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Abstract 
The motivation for this paper comes from the fare determination judgement by 
Independent Pricing and Regulatory Tribunal (IPART) for CityRail which requires a 
certain level of service quality and quantity whilst improving the operation efficiency. 
There is limited information about the historical efficiency performance of CityRail 
and this gap is the focus of this paper.  
 
This paper compares the operational performance of Sydney CityRail with 11 
international urban rail systems using a Data Envelopment Analysis approach. The 
operating performance is examined using cost-efficiency and cost-effectiveness 
measures to understand the extent service inputs are efficiently used to generate 
service outputs, in terms of car-km operated and passengers carried. This research 
finds the operation of CityRail is efficient in terms of car-km operated, but the cost-
effectiveness score is the lowest of the 12 systems being compared. Around 3 
percent of employees as well as 10 percent of operating cost are identified as 
redundant service inputs in CityRail suggesting possible strategies for CityRail to 
improve its service effectiveness.   
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1. INTRODUCTION 
The extent to which a transport system is considered to be efficient or service inputs 
could be saved in the production of the current level of outputs is of concern to both 
transport operators and regulators. Understanding the operational performance 
provides information on which to understand potential improvement in service quality 
and financial plans, as well as fare determination. The measurement of efficiency 
performance is often undertaken by comparing multiple transport systems, and such 
evaluation is a way to investigate how a transport operator performs in terms of the 
service outputs with respect to the use of service inputs.  
 
The comparison of the efficiency performance is particularly important for urban rail 
systems because they are usually monopolies in their local markets. A monopoly 
market makes it more difficult for the transport regulators in measuring and 
monitoring the efficiency performance of the local rail operator. For example, the 
Independent Pricing and Regulatory Tribunal (IPART), the fare regulator of Sydney 
CityRail, requires information about CityRail’s efficiency performance so as to 
estimate its efficient operating cost as part of the fare determination, but such a 
comparison was only possible with a limited number of operators in Australia 
because of data limitations. (IPART, 2008). 
 
Given the close relationship between efficiency performance and fare determination, 
a rigorous examination of performance across urban rail systems internationally can 
reveal how well Sydney’s CityRail is performing on the international stage. Despite 
having different spatial settings, rail based technology and rail regulation (particularly 
in relation to safety) is very similar across national and international boundaries 
which in turn facilitates effective comparisons.  
 
This paper evaluates the efficiency performance of Sydney’s CityRail with another 11 
international urban rail systems in Asia, Australia, Europe and North America using 
data from 2009 to 2011. Section 2 reviews the literature on the efficiency 
measurement and its related methodology. Section 3 introduces the DEA approach 
and the data of this paper with a preliminary analysis using a Partial Factor 
Productivity (PFP) methodology. Section 4 presents the research outcomes and 
Section 5 concludes this paper.  

2. LITERATURE REVIEW 
There is a lack of international evidence focussing on urban rail systems although 
some literature on the evaluation of public transport systems performance exists, 
most previous studies have been conducted within the context of Europe (Gathon 
and Pestieau, 1995, Cantos and Maudos, 2001, Pina and Torres, 2001, Mulley, 2003, 
Merkert et al., 2010, Karlaftis and Tsamboulas, 2012) and North America (Benjamin 
and Obeng, 1990, Chu et al., 1992, Karlaftis and McCarthy, 1997, Viton, 1997, 
Karlaftis, 2004). Sampaio et al. (2008) was one of the few studies that compared 
efficiency performance across continents (Brazilian and European metro systems). 
Anderson and Harris (2007) analysed the performance of 22 worldwide metro 
systems as part of the COMET and NOVA benchmarking groups but the focus of the 
evaluation was on passenger alighting and boarding rates with respect to the 
operating characteristics of the metro systems such as frequency and stop time. 
However, there is no Australian evidence in the literature nor an evidence base 
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which compares the efficiency performance of Australian against other international 
rail operators. This paper addresses this research gap.  
 
The definition of efficiency for public transport has been widely discussed since the 
1980s. Fielding et al. (1985) proposed a benchmarking framework for public 
transport systems as illustrated in Figure 1. This framework distinguishes between 
efficiency and effectiveness in evaluating the performance of a public transport 
operator. Efficiency in this framework refers to the total service outputs usually 
measured by car-km travelled or car-hour operated with respect to service inputs 
(labour, fuel consumption, or operating cost), whereas effectiveness represents the 
service consumption by passengers such as number of passengers, passenger-km 
against service inputs. The ratio of service consumption to service outputs is defined 
as service-effectiveness. This framework has been used in related research (Chu et 
al., 1992, Viton, 1997, Karlaftis and Tsamboulas, 2012). The distinction between 
efficiency and effectiveness highlights the different aspects of performance 
evaluation from the operator’s and consumer’s perspectives. 
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Figure 1. A framework for benchmarking the performance of public transport systems 

Source: reproduced from Fielding et al. (1985) 
 
 
A number of methods used to evaluate efficiency and effectiveness performance 
have been developed in the literature (Oum et al., 1999, Merkert et al., 2010, 
Karlaftis and Tsamboulas, 2012). The simplest approach is the Partial Factor 
Productivity (PFP) method, which measures the ratio of a public transport system’s 
output to a single input. The advantage of this approach is that it is easy to 
implement and understand and is thus often favoured by policy-makers. However, 
the PFP measures only one input against one output and, as a result, multiple Key 
Performance Indicators (KPIs) are produced without a rationale for combining into a 
single overall indicator. What is meant by overall performance is open to discussion if 
the PFP approach is used. A second method is the Total Factor Productivity (TFP) 
methodology as employed in some studies (Benjamin and Obeng, 1990, Karlaftis 
and McCarthy, 1997). The TFP approach generates a single index based on the ratio 
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of an aggregate output and an aggregate input in quantities. However, Oum et al. 
(1999) have suggested that aggregation problems may occur when producing a 
single index from multiple  inputs or outputs.  
 
Other methodologies used in the literature are Stochastic Frontier Analysis (SFA) 
(Gathon and Pestieau, 1995, Cantos and Maudos, 2001, Karlaftis and Tsamboulas, 
2012) and Data Envelopment Analysis (DEA) (Chu et al., 1992, Viton, 1997, Pina 
and Torres, 2001, Karlaftis, 2004, Sampaio et al., 2008, Merkert et al., 2010, Karlaftis 
and Tsamboulas, 2012). The SFA uses an econometric model to estimate a firm’s 
productivity based on its service inputs. Traditional cost or production functions are 
typically used to estimate the frontier of a firm’s productivity and thus to identify the 
relative efficiency amongst multiple firms in the dataset. This approach is data-
demanding and ideally panel data are required to control for the unobserved 
heterogeneity (Karlaftis and Tsamboulas, 2012).  
 
DEA has been commonly applied in the transport literature. It was introduced by 
Farrell (1957) and further developed by Charnes et al. (1978). DEA is a non-
parametric approach using linear programming to identify the linear production 
frontier and an efficiency score for each firm in the sample. This approach has been 
widely employed because of its flexibility in selecting multiple inputs and outputs. It 
also allows for the assumption of variable returns to scale (Banker et al., 1984) which 
is one of the key properties of transport industry (Braeutigam, 1984, Karlaftis, 2004). 
Moreover, when historical data are available, efficiency may change over time as a 
result of institutional reform or technical change.  DEA can identify these changes for 
an operator leading to an increase in understanding as to whether the operating 
strategy has improved efficiency performance.   

3. DATA ENVELOPMENT ANALYSIS 

3.1 Approach 
The concept of DEA is illustrated in Figure 2. Each of the firms A, B, C, D and E 
produces a vector of outputs from a vector of service inputs. The curve ABCD is 
called the production frontier where firms A, B, C and D have produced the 
maximum outputs using the current level of inputs, so they are considered 
“technically efficient”. Firm E, however, is technically inefficient because it could 
produce a higher level of output at Ev’ rather than the current output level S based on 
the existing input level Q, or it could reduce its input from Q to T to produce it current 
output level S. This technical inefficiency is measured by SEv/SE. 
 
Figure 2 also explains the concept of scale efficiency. A firm is “scale efficient” when 
it is at the optimal scale with constant returns to scale, that it, doubling the service 
inputs is expected to double the service outputs. When a firm is too small, doubling 
the service inputs will generate more than a doubling of the service outputs 
(increasing returns to scale or economies of scale). In contrast, a firm may show 
decreasing returns to scale (diseconomies of scale) when the scale of the firm is too 
big, and doubling the service inputs results in less than a doubling of outputs 
because the inputs cannot be efficiently used to increase outputs. A firm is “scale 
inefficient” when it is either increasing returns to scale or decreasing returns to scale.  
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In Figure 2, constant returns to scale is shown by the straight line OM from the origin, 
where the output is proportional to the service input. The curve ABCD shows 
variable returns to scale, where firm B is the only one that reaches a scale efficiency 
which represents the optimal scale within this sample. Firm A, C and D are scale 
inefficient although they are all technically efficient on the production frontier curve. 
For example, the scale inefficiency of firm A is given by the ratio of RAc to RA, and 
this firm would approach optimal scale if it increased its size. In contrast, firm C and 
D are too big in scale and it need to decrease their size to approach the optimal 
scale. Firm E is neither technically efficient nor scale efficient, and its scale 
inefficiency is measured by the ratio of SEc/SEv. 
 

 

 
Figure 2. The Production Frontier and Efficiency Measurement 

 
 
As reviewed above, DEA is a well-developed methodology for evaluating efficiency 
performance of multiple firms based on their service inputs and outputs in the 
transport sector. It is processed through a sequence of linear-programming solutions. 
Assuming a firm’s objective is to minimise service inputs for a given level of outputs 
and there is no scale efficiency (i.e. constant returns to scale), the linear program 
can be presented as in Equation (1): 
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where nθ is the efficiency score for the nth firm subject to the constraints listed above. 
The linear programming problem is solved by minimising nθ  from the N  firms in the 
sample producing I  different outputs using K different inputs. iny and knx are the total 
amount of outputs and inputs for firm n . jw  is the weight applied across different 
firms. 
 
The linear-programming problem specified in Equation (1) indicates that the 
efficiency score of a firm is minimised subject to the constraints. The weighted 
outputs of all firms in the sample must be more than each of the output produced by 
any single firm (first constraint), and the weighted inputs of all firms must not exceed 
the input for any other single firm (second constraint). The third constraint limits the 
weights to being non-negative. The efficiency score represents the smallest 
proportion of inputs that a firm can use to produce its existing level of outputs. This is 
a relative performance score and a score of one means that the firm has reached 
“technical efficiency”.  
 
An important advantage of the DEA methodology is the identification of scale 
efficiency. For public transport systems, the returns to scale is usually considered to 
be variable rather than constant, that is, the ratio of the service outputs to inputs is 
not constant but instead it varies with the size of the firm. As introduced in Banker 
(1984), DEA can incorporate variable returns to scale by introducing a convex 
restriction as a constraint: 
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where the weights are restricted to a sum of one when allowing for variable returns 
to scale.  

3.2 Data 
This paper analyses 12 urban rail systems across Asia, Australia, Europe, and North 
America. The urban rail systems included in the comparison are: Barcelona, Hong 
Kong, Kaohsiung, Lisbon, London, Madrid, Montreal, Singapore, Sydney, Taipei, 
Toronto and Washington DC. 
 
The data are collected from publicly available financial reports or annual reports 
between 2009 and 2011 from the operators’ official websites. The three years of data 
allow for an investigation of changes in efficiency performance due to possible 
technical changes or organisational reforms during the study period. The service 
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outputs are categorised into efficiency measures and effectiveness measures as 
suggested by Fielding et al. (1985). The selection of the service inputs for this 
research follows the literature (Chu et al., 1992, Viton, 1997, Karlaftis, 2004, Karlaftis 
and Tsamboulas, 2012), which has generally suggested to use car-km travelled as 
the efficiency measure and the number of passengers as the effectiveness measure, 
where a car refers to the carriage (or coach) of a train.  
 
The service inputs for this paper are defined by labour, rolling stock, and operating 
cost. Labour is measured by the total number of employees of the system operator. 
All employees regardless part-time or full-time appointments are included to make 
this measure consistent across the 12 operators. Rolling stock is defined by the total 
number of cars owned by the operator. Operating cost is the cost required for system 
operation. Asset or capital-related cost such as depreciation and amortisation is not 
included in the operating cost. The operating costs are converted to Australian 
Dollars based on 2011 conversion rate. In addition, a Purchasing Power Parity (PPP) 
conversion factor is used to standardise the operating cost in each country to adjust 
the difference in consumer price and the level of living expenses. For example, the 
labour price, which is a component of operating cost, would be cheaper in some 
Asian cities than Australia, so it is necessary to standardise the consumer price to 
make the cost-efficiency and cost-effectiveness comparable across countries. The 
PPP conversion factor is acquired from World Bank1

 

 and adjusted based on the 
Australia index (PPP index=1 for Australia).  

The descriptive statistics of all the variables are summarised in Table 1. The total 
number of observations is 34 due to data unavailability of Sydney in 2010 and Lisbon 
in 2011. Although there appears to be a substantial difference in scale for the 12 
urban rail systems (shown by the large variation in car-km and patronage) the 
efficiency and effectiveness performance are compared by an overall ratio of service 
outputs to inputs. For example, Sydney CityRail is a commuter rail system which has 
a larger scale of network and thus the operation requires more employees and larger 
fleet size, but it is also expected to generate more service outputs in terms of car-km 
operated and passengers carried, given the larger scale of inputs. Therefore, the 
efficiency and effectiveness performance across the 12 urban rail systems can still 
be compared on the same grounds. The DEA approach only focuses on the internal 
operational performance which is the aim of this study although it is recognised that 
other external factors such as population density and financial subsidy might have a 
significant impact on service outputs. An investigation of the impact of these external 
factors requires a post-DEA regression analysis which is outside the scope of this 
paper.   
 

Table 1. Descriptive Statistics of the Dataset 
Variable Unit Obs Mean S.D. Min Max 
Car-km km (million) 34 151 134 12 507 
Patronage passengers (million) 34 501 370 43 1,366 
Employee persons 34 7,277 5,820 1,279 19,064 
Car cars 34 1,323 1,101 126 4,243 
Operating cost Australian dollars (million) 34 1,330 1,267 100 4,863 

                                                   
1 Available at http://data.worldbank.org/indicator/PA.NUS.PPPC.RF/ 
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The other limitation of the data is that some system operators in this dataset are 
multi-modal operators such as Montreal, Toronto, Hong Kong and Washington DC, 
and the financial data and the number of employees is not segmented by sector in 
the published reports. This paper first explored possible methods to allocate the 
number of employees and operating cost to the urban rail sector by investigating 
some of the multi-modal operators with segmented data publicly available. Data from 
Singapore, London and Barcelona are summarised in Table 2. Using operated car-
km as a base, it can be seen that the ratio of rail employees to total employees 
(employee weights) are lower than the car-km weight in Singapore and Barcelona, 
but substantially larger in London. On the other hand, the cost weights are both 
lower than the car-km weight in Barcelona and London. It is not clear how the 
number of employees and operating cost should be allocated to the rail sector only 
for those multi-modal operators without segmented data and further exploration of 
weighting schemes is required but outside the scope of this paper.  
 

Table 2. Segmented Operating Data of Singapore, Barcelona and London 

City Year 

Rail  
Car-km 
(million) 

Total 
Car-km 
(million) 

Car-km 
weight 

Rail 
Employees 

Total 
Employees 

Employee 
weight 

Rail 
Cost 
(million) 

Total 
Cost 

Cost 
weight 

Singapore 2011 100 180 0.56 3,217 6,565 0.49 n/a 675 n/a 

 
2010 92 170 0.54 3,259 6,651 0.49 n/a 624 n/a 

 
2009 85 162 0.53 3,051 6,226 0.49 n/a 607 n/a 

Barcelona 2011 901 133 0.68 3,723 8,015 0.46 404 688 0.59 

 
2010 88 130 0.67 3,764 7,370 0.51 376 644 0.58 

 
2009 79 128 0.62 3,576 7,152 0.50 314 589 0.53 

London 2011 507 996 0.51 15,585 18,839 0.83 2,178 4,911 0.44 

 
2010 476 962 0.49 17,239 20,822 0.83 2,050 4,842 0.42 

 
2009 486 969 0.50 17,944 21,619 0.83 2,301 4,908 0.47 

 

3.3 Preliminary Analysis 
A preliminary analysis is conducted to examine the data quality and to identify 
possible outliers in the sample. This section of analysis uses the PFP method which 
evaluates some KPIs based on the service inputs and outputs from the dataset. The 
three dimensions of performance measurement as proposed by Fielding et al. (1985) 
are presented from Figure 3 to Figure 5.  
 
Figure 3 shows the cost-efficiency in terms of operating cost per car-km travelled. 
Note that the costs are adjusted to Australian Dollars and standardised by the PPP 
index, so cost-efficiency can be directly compared across countries. Of the 12 urban 
rail systems examined, Washington DC is the least efficient system, in which the 
operating cost is around 12 to 14 dollars per car-km. The most efficient system is 
Singapore with around 5 dollars per car-km. The historical trend for the 12 urban rail 
systems does not show noticeable change. The operating cost per car-km in 
Barcelona, Hong Kong, Montreal, Toronto and Washington DC have been slightly 
increased from 2009 to 2011, whereas Singapore and Taipei demonstrated an 
efficiency improvement given their decreasing operating costs per car-km. 
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Figure 3. Cost-Efficiency of 12 Urban Rail Systems 

 
 
The cost-effectiveness measure is presented in Figure 4, where Sydney stands out 
as the least cost-effective system with around 8 to 9 dollars of operating cost per 
passenger carried. The Asian urban rail systems in Singapore, Taipei, Hong Kong, 
perform better than other systems in terms of cost-effectiveness, with around 1 dollar 
of operating cost per passenger. Figure 4 also shows that there is more variation in 
the cost-effectiveness measure across the 12 systems than the cost-efficiency 
measure in Figure 3. This is because the number of passengers is less influenced by 
operating cost. Instead, other factors might affect the patronage such as land use 
density and public transport fares. In terms of the historical trend, the operating cost 
per passenger in Sydney and Washington DC have been increasing since 2009, 
whereas London has a substantial reduction in operating cost per passenger after 
2009. 
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Figure 4. Cost-Effectiveness of 12 Urban Rail Systems 

 
The third performance measure is service-effectiveness which is the ratio of number 
of passengers to the car-km travelled. As shown in Figure 5, the urban rail system of 
Lisbon and those in Asia generally have more passengers per car-km. Lisbon has a 
markedly high service-effectiveness as a result of its’ small network size relative to 
its’ patronage leading to the good performance in service-effectiveness. As 
compared to cost-efficiency and cost-effectiveness, Figure 5 shows service-
effectiveness to have less variation for each of the systems over the three years 
probably as a result of outputs (passengers and car-km) being less influenced by 
potential external factors such as economy or price inflation than the input variables. 
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Figure 5. Service-Effectiveness of 12 Urban Rail Systems 

 
 
In general, this section of analysis does not identify noticeable outliers in the dataset, 
other than Sydney’s CityRail for cost effectiveness and does not find substantial 
historical change in the efficiency measures. However, as reviewed in Section 2, the 
limitation of this PFP approach is that there is no overall measure to evaluate 
multiple inputs and outputs. From a comparison of the three measures discussed 
above, it is inconclusive which system performs better than the others overall and 
provides a strong incentive to undertake analysis using DEA. The next section 
presents the results from the DEA methodology which is able to compare the various 
systems based on multiple service inputs and outputs. 

4. DEA RESULTS 
4.1 Efficiency Performance 
The results of DEA are summarised in Table 3, in which the scores for efficiency and 
effectiveness of the 12 urban rail systems are identified. The efficiency score is the 
DEA which uses car-km as a single output whereas the effectiveness is analysed 
based on the number of passengers as a single output with respect to inputs of the 
number of employees, the number of cars, and operating cost. 
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Table 3. The Results of Data Envelopment Analysis 
  Efficiency Score Effectiveness Score 
  2009 2010 2011 AVG 2009 2010 2011 AVG 
Barcelona 0.77 0.78 0.81 0.79 0.65 0.64 0.65 0.64 
Hong Kong 1.00 1.00 0.96 0.99 0.95 1.00 1.00 0.98 
Kaohsiung 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Lisbon 0.97 0.97 n/a 0.97 1.00 0.99 n/a 0.99 
London 0.92 0.98 1.00 0.97 0.71 0.79 0.96 0.82 
Madrid 0.83 0.82 0.83 0.82 0.55 0.48 0.50 0.51 
Montreal 0.77 0.75 0.72 0.75 0.47 0.46 0.46 0.46 
Singapore 0.96 1.00 1.00 0.98 0.96 0.98 1.00 0.98 
Sydney 1.00 n/a 0.99 1.00 0.22 n/a 0.23 0.23 
Taipei 0.75 0.82 0.88 0.82 0.71 0.74 0.77 0.74 
Toronto 0.76 0.76 0.73 0.75 0.55 0.55 0.57 0.56 
Washington DC 0.67 0.64 0.65 0.65 0.35 0.34 0.35 0.35 

 
Looking at the efficiency scores in Table 3, Kaohsiung and Sydney each have an 
average score of unity which suggests that these two systems are on the technical 
efficiency frontier in terms of the car-km produced from the quantity of service inputs. 
It is interesting to note that, of the 12 systems being compared, Kaohsiung has the 
smallest system (39.12 km) and Sydney has the largest system (2,224 km) in terms 
of network size. Showing technical efficiency in terms of car-km operated with 
respect to the three input variables indicates that the network size of the urban rail 
systems is properly controlled by the DEA process and the efficiency score is not 
being deterministically influenced by system scale.  Washington DC has the lowest 
average score of efficiency at 0.65, indicating that the service inputs could be 
reduced by 35 percent and still generate the current level of car-km. Other systems 
score between 0.75 and 0.99 on average suggesting service inputs could be 
reduced by between 25 percent and 1 percent on average to reach optimal efficiency.  
 
Considering the effectiveness scores it can be seen that Kaohsiung is the only urban 
rail system to have an average score of unity. Hong Kong, Lisbon and Singapore 
score averages of 0.98 and 0.99 respectively suggesting a good performance in 
operating effectiveness. Sydney is ranked bottom for its effectiveness performance 
with an average effectiveness score of 0.23. This implies that, although Sydney has 
produced the optimal level of car-km given its service inputs (good efficiency), its 
service is ineffective in terms of its patronage.  

 
Using data for multiple years in the DEA analysis means that changes in the 
performance over time can be investigated for each of the urban rail systems. From 
Table 3, most systems show little variation in their efficiency and effectiveness 
scores over the three years of study period. There are a couple of exceptions with 
the effectiveness score for London substantially increasing from 0.71 in 2009 to 0.96 
in 2011. According to the 2011 annual report, this improvement was achieved by a 
reduction of staff numbers in 2011 which resulted in a saving of operating cost. The 
second system showing more variation was Taipei where the efficiency score 
increased from 0.75 in 2009 to 0.88 in 2011 as a result of an 11.4 km of network 
extension which opened after 2009. The extension line has enabled the operator of 
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Taipei to provide more efficient services with only a marginal increase in service 
inputs.   

 
The comparison between efficiency and effectiveness is illustrated in Figure 6, where 
each system is located according to its efficiency and effectiveness scores. It can be 
observed that there is an obvious positive correlation between efficiency and 
effectiveness.  Moreover, most observations follow a linear trend which corresponds 
to the finding in Karlaftis (2004) where efficient systems tend also to be effective. 
The exception is Sydney with high efficiency but low effectiveness. In general, the 
urban rail systems in Asian cities have higher effectiveness performance than other 
regions, given all the Asian systems are located on the top right hand side of the 
scatter plot, together with London and Lisbon.  
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Figure 6. A Comparison of Efficiency and Effectiveness Scores 
 
One of the outcomes of DEA analysis is the idenification of the inefficient use of 
service inputs or “slack”. Table 4 summarises the input slacks for each of the 
systems identified using car-km and patronage as multiple outputs in the DEA 
model. For Sydney, there are 473 employees and 304 million dollars of operating 
cost identified as redundant inputs, which corresponds to about 3 percent of 
employees and 10 percent of operating cost in 2011. London which had a major 
reduction in staff numbers in 2011, as discussed above, has successfully reduced its 
employee and cost slack to zero in 2011. Thus DEA analysis can be used as a 
reference point in their operational stragegies by providing evidence as to the extent 
of redundancy in their service inputs.  
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Table 4. The Combined Score and Input Slack of the Urban Rail Systems 

 
Employee Slack Car Slack Cost Slack 

  2009 2010 2011 2009 2010 2011 2009 2010 2011 
Barcelona 0 0 0 44 0 0 49 110 160 
Hong Kong 0 0 0 0 0 0 0 0 0 
Kaohsiung 10 0 0 0 0 0 5 0 0 
Lisbon 0 0 0 0 0 3 0 0 2 
London 1,095 912 0 0 278 0 114 0 0 
Madrid 0 0 0 311 377 314 356 363 353 
Montreal 483 474 0 23 4 0 0 0 13 
Singapore 38 219 0 72 56 0 0 0 0 
Sydney 0 0 473 0 0 0 0 0 304 
Taipei 194 693 489 0 97 61 0 0 0 
Toronto 352 322 291 0 0 0 0 0 0 
Washington DC 0 0 0 0 0 0 147 202 233 

 

4.2 Scale Efficiency 
The DEA employed in this analysis assumes variable constant returns to scale 
(RTS). That is, the urban rail systems in the sample are allowed not to be at the 
optimal scale in terms of their service inputs. The scale efficiency score from 2009 to 
2011 in Table 5 refers to the difference between the current scale efficiency and the 
optimal scale.  
 
Table 5 shows that London and Singapore are at the optimal scale of operation with 
constant returns to scale identified in 2011. Most systems show increasing returns to 
scale, especially Kaohsiung and Lisbon suggesting the scale of service inputs could 
be increased by around 30 to 35 percent to reach the scale efficiency. This is 
because Kaohsiung and Lisbon are small systems relative to the group of 12 urban 
rail systems in this study in terms of network size. Only the three systems of Taipei, 
Hong Kong, and Sydney show decreasing returns to scale in 2011. However, their 
scale efficiency scores are higher than 0.90 which suggests they are still close to the 
optimal scale. The identification of scale efficiency in this analysis confirms that most 
urban rail systems have scale economies as suggested by the literature (Braeutigam, 
1984, Karlaftis, 2004). London again shows the most noticeable change in scale 
efficiency over time: decreasing returns to scale in 2009 and 2010 but constant 
returns to scale in 2011 after the reduction in staff numbers. Sydney and Taipei, 
although showing changes in RTS over time, are not considered to experience 
dramatic scale efficiency changes given that their scale efficiency are close to unity 
over the three years.  
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Table 5. Scale Efficiency of the Urban Rail Systems 

 
Scale Efficiency RTS1 

  2009 2010 2011 2009 2010 2011 
Barcelona 0.92 0.98 0.99 1 1 1 
Hong Kong 0.92 0.93 0.91 -1 -1 -1 
Kaohsiung 0.69 0.70 0.72 1 1 1 
Lisbon 0.63 0.66 n/a 1 1 n/a 
London 0.93 0.89 1.00 -1 -1 0 
Madrid 0.99 0.99 0.99 1 1 1 
Montreal 0.98 0.98 0.96 1 1 1 
Singapore 0.98 0.99 1.00 1 1 0 
Sydney 1.00 n/a 0.98 0 n/a -1 
Taipei 0.99 1.00 0.99 1 1 -1 
Toronto 0.97 0.97 0.97 1 1 1 
Washington DC 0.98 0.97 0.97 1 1 1 

                             1RTS=-1: decreasing return to scale; 
                              RTS= 0: constant return to scale; 
                              RTS= 1: increasing return to scale; 
 

5. CONCLUSION 
This paper applies the PFP and DEA methodologies to measure the efficiency and 
effectiveness performance of Sydney CityRail relative to another 11 urban rail 
systems. Comparing the results between the PFP and DEA, it is clear that DEA gives 
a more comprehensive understanding of performance by processing multiple inputs 
and outputs. The relative efficiency and effectiveness elements identify the extent to 
which an operator could reduce its service inputs and yet produce the current level of 
output. The PFP approach only compares KPIs based on one input and one output 
and, although easy to understand, has no theoretical base as to which KPI should be 
justified or preferred as the overall indicator for performance evaluation.  
 
The results of the DEA analysis show that Sydney CityRail has a good efficiency 
performance in terms of the car-km operated. However, it scores the lowest of all 12 
systems for its effectiveness. This finding suggests that, as such a large-scale urban 
rail system, Sydney CityRail is unable to attract the patronage it needs given its 
service inputs. This DEA analysis also identifies considerable employee slack and 
cost slack in CityRail, suggesting the efficiency and effectiveness performance could 
be improved by reducing both staff numbers and operating cost.  
 
For other international urban rail systems, Kaohsiung, Singapore, and Hong Kong 
perform equally well in both efficiency and effectiveness scores. London has made 
substantial improvement since 2009 by reducing its staff numbers. The network size 
of these efficient and effective systems varies from 39 km in Kaohsiung to 402 km in 
London, suggesting that technical efficiency and effectiveness can be achieved 
regardless the operation scale. 
 
It is important to note that the performance scores presented in this paper are 
relative measures and are subject to the operational performance of the sample. It is 
inevitable that there will be some external factors influencing the efficiency and 
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effectiveness performance as well as unobserved heterogeneity that is not controlled 
by the DEA methodology. A post-DEA regression analysis would examine those 
impacts and this is to be undertaken in future research. Some systems in this paper 
are multi-modal operators in which the number of employees and operating cost are 
weighted by car-km and this too is the subject of further investigation in the future 
using sensitivity analysis if further data acquisition does not provide the solution. 
Ideally more Australian evidence is needed to compare Sydney CityRail to heavy rail 
systems in other Australian capital cities which may share more common operational 
characteristics and external factors such as land use density, but this will require 
further research with more data provided by the rail operators.   
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