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Abstract

Public transport demand forecasting is important for urban public transport planning. In the
Sydney Greater Metropolitan Area (SGMA), bus and train as the two major public transport
systems account for around two million trips per day. Understanding future changes in
public transport demand in response to different policy scenarios gives important
information for transport policy formulation. This paper reports forecasts of public transport
demand in the SGMA using an Autoregressive Integrated Moving Average (ARIMA) model
and a dynamic Partial Adjustment Model (PAM). The ARIMA model is estimated using
monthly train and bus boarding data from 2007 to 2011. The PAM model estimates
demand elasticities with respect to each of a number of public transport determinants,
including the public transport fare, the socio-demographics of public transport users, the
level of public transport service and land use characteristics. The PAM model is estimated
using a pseudo panel dataset constructed from the Sydney Household Travel Survey from
1997 to 2009. The forecast accuracy of the two methods are compared to the actual
demand observed in 2010 and 2011, using a holdout sample. The PAM model is then
used for forecasting future public transport demand for the SGMA, for a number of policy
scenarios. The forecasting results suggest that the ARIMA model can achieve better
prediction accuracy in the short term, whereas a PAM model is preferred if the objective is
to forecast future demand in response to various policy scenarios.



1. Introduction

Forecasting public transport demand is important because this is closely associated with
urban transport planning and policy formulation. The methods of public transport demand
forecasting are well developed in the literature and widely applied in transport planning
models. However, there is little discussion on the relative merits of the various methods for
public transport demand forecasting.

The conventional demand forecasting methods are generally categorised into univariate
time-series approaches and multivariate demand modelling approaches, where the latter
can be undertaken using a conventional four-step travel planning model or direct demand
models. For public transport demand forecasting, the direct demand modelling approach
has received more attention, given its capability of identifying the demand elasticity which
represents the causal relationship between demand and explanatory variables. However,
some forecasting studies in other domains of transport, such as tourist demand and fuel
prices, have shown that the univariate approach demonstrates better prediction accuracy
(du Preez and Witt, 2003; Li et al., 2010). The application of univariate time-series models
are less evident in public transport demand forecasting, and thus the superiority of this
forecasting method has not been demonstrated in this field.

The direct public transport demand models, which are widely employed in rail demand
forecasting (Owen and Philips, 1987; Preston, 1991; Wardman and Tyler, 2000; Wardman,
2006; Blainey and Preston, 2010; Dargay et al., 2010), also require some update in the
model specifications. There is an increasing number of studies highlighting the importance
of a temporal effect of demand and the integration of public transport demand and land
use characteristics. These relatively newly recognised elements of public transport
demand determinants have not yet been commonly incorporated in previous forecasting
models.

This paper applies both the univariate time-series method and the multivariate demand
modelling method to forecast public transport demand in the Sydney Greater Metropolitan
Area (SGMA). Section 2 reviews the literature on the previous forecasting studies and
provides a methodological discussion. Section 3 conducts a univariate forecasting model
based on the historical trend of demand changes. Section 4 presents a multivariate
demand forecasting model incorporating the temporal effect and land use variables, with
forecasting results being compared to the univariate model. Section 5 concludes the
findings of this paper.

2. Literature review

The methods of travel demand forecasting can be generally categorised into univariate
modelling and multivariate modelling approaches. The univariate modelling approach
usually uses time-series models based on historical data to forecast future demand. This
method assumes that patterns of the past demand will continue into the future with no
exogenous determinants incorporated. Typically Autoregressive Integrated Moving
Average (ARIMA) models are employed and this time-series modelling approach has been
widely applied in transport studies, such as in rail freight volume (Babcock et al., 1999;
Hunta, 2003), tourism demand (Burger et al., 2001; Lim and McAleer, 2002; du Preez and
Witt, 2003), and energy demand (Ediger and Akar, 2007; Li et al., 2010). However, the
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univariate method is not commonly employed for public transport demand forecasting,
although some studies have demonstrated that univariate time-series models can achieve
better prediction accuracy than multivariate models (du Preez and Witt, 2003; Li et al.,
2010).

Most studies on public transport demand forecasting usually adopt the multivariate
modelling approach, in which the demand is predicted by a vector of explanatory variables
and model inputs. Two principal forecasting methods in the multivariate approach are the
multi-stage model and the direct demand model (Department for Transport2012). The
former refers to the traditional four-step travel demand model consisting of trip generation,
trip distribution, mode choice, and traffic assignment models, which has the advantage of
being able to provide a comprehensive travel demand model across all transport modes
and capture the effect of intervention on travel demand. For example, the Sydney Strategic
Travel Model (BTS2011b) is a strategic travel planning model which is able to predict
future demand in response to various policy scenarios such as land use changes and new
public transport demand supply. However, the shortcoming of the multi-stage travel model
is its limited capability of incorporating fine-grained land use characteristics and
neighbourhood-scaled land use initiatives (Cervero, 2006). More practically, the multi-
stage travel demand model requires comprehensive and detailed data which raises the
cost of implementation and thus is not commonly used for forecasting minority modes such
as rail and bus (Department for Transport2012), although this is not the case in Sydney.

The maijority of studies on forecasting public transport demand use the direct demand
modelling approach which aims to provide a causal statistical relationship between travel
demand and its explanatory variables such as fares and quality of service. The key
advantage of the direct demand models is the identification of demand elasticity, which
represents how demand would be influenced by changes in the demand determinants.
This approach has been extensively applied in rail demand forecasting (Owen and Philips,
1987; Preston, 1991; Wardman and Tyler, 2000; Wardman, 2006; Blainey and Preston,
2010; Dargay et al., 2010). Most of these studies investigate the relationship between rail
patronage and rail fares, income, and the socio-demographics of travellers, as provide a
number of demand elasticites with respect to each of the determinants. In addition, some
studies have highlighted the importance of distinguishing short-run demand and long-run
demand (Owen and Philips, 1987; Voith, 1991; Dargay and Hanly, 2002; Graham et al.,
2009; Dargay et al., 2010; Kennedy, 2013; Tsai and Mulley, 2013 Forthcoming). These
identify that travellers’ behaviour in response to transport systems changes may not be
immediate but instead take times to adjust, which is known as the temporal effect of travel
demand.

Another growing body of literature on demand forecasting draws attention to the
incorporation of land use variables and accessibility to public transport. Wardman and
Tyler (2000) included an accessibility variable measured by distance to the local rail
station in their rail demand model. The result shows that the demand elasticity with respect
to accessibility is around -0.47 for leisure trips and -0.53 for business trips in the UK,
suggesting its strong impact on rail travel demand. Cervero (2006) used the direct demand
modelling to investigate the influence of Transit-Oriented-Development (TOD)
characteristics on public transport usage in major cities of United States. These TOD
characteristics, including land use density, feeder bus services and park and ride facilities,
are measured at a neighbourhood level and are found to be significant in public transport
demand. The literature on the connections between public transport demand and land use
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is substantial (Kitamura, 1990; Cervero and Kockelman, 1997; Cervero, 2002; Rodriguez
and Joo, 2004; Tsai and Mulley, 2013 Forthcoming) confirming that public transport
demand is significantly influenced by land use 3D (density, diversity, design) and
accessibility although absent in most demand forecasting models identified in the
literature.

3. Univariate time-series model

This paper uses a univariate model and a multivariate direct demand model to forecast
public transport in the SGMA. An ARIMA model is employed for the univariate time-series
analysis and is discussed in this section, and the dynamic Partial Adjustment Model
(PAM), based on a pseudo panel dataset is constructed from the Sydney Household
Travel Survey (SHTS), for the direct demand modelling approach incorporating land use
3D and accessibility measures is discussed in the next section, Section 4.

3.1 ARIMA model

A number of time-series models have been developed for forecasting. The literature does
not specify an absolutely superior time-series model since the forecasting power depends
on the nature of data and the context of study (Lim and McAleer, 2002). Among the time-
series studies reviewed above, the ARIMA model, proposed by Box and Jenkins (1970), is
the most popular time-series model given its capability of processing non-stationary and
seasonal data. Instead of comparing the performance of the various univariate time-series
models, this paper focuses on the forecasting power between the univariate modelling
method and the multivariate modelling method and their implications for practical use of
demand forecasting. Hence, the ARIMA model is selected for the univariate analysis of
this paper given its popularity in demand forecasting studies and flexibility in a wide range
of applications.

The ARIMA model, typically denoted as an ARIMA (p, q) model, consists of an

autoregressive (AR) term, and a moving average (MA) term. The AR (p) model uses p lags
of time to predict the dependent variable y as specified in equation (1).

Yi :¢1yt—l+'"+¢pyt—p+q (1)

where t is the total number of time periods and e is the error term (white noise), @,, is the
parameter of the autoregressive variable at time period t — p.

The MA component uses q lags of error terms to smooth the time-series data and thus

improves the forecast results. The MA (q) model is specified in equation (2), and the
ARIMA model combining the AR and MA models is defined in equation (3)

Y, =6+60§,+..+60,6_ ,+6_, (2)
Y= Yat ot @Y, TR +OE, +. T 6,6, 6, 3)

The ARIMA model in equation (3) is able to process non-seasonal data. If the data
demonstrate seasonality, observed frequently in regular time series data, the seasonal
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effect will need to be controlled by employing a Seasonal ARIMA model. The general form
of a seasonal ARIMA(p,d, q)(P, D, Q)s model is specified as equation (4), where d is the
order of non-seasonal differencing. P is the order of the seasonal autoregressive term. D is
the order of the seasonal differencing. Q is the order of seasonal moving average process.
s is the number of seaosonal cycles (i.e. s=4 more quarterly data; s=12 for monthly data).

s 4
(1-B)* -8y, = u+ HBVR(B) “
#(B)¢,(B°)
where
¢,(B%)=1-¢,,B°—...—¢, .B°
6.(B*)=1- esllBS —..= 0,4 B®
B isthe seasonal difference operator; (1- B®)y, =y, -V, .
4 isthe constant
3.2 Data

Public transport demand in the ARIMA model of this paper is defined as the number of
train and bus boardings per month. Monthly train and bus boarding data from 2007 to 2011
are provided by the Bureau of Transport Statistics (BTS) of Transport for New South
Wales (TfNSW). The bus boarding data prior to 2007 are not available due to the
institutional reform of the bus operating companies in the SGMA. Train and bus form the
majority of public transport trips in the SGMA, and account for two million trips on an
average weekday in 2011, including school buses. Other modes of public transport in the
SGMA including ferries, light rail and monorail are excluded from this analysis because
they account for less than 2.5 percent of total trips in the SGMA collectively.

Historical train and bus boarding statistics are shown in Figure 1. This identifies how there
has been no dramatic demand change since 2007, although a strong seasonal effect can
be observed. The historical trends of bus and train patronage are very similar, although
train demand has been around 5 million trips higher than bus demand. The train demand
has increased from around 20 million trips in 2007 to around 25 million trips per month.
Bus demand has also increased by around 5 million trips since 2007 although from a lower
base and both rail and bus trends show a slight addictive trend. This exploratory analysis
indicates that the seasonal effect needs to be controlled in the ARIMA model and the
forecast demand using the ARIMA model is expected to demonstrate a slightly increasing
trend.
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Figure 1. Monthly train and bus boarding statistics in the SGMA

3.3 Model identification

Time-series models assume that the data are stationary over time, that is, the mean,
variance, and covariance of the data do not change over time. The stationarity can be
observed from the autocorrelation function of the time-series data (Chatfield, 1989, page
18). Figure 2 shows the autocorrelation of monthly public transport demand since 2007. It
can be clearly identified that the autocorrelation is significant at the 12th time lag and 24th
time lag, which implies that the public transport demand in month t is significantly
correlated with the demand in month t — 12 and t — 24. This strong seasonal effect needs
to be adjusted through seasonal differencing to remove the non-stationarity as shown in
equation (5).

(1-B®)Y, =¥, ~ Y ()
ég LT? h.lj ‘Hlmﬂ*' ‘p*mll.* *Jl*.‘.ﬂlﬂ
2o
| 6 1‘0 2‘0 Ti Ind 3‘0 4‘0 5‘0
Bartlett's formula for MA(q) 95% conﬁdence”t:::d: eX

*PT: monthly public transport demand
Figure 2. Autocorrelation of monthly public transport demand
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The autocorrelation of the seasonally differenced public transport demand in Figure 3
shows that the seasonal effect is removed after the seasonal differencing, and the
autocorrelation drops off to insignificance after the third time lag which suggests that the
time-series becomes stationary (Chatfield, 1989, page 20).
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Figure 3. Autocorrelation of seasonally differenced public transport demand

The orders of lags for the AR term (p) and the MA term (q) of the ARIMA model can be
identified by examining the autocorrelation (Figure 3) and partial autocorrelation plots
(Figure 4). As a general rule, the order of the AR term is determined by the number of
partial autocorrelations that are significantly different from zero, and the order of the MA
term is determined by the number of significant autocorrelations (Makridakis and
Wheelwright, 1989, page 136). Figure 3 and Figure 4 each have three significant lags
which indicate that the ARIMA model should include both of the AR and the MA terms.
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Figure 4. Partial autocorrelation of seasonally differenced public transport demand



The seasonal AR term (P) and MA term (Q) are usually determined through a try-and-error
process, given that there are not sufficient autocorrelations and partial autocorrelations for
precise identification as the non-seasonal terms (Makridakis and Wheelwright, 1989, page
139). Hence, various ARIMA models are evaluated in Table 1 and Model 13 is selected as
the preferred model given its lowest Mean Squared Errors (MSE).

Table 1 Mean Squared Errors of ARIMA Models

Model ARIMA(p,d, q)(P,D,Q)s MSE’
Model 1 ARIMA (0,0,0)(0,1,0)12 3.32
Model 2 ARIMA (0,1,0)(0,1,0)12 417
Model 3 ARIMA (0,1,0)(1,0,0)12 6.42
Model 4 ARIMA(0,1,1)(2,0,0)12 3.69
Model 5 ARIMA (0,1,1)(3,0,0)12 3.52
Model 6 ARIMA (0,1,1)(0,1,1)12 2.37
Model 7 ARIMA(0,1,1)(1,0,0)12 5.22
Model 8 ARIMA(0,1,1)(2,0,0)12 4.85
Model 9 ARIMA (1,0,0)(0,1,0)12 2.98
Model 10 ARIMA (2,0,0)(0,1,0)12 2.71
Model 11 ARIMA (3,0,0)(0,1,0)12 1.78
Model 12 ARIMA (3,0,1)(0,1,0)12 1.72
Model 13 ARIMA (3,0,1)(0,1,0)12 1.70
Model 14 ARIMA (3,0,3)(0,1,0)12 1.79

"Mean Squared Errors

Model 13 is an ARIMA (3,0,1)(0,1,0)12 model with three lags of non-seasonal AR term and
one lag of non-seasonal MA term, with a first lag of seasonal differencing. The model is
diagnosed by checking the residuals and undertaking a Ljung-Box test (Ljung and Box,
1978), where the null hypothesis is that the residuals are independently distributed. The
autocorrelations of the residuals in Figure 5 shows that only one residual is significantly
different from zero which suggests that the residuals overall are not autocorrelated. The
Ljung-Box test result suggests a p-value of 0.28 which fails to reject the null hypothesis.
The model diagnostics confirm the randomness of residuals of Model 13.
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Figure 5. Autocorrelations of Residuals for Model 13

3.4 Forecasting results

Using Model 13 as the preferred model, the future public transport demand is forecast
using a holdout sampling approach. Monthly data from 2007 to 2010 are used to estimate
the ARIMA model, and the actual monthly public transport demand in 2011 is used as the
base to compare to the forecast demand by the model. The monthly actual demand and
forecast demand in 2011 are summarised in Table 2, which shows that the prediction
difference varies between -2.48 percent and 1.79 percent on a monthly basis. The
aggregate annual actual public transport demand in 2011 is 517.47 million trips and the
forecast demand is 514.02 million trips, with an overall annual difference of -0.67 percent.
The seasonal effect of the public transport demand is also predicted by the ARIMA model.
The public transport demand in the SGMA is higher in the school seasons of March to May
and August to November, except for April where the Easter Holidays reduces public
transport use. This seasonal fluctuation is predicted by the forecasting model as shown in
Figure 6.



Table 2. A Comparison of Actual Demand and Forecast Demand in 2011

Monthly Public Transport Demand

20

10

Year Month Actlif]lql"lﬁgrr]r;and Forec(:;s”t"lgr?;n and Difference
2011 Jan 37.81 37.29 -1.39%
2011 Feb 40.15 40.32 0.43%
2011 Mar 48.68 47.95 -1.50%
2011 Apr 41.17 41.90 1.79%
2011 May 45.59 44 .46 -2.48%
2011 Jun 41.93 41.53 -0.95%
2011 Jul 42.10 42.56 1.09%
2011 Aug 45.61 45.12 -1.08%
2011 Sep 44.30 43.87 -0.96%
2011 Oct 43.51 42.99 -1.21%
2011 Nov 44.79 44.31 -1.07%
2011 Dec 41.84 41.72 -0.29%
2011 Total 517.47 514.02 -0.67%
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Figure 6. Actual Demand and Forecast Demand between 2007 and 2011

Based on the same ARIMA model, the future public transport demand between 2011 and
2026 are forecast as shown in Table 3 and Figure7. Assuming the pattern of demand
shown in the historical trend between 2007 and 2011, the forecast for public transport
demand in 2026 is 722 million trips with a total growth of 41.10 percent as compared to
2011. Figure 7 shows an addictive trend with seasonal effects similar to the historical
trend, confirming the additive trend and seasonal effect are properly identified by the
forecasting model in the long-term demand forecasting.
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Table 3. Forecast Annual Public Transport Demand between 2011 and 2026

Forecast Growth  Total
Year Demand Every5 Growth
(million)  Year since 2011

2011 512.30 n/a n/a

2016 580.40 13.29% 13.29%

2021 651.61 12.27% 27.19%

2026 72286 10.94% 41.10%
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Figure 7. Forecast Public Transport Demand between 2007 and 2026

Despite the promising predictive power of the ARIMA model for 2011, as presented above,
it must be remembered that the univariate forecasting model only replicates into the future
the patterns which have been observed in the past. There is no causality employed
between public transport demand and its explanatory factors and it may not be realistic to
assume all the exogenous factors influencing current public transport will remain the same
in the long-term future. Hence, the next section presents a multivariate direct demand
model that creates a statistical relationship between public transport demand and its
explanatory variables.

4. Multivariate Partial Adjustment Model

4.1 Pseudo panel data model

This section describes the multivariate direct demand model which is constructed to
forecast public transport demand in the SGMA. The literature specifies that the
determinants of public transport demand should include public transport trip price, socio-
demographics, and quality of service (Balcombe et al., 2004). In addition, as the literature
has suggested that the temporal effect and land use variables at a disaggregate
geographical level should be taken into account in a public transport demand model, this
paper employs a dynamic Partial Adjustment Model (PAM) using a pseudo panel dataset
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constructed from the Sydney Household Travel Survey (SHTS) data between 1997 and
2010.

The pseudo panel data approach was proposed by Deaton (1985). Constructing a pseudo
panel dataset involves assigning the respondents to groups by time-invariant variables,
where the grouping criteria should create sufficient inter-group heterogeneity. Each
created group consists of cohorts matching the grouping criteria over the observed time
period. This approach has not been evident in the literature of public transport demand
forecasting, but it has been increasingly applied in travel demand studies (Dargay and
Vythoulkas, 1999; Dargay, 2001; Dargay, 2007; Weis and Axhausen, 2009; Tsai and
Mulley, 2013 Forthcoming). As compared to conventional direct rail demand models where
static models were employed (Preston, 1991; Wardman and Tyler, 2000; Wardman, 2006;
Blainey and Preston, 2010), the pseudo panel data approach has the advantage of
incorporating longitudinal data using household the travel survey data, and hence short-
run and long-run demand elasticities can be estimated for a specific study area.

In this paper, the pseudo panel dataset are constructed from the SHTS data based on the
birth year and the household distance to the Central Business District (CBD) as two
grouping criteria. The created pseudo panel dataset consists of 20 groups over 13 years,
with a final sample size of 256 cohorts after removing four cohorts with an average age of
less than 18 years old, who were considered to have limited choices of trip modes and
thus were excluded from the sample. The detailed construction process and the evaluation
of the grouping criteria are comprehensively discussed in Tsai and Mulley (Tsai and
Mulley, 2013 Forthcoming).

The PAM for predicting public transport demand is specified in equation (6):

[_)g,t ::BO +ﬂ'[_)g,t—1+ﬂPF_)g,t +ﬁEEg';,t +ﬂSSg,t +:BLEgI,t +Ug,t ’ Ug,tza_(g,t +§g,t (6)
where the public transport demand Eg,t for a constructed group g in period t is determined
by the public transport demand in period t —1 (D,.) to capture the lagged demand
adjustment, as well as public transport trip price P, ;, a vector of travellers’ socio-economic
factors F‘;_t, the level of public transport service §g,t measured by service frequency, and a
vector of land use characteristics and accessibility measures Z:q,t. B, is the constant and
u;, is the combined error term constituted of the unobserved group effect a,, and the
independent error term £, .. All variables represent the way in which the observation of

each variable is the mean value for all individuals classified into group g in period t. A
summary of the definitions and descriptive statistics of the variables is presented in Table
4.
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Table 4. A Summary of Variables in the Public Transport Demand Model

Variable Description Unit Mean S.D. Min Max

Dependent variable

PTTRIP No. of bus and train trips per

Trips/person 0.45 0.28 0.08 1.63
person per day

Price variable
PRICE Real public transport trip price Dollars (AUD) 1.73 0.59 0.39 2.88

Socio-economic factors

. Thousand
INCOME Real annual personal income dollars (AUD) 28.64 12.98 2.08 58.38
AGE Age Years 41.32 17.64 18.00 75.65

Public Transport Supply
Number of buses serving a

bus stop between 6am and
BUS FREQUENCY 10am on Tuesday within 400 Thousands 0.19 0.15 0.02 0.77

meters of a TZ centroid

Land use density

POPULATION Population within 800 meters

DENSITY of a TZ centroid Thousands 22.08 5.59 1145 33.15
Land use diversity

LANDMIX Entropy of land use mix n/a 0.13 0.01 0.09 0.17

Land use design

Number of pseudo nodes
PSEUDO NODES'  within 800 meters of a travel Thousands 1.36 0.62 0.76 414
zone centroid

Accessibility
Distance between households
DISTANCE TO PT and the nearest train station or meter 0.24 0.08 0.12 0.59
STOP
bus stop
Number of train stations and
PT STOPS bus stops within 800 meters of n/a 41.45 7.58 25.60 60.77

a household

'See Appendix for further discussion on the pseudo nodes

4.2 Model estimation

Table 5 summarises the estimation results of the dynamic PAM using the Ordinary Least
Squares (OLS) estimator using a double log functional form. Based on the adjusted R-
squared and the Ramsey’s RESET test, the double-log model outperforms other functional
forms which were investigated and shows no significant omitted variable in contrast to all
other models where the omitted variable bias was identified as significant. The double-log
model has no heteroscedasticity or autocorrelation present, evident in both the linear
model and the linear-log models which were also estimated. The double-log model also
demonstrates better explanatory power measured by the significance of the explanatory
variables.

All parameters that are significant show the expected signs. The parameter of the lagged
dependent variable at 0.245 suggests that if public transport demand in the previous
period was to increase by ten percent, then current public transport demand would
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increase by 2.45 percent change in the current period. Higher prices, higher income,
greater age, and more pseudo nodes have negative impacts on public transport demand,
whereas greater bus frequency and higher population density have a positive impact. Land
use mix and accessibility measures, in terms of distance and the number of public
transport stops are insignificant, possibly as a result of the cohort level aggregation which
reduces the variation of these measures, and possibility because of the high correlation
between bus frequency and accessibility measures.

Table 5. Estimation Results of the Double-log Partial Adjustment Model

[95% Conf.
Parameter Coef. Std. Err. t P>t Interval]
LAG1 0.245 0.067 3.65 0.000 0.113 0.378
PRICE -0.219 0.076 -2.89 0.004 -0.368 -0.070
INCOME -0.160 0.062 -2.57 0.011 -0.282 -0.037
AGE -0.573 0.086 -6.63 0.000 -0.743 -0.403
BUS FREQUENCY 0.148 0.051 2.90 0.004 0.048 0.249
POPULATION
DENSITY 0.596 0.152 3.93 0.000 0.297 0.895
LAND MIX -0.028 0.121 -0.24 0.814 -0.267 0.210
PSEUDO NODES -0.458 0.109 -4.22 0.000 -0.673 -0.244
DISTANCE TO PT
STOP 0.068 0.066 1.03 0.303 -0.062 0.198
PT STOPS -0.174 0.151 -1.16 0.249 -0.470 0.123
CONSTANT -0.164 1.645 -0.10 0.921 -3.406 3.078
Observations 236
R-squared 0.877
Adjusted R-squared 0.872
Ramsey RESET Test
Prob > F 0.072
Breusch-Pagan Test
Prob >Chi 0.074
Wooldridge test
Prob > F 0.423

The short-run (e;®) and long-run (e:R) demand elasticities with respect to each of the
significant variables are estimated based on the parameters using equation (7), with
results presented in Table 6.

e =4 11-1 (7)
Where
Bx: parameter of variable k
A: parameter of the lagged dependent variable

The short-run and long-run price elasticities estimated from the dynamic model are -0.22
and -0.29 respectively, suggesting that a ten percent increase in price is expected to
reduce public transport demand by 2.2 percent in the short run, but it will reduce public
transport demand by 2.9 percent in the long run. The age elasticity is -0.57 in the short run
and -0.76 in the long run. The age elasticities appear to be high since a one-hundred
percent increase in age gives a significant change over a life cycle. For example, students
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aged around 20 years old with high public transport demand will become middle-age
people in the workforce after a one-hundred percent increase in age, who are expected to
have a lower usage of public transport in the context of Sydney.

The two land use variables, population density and pseudo nodes, also have moderately
high elasticities because a one-hundred percent change in population density and pseudo
nodes indicates a dramatic changes in land use, so population density and number of
pseudo nodes have strong impacts on public transport demand in terms of their
percentage change, and the magnitude of impacts are greater than price, income, and bus
frequency.

Table 6. Short-run and Long-run Demand Elasticities

Dynamic Model
Short-Run Long-Run
PRICE -0.22 -0.29
INCOME -0.16 -0.21
AGE -0.57 -0.76
BUS FREQUENCY 0.15 0.20
POPULATION DENSITY 0.60 0.79
PSEUDO NODES -0.46 -0.61

4.3 Demand forecasting

Using a multivariate direct demand model with explanatory variables means that the first
step of demand forecasting is projecting the explanatory variables as predictors into the
future. As the PAM is estimated using data from 1997 to 2009, 2009 is selected as the
base year for forecasting future demand. The predictors are projected for 2010 and 2011
and then to 2026 in five year intervals using various data sources as summarized in Table
7. Public transport demand is forecast for 2011 to 2026 in order to be compared with
population forecast years and Australian Census years with the same timeframe. Public
transport demand in 2010 is also forecast using the demand model given that the number
of public transport trips has been observed and published, so a comparison between the
observed demand and forecast demand in 2009 and 2010 can be used as another
approach to assess the accuracy of the forecast model.

The projection of public transport price uses the Urban Transport Fare Index of New South
Wales, published by Australian Bureau of Statistics (ABS) (2012b). This index is a
subgroup of the Consumer Price Index (CPI) for which historical data are also available.
As there is no specific methodology for predicting future public transport price, the
historical average percentage increase in Urban Transport Fare Index from 1997 to 2009
is used as the average annual price change (1.03 percent per year) for the forecast years,
with all indices being adjusted to real terms based on 1997 CPI.
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Table 7. Projections of Predictors for Demand Forecasting
Annual 2009-2026 Data Source

Variable % change total change

PRICE 1.03% 19% ABS (2012b)

INCOME 1.90% 38% ABS (2012a)

AGE 0.50% 9% ABS (2008)

BUS FREQUENCY 0.90% 16% BTS (2012c)

POPULATION DENSITY 1.40% 24% BTS (2012d)

PSEUDO NODES 0% 0% Assumed to be time-invariant
LAND MIX 0% 0% Assumed to be time-invariant
DISTANCE TO PT STOP 0% 0% Assumed to be time-invariant
PT STOPS 0% 0% Assumed to be time-invariant

Annual person income is projected forward using the historical weekly income released by
ABS (2012a). This weekly income is equally weighted to the annual incomes for each year
between 1997 and 2008. The historical trend shows that, on average, annual income has
increased in NSW by 3.86 percent in money terms, which is slightly higher than the
average increase of the Australian CPI at 2.64 percent. This is converted to an average of
1.9 percent in real terms.

The growth in the age variable is not as great as that of the income and price variables.
According to the Australian Historical Population Statistics published by ABS (2008), the
median age in NSW has been increasing by around 0.5 percent per year since 1998, from
35.2 years in 1998 to 36.9 in 2007. In this study this is used as the future age increase for
demand forecasting.

The three variables discussed above are projected forward on the basis of historical
statistics collected by ABS. These ABS statistics are based on the geography of NSW
state. As no further level of aggregation is publicly available, the projections for the SGMA
are assumed to be the same as for NSW.

On the other hand, bus frequency and population density are projected forward using the
SGMA data forecast by the Bureau of Transport Statistics (BTS). BTS forecasts travel
demand by trip mode for the SGMA using the Strategic Travel Model. Bus frequency and
population density are two inputs for this Strategic Travel Model and are used in this study.
The projection of bus frequency can be retrieved from Transport Supply and Demand
Forecasts for the Greater Metropolitan Area published by BTS (2012c), in which the bus
frequency is assumed to increase by around 0.9 percent per year between 2006 and 2036.
The increase of population density is assumed to be proportional to total population growth
in the SGMA, since land area is fixed over time. The population growth in the SGMA is
forecast by BTS (2012d) based on 2006 Census data for each five-year interval between
2006 and 2036. This population forecast is non-linear and estimated by taking account of
various factors such as the supply of dwellings, birth and deaths rates, and migration
flows. Populations between each two forecast years are linearly weighted. For this study,
the average population growth is estimated at 1.4 percent per year between 2009 and
2026.
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Other variables including pseudo nodes, land use mix, walk distance to the nearest public
transport stop, and number of bus stops are assumed to be time-invariant in the forecast
model. This is because they are time-invariant variables in the pseudo panel dataset and
there is no historical data or forecast data available to estimate a reasonable increase rate.
However, these are subject to sensitivity tests in the next section to investigate how public
transport demand might change in response to the changes in these time-invariant
variables as this relevant for policy analysis.

Based on the projected variables introduced above, public transport demand in the SGMA
for future years is forecast using the double-log dynamic PAM. Public transport demand is
first predicted for 2009 as the base year demand, followed by 2010, 2011, and then every
five years until 2026.

As the dynamic demand model defines the dependent variable as the number of public
transport trips per person per day, this is aggregated to total public transport demand on
an average day in the SGMA in 2009 by multiplying the predicted number of trips per
person (0.336 trips in 2009) by the total population of the SGMA (5,317,330 persons in
2009). The daily public transport demand is then multiplied by 365 days to estimate the
annual public transport trips in the SGMA in order to compare the annual number of public
transport trips published in the Household Travel Survey (HTS) report (BTS, 2012e).
Public transport demand for future years is forecast using the dynamic models based on
the projected data in future years.

Table 8 summarises these forecast results and compares these to the reported demand
published by BTS (2012e) and the forecast results by the ARIMA model. The reported
demand published by BTS is estimated from the SHTS data by expanding the sample
observations to the total population of the SGMA through a weighting scheme (2011a).
This statistic is published annually and the most recent data available is in 2010.

Table 8. A Comparison of Demand Forecasting Results

Reported Demand Forecast Demand
(HTS report) Forecast Demand by PAM by ARIMA model
Year | PT Trips PT Trips PT Trips
(million) | Growth [ (million) | Growth' | Difference® | (million) | Growth®
2009 606.7 N/A 651.5 N/A 7.32% N/A N/A
2010 624.4 2.90% 659.6 1.29% 5.64% N/A N/A
2011 N/A N/A 675.8 2.47% N/A 512.30 N/A
2016 N/A N/A 714.3 5.69% N/A 580.40 | 13.29%
2021 N/A N/A 756.1 5.85% N/A 651.61 | 12.27%
2026 N/A N/A 797.6 5.49% N/A 722.86 | 10.94%

'As compared to the demand forecast for the previous time period (2009-2010-2011-2016-2021-2026)
As compared to the reported demand based on the SHTS report published by BTS (2012e).

Comparing the reported demand and forecast demand in the base year 2009, the forecast
demand is higher than the reported demand by 7.32 percent in 2009 and 5.64 percent in
2010. This difference could partly result from the weighting scheme used by BTS which is
different to the aggregation process of this analysis. The forecast demand by the ARIMA
model appears to be substantially lower than the reported demand in the HTS report, and
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this is because the HTS report includes free school bus trips which are not counted in the
monthly bus boarding data estimated for the ARIMA model. The forecast demand should
not be compared to the HTS report given their difference basis.

The validity of the demand forecast can also be evaluated by comparing the demand
changes over time between the reported demand and forecast demand shown in Table 8.
The growth rate of the reported demand between 2009 and 2010 is 2.90 percent, which is
close to the growth rate of the forecast demand using the PAM of 1.29 percent. The
growth rate of the forecast demand between 2011 and 2026 is around five percent to six
percent for each five-year basis, whereas it is predicted to be around 10 percent to 13.29
percent growth for each five years with the ARIMA model. The five year growth rate of the
ARIMA model is approximately equivalent to two percent per year, which appears to be
closer to the annual growth rate of the reported demand by HTS report, suggesting a
potentially stronger forecast accuracy.

4.4 Sensitivity analysis

The future is always uncertain and this applies to future changes in explanatory variables.
Sensitivity analysis is therefore conducted using the PAM to forecast public transport
demand based on various scenarios. These scenarios are designed by adjusting the
projections of explanatory variables based on the base scenario as presented in Table 7.
The results of the sensitivity analysis are summarised in Table 9. The base scenario,
which assumes that all explanatory variables will change as projected in Table 7 in the
future, shows that public transport demand is forecast to increase by around 26.53 percent
between 2009 and 2026. This growth rate is used as a baseline to compare the following
scenarios.

Table 9. Sensitivity Analysis of Public Transport Demand Forecasting
(Unit: million trips)

Price Bus Densit Pseudo
Year Base (+0%) Frequency (+20/)y Nodes Combined
Scenario 7 03;’/1 (+1.5%) N 4(;1 (-0.5%) Effect?
70 +0.9% 70 +0%"
2009 672.0 672.0 672.0 672.0 672.0 672.0
2010 684.0 685.5 684.6 685.4 685.6 689.1
2011 704.3 707.8 705.7 700.6 707.9 709.2
2016 751.9 766.9 757.7 773.8 767.3 811.8
2021 801.0 829.3 812.0 850.2 830.0 924.5
2026 850.3 893.4 867.0 931.8 8945  1,050.3
20092026 | 955394  3206%  29.02%  38.67%  33.12%  56.30%
Total Growth
Increased - 6.42% 248%  12.14%  659%  29.77%
Demand

"Percent change in the Base Scenario
The scenario that combines all the scenarios on the left
*The total increased public transport demand as compared to the base scenario in 2026

The first sensitivity analysis assumes a constant public transport price over time, in
comparison to the assumption of a 1.03 percent annual increase in the base scenario,
whilst keeping the changes of other variables the same as the base scenario. This
scenario is tested to examine how public transport demand changes in response to
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adjustments of public transport price. The results shows that public transport demand is
expected to increase by 32.96 percent from 2009 to 2026 which is higher than the demand
growth of the base scenario by 6.43 percent, indicating that the public transport demand
could be increased by 6.43 percent if the price of public transport was to remain constant
in the future as compared to the current levels of average price increase.

The next scenario investigates the extent public transport demand can be increased by
providing more frequent bus services. This scenario assumes a higher increase in bus
frequency at 1.5 percent per year as opposed to the 0.9 percent of the base scenario. The
forecast result shows that public transport demand will increase by 29.02 percent which is
slightly higher than the base scenario as expected because the long run elasticity with
respect to bus frequency is positive at 0.20, and the demand increase between 2009 and
2026 is slightly lower than the first scenario as a result of the smaller elasticity as
compared to the price elasticity at -0.29 in absolute terms.

The third scenario assumes an increase in population density of two percent per annum
which is higher than the base scenario of 1.4 percent. This assumption is to examine the
impact of increasing population density on public transport demand. A two percent annual
increase in population density means that there will be a 34 percent increase from 2009 to
2026. As shown in Table 9, when population density increases at two percent annually,
public transport demand is forecast to increase by 38.67 percent from 2009 to 2006 as
compared to 26.53 percent increase in the base scenario. This result shows that public
transport demand is more elastic to population density than with regard to public transport
price or bus frequency.

Similar results can be found in the next scenario which assumes a 0.5 percent reduction in
pseudo nodes. Although the number of pseudo nodes is assumed to be time-invariant in
the base scenario, in the long-term it is possible to slightly change the road network by
reducing cul-de-sacs and by designing grid networks in new communities to improve the
walking environment and accessibility to local public transport stops. Around 8.5 percent of
pseudo nodes would be reduced by 2026 as a result of an annual reduction rate of 0.5
percent. This scenario results in public transport demand increasing by 33.12 percent
between 2009 and 2026 which is around 6.59 percent higher than the base scenario. This
suggests that public transport demand could be effectively increased by only a slight
improvement in the walking environment of the built environment and without a dramatic
reform of the road network.

The last scenario, which combines all the scenarios introduced in Table 9, shows that the
total public transport demand could be increased by 56.30 percent between 2009 and
2026 which is 29.77 percent higher than the base scenario. This sensitivity analysis
demonstrates the way in which public transport demand can be forecast, based on various
policy scenarios. The findings suggest that land use changes in terms of population
density and number of pseudo nodes are expected to have a greater impact on public
transport demand than changes in price or bus frequency, and the public transport
demand could be increased by a total number of 56.30 percent if all the four policy
scenarios in the sensitivity analysis are achieved.

4. Conclusion

This paper applies a univariate ARIMA model and a multivariate PAM to forecast public
transport demand in the SGMA. The research findings contribute to the literature of
conventional public transport demand forecasting studies by adding the elements of
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temporal effect and a comprehensive set of land use variables in the direct demand
modelling studies, as well as a comparison to the time-series modelling approach.

The ARIMA model shows strong forecasting power given that the overall difference
between the actual demand and forecast demand in 2011 is only around 0.67 percent. The
ARIMA model is also able to control for the seasonal effects, and as a result the prediction
error in the monthly forecast public transport demand ranges between -2.48 percent and
1.79 percent.

The PAM model constructs a causal statistical relationship between public transport
demand and its explanatory variables, with short-run and long-run demand elasticities
identified. The forecasted demand using the PAM model appears to over-estimate the
public transport demand by around five to seven percent in a single year as compared to
the observed demand in the HTS report. However, this difference is subject to the way in
which the public transport demand is weighted to the total population of the SGMA in the
HTS report and a clear measure of the actual forecasting power of the PAM is unavailable
since there is no actual demand for comparison.

In terms of a comparison of the two methods, it appears that the ARIMA model
demonstrates better prediction accuracy both in terms of the small differences with actual
public transport boarding data and the growth rate of demand. This finding is in line with
previous studies comparing the two methods for demand forecasting (du Preez and Witt,
2003; Li et al., 2010). However, the ARIMA model is not able to investigate the causal
relationship and identify those exogenous factors which influence public transport demand,
and hence it may not be suitable for long-term demand forecasting where these factors
may change. Instead, the PAM, which captures the temporal effect of travel demand and
the influence of explanatory variables on public transport demand, provides a framework in
which a sensitivity analysis can examine likely future forecasts compatible with various
policy scenarios. Thus, it would appear the choice of the forecasting method must depend
on the primary objective of the demand forecasting. The ARIMA model should be preferred
if the short-term public transport demand in the following years is of interest. In contrast,
the PAM should be favoured if the objective is to understand the demand changes in
response to various policy scenarios in the long term.
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Appendix

This analysis uses the number of pseudo nodes within 800 meters of a Travel Zone
centroid to measure land use design. Pseudo nodes are retrieved from the road network
by measuring the curvature and the number of dead ends in the built environment. Figure
A1 and Figure A2 illustrate pseudo nodes in two contrasting walking environments. In
general, a built environment with more curvy roads and more cul-de-sacs has more
pseudo nodes than an area with a grid network. The hypothesis of the relationship
between public transport demand and pseudo nodes is negative, that is, public transport
demand is expected to be higher in areas with fewer pseudo nodes as a result of the
better walking environment. This hypothesis is based on previous studies which found that
people tend to drive less and walk or use public transport more in areas with fewer cul-de-
sacs since this provides better walkability and connectivity in the built environment
(Cervero and Kockelman, 1997; Rajamani et al., 2003).
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Figure A2. Pseudo nodes in a built environment with a grid road network
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