Figure 12: Estimated time in queue given dwell time for measured peak period at Buranda 
station 
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time in queue, which may be useful for other purposes. However, the ideal model should 
enable the analyst to estimate dwell times given transaction times where there is no bus 
queuing. The net model of Equation 1 with Table 3 constants is best to use here. The next 
step of the analysis was thus to establish whether for Buranda station Equation 1 with Table 
3 constants is an appropriate model under conditions without bus queuing, such as an off 
peak period. 

6.3 Off-peak Period Dwell Time Model Development 

The off-peak morning time period between 10:00 am to 11:00 am (from 16/04/13 to 18/04/13) 
was chosen to validate the net dwell time model of Equation 1. The number of buses during 
this period is substantially less than during the peak period as expected. Further, bus 
queuing was observed to be negligible. Figure 13 illustrates the smart card transaction times 
with dwell times and the optimal second order polynomial equation for a net dwell time model 
determined using the numerical optimization method described above and (i) the polynomial 
constants determined for the peak period net model and (ii) polynomial constants determined 
specifically using numerical optimization for this period. The results of the numerical 
optimisation for this off-peak period are provided in Table 4. 

Figure 13: Off-peak period smart card transaction versus survey dwell time relationships 

 

Table 4: Off-peak period dwell time estimation using numerical optimisation 

Model                    a b c                              R2 on    

Actual 14.1 0.77  

Off-peak 14.1 0.77 0.0021 0.9223 5.3 3.71x10-8 2.01x10-6 0.77 

Net peak 13.7 0.72 0.0025 0.8027 5.9 0.166 8.57x10-4 0.77 

From Figure 13 it can be seen that the two estimation models are almost identical for 
transaction times less than 20s. However, for greater transaction times, the net peak period 
model produces lower dwell time estimates than does the off-peak model. The off-peak 
model also reproduces average dwell time and coefficient of variation of dwell time identical 
to the actual measured values, with negligible value of objective function (I) accordingly. The 
net peak model estimates average dwell time to within 3 percent accuracy, and dwell time 
coefficient of variation to within 7 percent accuracy. With a small number of transaction times 
greater than 20s, further distinction of accuracy between these models would be challenging. 
Figure 14 illustrates the cumulative distributions of both measured dwell time, and estimated 
dwell time using Equation 1 and the polynomial constants using (i) numerical optimization for 
this period and (ii) the peak period net model. By visual inspection, for dwell times larger than 
10s, the estimated distribution for this off-peak period aligns with the measured distribution 
very closely as is ensured by objective function (II). Again, for small dwell times less than 10s 
the estimated dwell time distribution differs from the measured distribution due to the 
average minimum dwell time of 5.3s. The peak period net model is marginally less accurate. 
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The Kolmogorov-Smirnov statistic for the measured and (i) estimated off-peak distributions of 
Figure 14 was determined to be equal to 0.135, which is less than the critical value of 0.196 
for a 5 percent confidence level. Thus, the null hypothesis that the samples are drawn from 
the same distribution was not rejected. The Kolmogorov-Smirnov statistic for the measured 
and (ii) estimated net peak period distributions of Figure 14 was determined to be equal to 
0.125, which is less than the critical value of 0.196 for a 5 percent confidence level. Thus, the 
null hypothesis that the samples are drawn from the same distribution was also not rejected. 

Figure 14: Off-peak period cumulative distributions of measured dwell time and estimated 
dwell time using Equation 1 and Table 4 constants 

 

Figure 15 illustrates each off-peak period measured dwell time versus dwell time estimated 
using Equation 1 with Table 4 constants for the matching transaction time under (i) numerical 
optimization for this period and (ii) the peak period net model. While spread is evident, the R2 

was determined on a line of equality comparison to be equal to 0.77 and 0.77 by each 
method, indicating that either estimation method can provide for a particular bus a good 
estimate of its actual dwell time if its gross transaction time is known. For dwell times less 
than 20s there is little difference in estimate between each model. For the few data points 
corresponding to greater dwell times, the peak period net model produces marginally larger 
estimates. 

Figure 15: Off-peak period net measured dwell time versus estimated dwell time using 
Equation 1 and Table 4constants 

 

For further validation the hypothesis of using net dwell time model was tested using a F-test 
(Table 5) for off peak measured dwell time and estimated net dwell time. Since, p-value is 
greater than alpha null hypothesis was not rejected. 
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Table 5: F test results 

  off peak measured off peak net 

Minimum 4.000 5.900 

Maximum 65.000 59.776 

Mean 14.179 13.741 

Std. deviation 10.876 9.786 

Degree of freedom 94 94 

F (Observed value) 1.235 

F (Critical value) 1.502 

p-value 0.308 

alpha 0.05 

It can therefore be concluded the net dwell time model represented by Equation 1 with 
constants listed in Table 3 is an appropriate model to estimate dwell time given transaction 
time for off-peak conditions at Buranda station where there is no bus queuing. 

7. Conclusion 

This study demonstrated that smart card transaction data can be used to effectively estimate 
dwell time at a busway station. The gross dwell time model developed in this research for 
peak period conditions can provide for a particular bus a reasonable estimate of its actual 
dwell time when the gross transaction time is known. Across all buses during the peak time 
period, this model can provide a strong estimate of the distribution of actual dwell times 
greater than 10s from all measured transaction times. For dwell times less than 10s the 
model is limited by its minimum average dwell time. Particularly pertinent to transit capacity 
and quality of service analysis, the model can provide precise estimates of average dwell 
time and coefficient of variation of dwell time.  

The net dwell time model proposed in this paper provides a more precise model to estimate 
the dwell time distribution from available smart card transaction data when situations where 
buses arriving in queue during the peak period are excluded. Further, use of the gross dwell 
time model and net dwell time model together can enable bus time in queue to be estimated, 
which provides useful additional operational information. 

Off-peak conditions were also studied in order to validate the net dwell time model. Although 
the net peak model now does not estimate off-peak average dwell time or coefficient of 
variation of dwell time identically, its estimates are within 3% and 6.5% of the measured 
values respectively, and the model is validated by statistical inference. 

8. Further Research 

The dwell time model developed in this paper is calibrated and validated only for a given 
platform at Buranda busway station on Brisbane’s South East Busway. Future research will 
include of further refining and validating the dwell time model for other time periods, the 
opposite platform at Buranda, other busway stations and on-street stops. A further step in 
this research will be to develop a dwell time model using Automatic Vehicle Location (AVL) 
data and smart card data. 
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