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Abstract 

Traffic congestion is an issue in most cities worldwide. One way to model and analyse the 
effect of congestion and other factors on route choice behaviour and to predict the impact of 
traffic management projects and transport policies is traffic assignment (TA). The most 
commonly used TA model is known as user equilibrium (UE), which is based on the 
assumption that all drivers want to minimise their travel time or generalised cost. As a result, 
an equilibrium is achieved when no one has an incentive to switch to another route.  

Although the conventional mathematical model of TA belongs to the convex optimisation 
domain and, hence, is relatively easy to solve, efficient algorithms are required in order to be 
able to solve TA in a reasonable amount of time for realistic transport networks. This 
motivates researchers to propose numerous methods and algorithms to solve this problem in 
the literature. However, there is no comprehensive empirical study that compares the 
performance of different approaches on benchmark instances. In this study, our objective is 
to fill this gap. 

We provide a literature review of the most promising methods. We classify algorithms 
according to the way the solution is represented, namely, link-based (solution is represented 
by link flows), path-based (solution is represented by path flows) and origin-based (solution is 
represented by link flows corresponding to each origin), and implement the most 
representative algorithms in each group. We perform numerical tests on benchmark 
instances of various sizes, compare the algorithms and analyse the impact of their main 
components on their running time. We also study the convergence behaviour of the methods 
with respect to different levels of solution accuracy.  

1. Introduction and Motivation 

Due to the fast development of cities and road networks the role of transportation planning 
grows every day since it provides tools for developing effective transportation spending and 
policies. As presented in Ortúzar and Willumsen (2001), transportation planning allows to: 
analyse the current usage of a road network; predict the impact of potential projects and 
policies; control traffic (level of congestion, emissions, toll revenue etc). In order to achieve 
these goals, a model that can realistically describe travel decisions made by drivers is 
required. However, in order to create such a model one should know how many people are 
travelling, from where to where they are travelling, which travel mode they choose (car, bus, 
bicycle etc) and which routes they prefer. Since it is very difficult to predict how a particular 
individual will travel, the conventional approach to tackle this difficulty is to make some 
assumptions on how people choose routes and to find a flow pattern satisfying these 
assumptions. The most well-known such assumptions are the ones following Wardrop's first 
principle that is also called user equilibrium condition, (Wardrop, 1952): The journey times on 
all the routes actually used are equal, and less than those which would be experienced by a 
single vehicle on any unused route.  

This principle models the behaviour of travellers by assuming that all drivers are selfish and 
they tend to choose the fastest routes going from their origin to their destination. As a result 
an equilibrium state is achieved, when no one has an incentive to switch to another route. 
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This principle allows different mathematical formulations of the problem based on different 
additional assumptions. The classical model that is commonly used in practice is a static 
deterministic traffic assignment (TA) and is the subject of this paper.  

This classical model was developed in the 1950s and since then various algorithms were 
proposed to solve it. The wide research interest in this problem has several reasons. First, 
TA is a challenging problem that arises in different practical applications. Second, due to the 
fast development of hardware and software, the existing transportation models continue to 
grow. For example, in 2006 the ART model (Auckland Regional Transport Model) included 
202 zones, whereas in 2008 it contained 512 zones, (Davies et al., 2009). Third, high 
accuracy of the solution is required for the select link analysis1 and for consistent comparison 
between design scenarios, as presented in Slavin et al. (2010) and Gentile (2009). 
Therefore, we can conclude that there is a growing need for efficient algorithms able to solve 
TA problems of realistic size with high accuracy. 

Regardless the number of proposed algorithms in the literature, there is no comprehensive 
survey study comparing them. According to our knowledge, only the paper of Inoue and 
Maruyama (2012) analyses many different methods under the same computational 
environment. The authors implemented 11 algorithms for traffic assignment. However, all 
implementation details are omitted in the paper. It is not clear if the authors used the same 
framework and how carefully they followed the descriptions of the algorithms available in the 
literature. 

The aim of our research is to analyse and compare the most promising approaches for 
solving TA in the context of a framework that can be shared by different algorithms. We want 
to compare them without considering any special implementation details that may have been 
used in commercial or research software. Instead we focus on the use of common code 
wherever possible. This will allow testing general ideas of the methods without giving an 
advantage to any of them. We do not claim the best possible implementations, but rather 
concentrate on the code that can be shared by as many algorithms as possible and compare 
the programming blocks that are different for each particular method.  

Another motivation of this study is to identify the advantages and disadvantages of different 
groups of algorithms (the classification is presented in Section 3). Early on only link-based 
approaches were available in software because of memory limitations. In recent years, 
however, other types of algorithms have been implemented in many commercial software 
packages used by practitioners. One of the main advantages of new algorithms is that they 
can provide the path choice information which is necessary to evaluate effects of schemes 
such as congestion pricing without re-running the algorithm, (Florian et al., 2009). Therefore, 
it becomes important to analyse them and to compare them with classical link-based 
approaches. 

The rest of the paper is organised as follows. Section 2 states the deterministic static traffic 
assignment problem. Section 3 is devoted to the literature overview and the description of 
our choice of the algorithms. In Section 4 various methods for solving traffic assignment are 
described. Section 5 discusses the computational study and comparison of the algorithms. 
Finally, Section 6 presents conclusion and future work. 

2. Problem Formulation 

In order to formulate the TA problem the following input data is provided:  

                                                 
1 Select link analysis provides routeing analysis (i.e. a picture of where traffic is coming from and going 
to) for assigned vehicles at selected links (and combination of links) throughout the modelled network, 
see http://www.transportscotland.gov.uk/analysis/LATIS/data/Model-data/Operational-Analysis. 



A Computational Study of Traffic Assignment Algorithms 

3 

 A transportation network is defined as a directed graph ,  where  is a set of 
nodes and  is a set of links; 

  is the demand of origin-destination (O-D) pair ∈  (demand represents how 
many vehicles are travelling from an origin to a destination),  is the set of all O-D 
pairs; 

  is a function that describes travel time on link , it depends on link flows 

, ,.. . , | | , i.e. the number of vehicles per time unit on each link. 

Let F F ,F ,.. . , F| |  denote a vector of path flows, where K is the set of all simple paths of 
graph G A, N . They are related to link flows by the expression f ∑ ∑ δ∈∈ F , where 

δ F  equals one if link a belongs to path k, and zero otherwise; K ⊆ K is the set of paths 

between O-D pair p. Let C F  denote the travel time on path k, it is also called path cost 
function. 

The conventional model of the traffic assignment problem is based on two important 
assumptions that allow to formulate and solve it as a mathematical program. These 
assumptions are stated as follows:  

 Additivity of path cost functions: travel time of each path is the sum of travel times of 
links belonging to this path, i.e. ∑ ∈ ; 

 Separability of link cost functions: travel time of each link depends only on flow on this 
link, i.e. . 

If these assumptions are satisfied, solving the following optimisation problem results in the 
link flows satisfying the user equilibrium condition, (Sheffi, 1985): 

min c
∈

x dx

											 F
∈

D , ∀p ∈ Z,

F ⩾ 0, 																	∀k ∈ K , ∀p ∈ Z,

																				 f δ
∈∈

F , ∀a ∈ A.

 (2.1) 

In order to ensure the existence of a solution of TA all path cost functions C F  must be 
positive and continuous, and to ensure the uniqueness of the solution of TA in terms of link 
flows f all path cost functions C F  must be strictly monotone (Florian and Hearn, 1995). In 
the following it is assumed that these requirements are satisfied. 

3. Literature Overview  

One of the possible ways to classify traffic assignment algorithms is according to how the 
solution is represented: link-based (solution variables are link flows), path-based (solution 
variables are path flows) and origin-based (solution variables are link flows coming from a 
particular origin), see (Zhou and Martimo, 2010). 

Historically the first algorithms developed for solving the traffic assignment problem were 
link-based. The most well-known such algorithm is Frank-Wolfe (FW), (Frank and Wolfe, 
1956). Due to its simplicity and low memory requirements it is used even now and is 
implemented in different commercial software packages. However, this algorithm and other 
link-based methods are known to tail badly in the vicinity of the optimum and usually cannot 
be used to achieve highly precise solutions as is demonstrated by numerous numerical 
studies, see Lee et al. (2002), Florian et al. (2009) and Inoue and Maruyama (2012).  
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Many improvements of FW were proposed in the literature. As explained in Zhou and 
Martimo (2010), some of them try to improve the FW search direction (for example, see 
Fukushima (1984), Florian et al. (1987), Mitradjieva and Lindberg (2012)) or step size (see 
Powell and Sheffi (1982), Weintraub et al. (1985)). Zhou and Martimo (2010) also categorise 
restricted simplicial decomposition (RSD), (Hearn et al., 1985) and nonlinear simplicial 
decomposition (NSD), (Larsson et al., 1997) as link-based methods. These algorithms apply 
a more complicated structure than FW, however they use FW as a special case. In both of 
them the link flow solution is represented by a linear combination of extreme points. The 
algorithms of this type usually have two main routines: generating new extreme points and 
optimising the so-called restricted master problem with respect to previously generated 
extreme points.  

The first path-based algorithm was proposed in Dafermos and Sparrow (1969). It is called 
path equilibration (PE). Its main idea is to shift flow from the path with maximum cost to the 
path with minimum cost. However, in the years after the PE algorithm was published, path-
based methods were considered impractical because of memory limitations. As a result, the 
development in this field started again only in recent years. Larsson and Patriksson (1991) 
proposed disaggregated simplicial decomposition (DSD) which is similar to RSD in the way 
that it also uses a linear combination of extreme points to represent the solution. However, 
the extreme points are in the space of path flows instead of link flows. In Jayakrishnan et al. 
(1994) the gradient projection (GP) method was proposed and further studied in Chen and 
Jayakrishnan (1998). It is similar to PE, but O-D flow is moved from several non-shortest 
paths to the shortest path. Another path-based algorithm was proposed in Florian et al. 
(2009). It is called projected gradient (PG) and is based on the idea of moving flow from the 
set of paths with cost greater than the average path cost to the set of paths with cost less 
than the average path cost. Another similar approach called improved social pressure (ISP) 
algorithm was developed in Kumar and Peeta (2011). This method also shifts flow from the 
set of costlier paths to the set of cheaper paths, but a more complicated strategy of flow 
distribution is applied. 

The origin-based algorithms represent a more recent development in this field. Their main 
idea is to decompose the problem into a sequence of subproblems that operate on acyclic 
subnetworks of the original transportation network (Nie, 2010). In general, for this group of 
algorithms, the flow shifts are restricted to subproblems and are usually similar to the ideas 
presented earlier for path- and link-based approaches. The first algorithm of this type applied 
to the traffic assignment problem was proposed by Bar-Gera (2002). It is called origin-based 
algorithm (OBA). Nie (2011) presented some corrections to OBA, and Nie (2010) compared 
different origin-based algorithms (corrected OBA (COBA) and modified OBA (MOBA)) based 
on OBA. Other developments in this field include the following methods: algorithm B (B) 
proposed by Dial (2006), some modifications of it (iB), see Inoue and Maruyama (2012) and 
Tianran et al. (2010), linear user cost equilibrium (LUCE) developed by Gentile (2009) and 
traffic assignment by pairs of alternative segments (TAPAS) implemented by Bar-Gera 
(2010). 

In order to select algorithms for implementation we analyse different empirical studies from 
the literature. During such analysis it is important to pay attention to how the algorithms were 
compared (re-implemented by the authors of the study or using existing software), what 
instances were used and how precise the obtained solutions were.  

In the majority of the studies relative gap is used as a convergence measure. It is calculated 
as follows:  

RGAP 1
∑ D∈ C
∑ f∈ c

 (3.1) 
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where C min ∈ C  is the shortest path of O-D pair p. We divide the existing numerical 

studies into two main groups (low and high precision) corresponding to the accuracy of the 
solution. The algorithms from the low precision group are stopped when the relative gap is in 
the interval 10 , 10 , and for the high precision group the interval is 10 , 10 . Table 
1 presents the first group and Table 2 the second one. In each table one algorithm from each 
study is highlighted in bold, which means that it showed the best performance on the majority 
of the tested instances. All other algorithms in the same study are written in the order of 
decreasing performance. If in a particular study the existing executable of the algorithm or 
commercial software was used, it is highlighted in grey. If comparison of the algorithms was 
made indirectly, i.e. based on the running times reported in other papers, it is highlighted in 
light grey. We also try to align the algorithms that were compared in different studies. 
However, since sometimes contradictory conclusions are made in different papers, this 
alignment is very approximate. The last line of each table summarises the algorithms that 
seem to be the most promising, namely BFW (bi-conjugate Frank-Wolfe (Mitradjieva and 
Lindberg, 2012)), GP, PG, ISP, B, LUCE, TAPAS.  
Therefore, we choose to implement the following algorithms: 

 Link-based: FW (FW is reported to have the worst performance. However, it is the 
basis for CFW (conjugate Frank-Wolfe (Mitradjieva and Lindberg, 2012)) and BFW, 
that is why it is also considered in our study), CFW, BFW;  

 Path-based: PE (this algorithm was not compared in the studies presented above. 
However, we choose to implement it as well due to its simplicity and ideas similar to 
other path-based approaches), GP, PG and ISP; 

 Origin-based: B. 

The most recent algorithms that also show very promising performance, namely LUCE and 
TAPAS, are subject of our future research. 

Table 1: Summary of existing empirical studies. Low precision: ∈ ,  

Mitradjieva 
and 
Lindberg 
(2012) 

Zhou 
and 
Martimo 
(2010) 

Slavin et 
al. 
(2006) 

Dial 
(2006) 

Florian 
et al 
(2009) 

Gentile 
(2009) 

Tianran 
et al. 
(2010) 

Kumar 
and 
Peeta 
(2011) 

     LUCE  ISP 

    PG PG  
SP (older 
version of 

ISP) 

  B B  B iB, B  

  OBA OBA OBA OBA   

  FW FW FW FW FW  

 GP GP    OBA  

BFW BFW       

CFW CFW       

FW FW       

OBA OBA       

DSD        

Best: BFW, GP, PG, ISP, B, LUCE 
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Table 2: Summary of existing empirical studies. High precision: ∈ ,  

Bar-Gera (2002) Nie (2010) Bar-Gera (2010) Inoue and Maruyama (2012) 

  TAPAS TAPAS 

 B  B, iB 

 MOBA   

 COBA   

OBA OBA OBA OBA, DSD, MOBA, LUCE, ASD 

FW  FW FW 

Best: B, TAPAS 

 

4. Algorithms  

One of the reasons for the development of various traffic assignment algorithms is a specific 
problem structure that can be exploited by solution methods in many different ways 
(Patriksson, 1994). 

The constraints of the TA problem represent a polyhedral set and the objective function is 
convex. As a result feasible direction methods can be applied as a solution technique 
(Andréasson et al., 2007). The algorithms described later in this section belong to this type of 
nonlinear optimisation methods. The main idea behind this type of methods is as follows: 
starting from a feasible solution, a feasible direction of descent is calculated and the solution 
is moved along this direction in such a way that the strict decrease of the objective function is 
guaranteed.  

Another property of traffic assignment that can be exploited is the O-D pair separability: the 
flow conservation constraints of one O-D pair do not affect those of any other pair. This 
allows applying decomposition algorithms, that are based on the idea of decomposing the 
problem into smaller sub-problems that can be solved one after another or in parallel, see 
Patriksson (1994). This section discusses different decomposition approaches and 
algorithms. In particular we focus on the algorithms that were chosen for our numerical study, 
see Section 3.  

4.1. Link-based Algorithms 

This Section presents Frank-Wolfe and two of its modifications: conjugate and bi-conjugate 
Frank-Wolfe methods. These algorithms can be described using the framework presented in 
Figure 1. As can be seen from the framework the methods differ only in the way the direction 
of descent is defined.  

Each algorithm starts with an initial feasible link flow pattern. It is usually generated using all-
or-nothing (AON) assignment: each link flow is initialised with zero and corresponding link 
travel times are calculated, then shortest paths for each O-D pair are found and 
corresponding demand is assigned to each shortest path. All these path flows are then 
projected on all links resulting in the initial feasible link flows.  

FW further exploits the AON procedure. In order to generate a feasible direction of descent it 
performs AON assignment at each iteration and gets corresponding link flows y , ∀a ∈ A. 
Since the AON link flow solution is feasible, given a current link flow solution f , ∀a ∈ A, vector 
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d y f , ∀a ∈ A is a feasible direction. Moreover, this direction is also a direction of 
descent (Sheffi, 1985). 

Figure 1: Framework for link-based algorithms 

 
CFW and BFW algorithms use information about previously generated directions of descent 
in order to find a new one. In particular, the new search direction is constructed via mutually 
conjugate directions with respect to the Hessian of the objective: CFW takes into account the 
usual FW direction and the direction from the previous iteration, whereas BFW in addition 
considers one more direction from iteration i 2 where i is the current iteration. Both 
algorithms operate on auxiliary variables s , ∀a ∈ A	called points of sight that store 
information about previously generated directions of descent. For details see Mitradjieva and 
Lindberg (2012).  

After finding a direction of descent each algorithm proceeds to step size calculation which 
represents how far away the current solution must be moved in the direction of descent. The 
step size can be found by solving exactly or approximately the following optimisation problem 
(Florian and Hearn, 1995): 

min ⩽ ⩽ c
∈

ω dω (4.1) 

There are various methods available for solving the one-dimensional optimisation problem 
(4.1), see for example Andréasson et al. (2007). In this study we applied quadratic 
interpolation, i.e. the objective function along the direction of descent is approximated by a 
quadratic function and minimised using the analytic solution:  

λ
∑ c∈ f d

∑ ∂c f
∂f d∈

. (4.2) 

3.4. Path-based Algorithms 

Path-based methods exploit the O-D pair separability of the TA problem. At each iteration, 
the flows are moved only within one O-D pair and path flows of the other O-D pairs are fixed. 
In order to achieve this, paths must be stored. Let K , ∀p ∈ Z denote the corresponding sets 
of paths. A general framework of this group of algorithms is presented in Figure 2.  

In order to prevent storing all possible simple paths for each O-D pair a column generation 
approach is usually applied, which consists in generating new paths when needed 
(Patriksson, 1994). In particular, it is performed as follows: for a given O-D pair p find the 
shortest path and add it to K  if it is shorter than the current shortest path contained in this 
set. This step corresponds to “Improve path set “ of the framework. Also, in order to keep 
only promising paths in K , the paths that do not carry flow anymore are removed. 
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Figure 2: Framework for path-based algorithms 

 

As in the case of link-based methods, initialisation is performed by AON assignment. In 
addition to a link flow solution each set K , ∀p ∈ Z of paths must also be initialised. This can 
be done by adding the shortest path corresponding to O-D pair p to K . 

All algorithms of this group differ in how path set K  is equilibrated. Equilibration of the set 
aims at equalising some or all of the path costs of set K . The remainder of this section 
discusses different algorithms belonging to this group. 

The PE algorithm equalises the costs of the current longest path l ∈ K  with positive flow and 
the cost of the current shortest path s ∈ K . This is equivalent to solving a non-linear 
equation. We apply Newton's method in order to solve it, namely we calculate the Newton 

step ΔF
∑ ∈ ,

, where A ,  is the set of links that belong to path l and path s without links 

common to both these paths, and update path flows in the following way:  

F F min F , ΔF ,
	F F min F , ΔF . (4.3) 

Expression min F , ΔF  is necessary, because the calculated flow shift ΔF might be infeasible 
causing F  to become negative.  

The GP algorithm considers several paths at each iteration. In particular, it moves flow to the 
current shortest path s ∈ K 	from all other paths of set K . First, an appropriate flow shift is 
calculated: 

											 														ΔF
C C

∑ ∂c
∂f∈ ,

, ∀k ∈ K , k s. (4.4) 

Second, a new solution is projected onto the feasible set as follows: 

																									 															F F min F , αΔF , ∀k ∈ K , k s,

F D F
∈ ,

,  (4.5) 

where α	is a predefined constant that must be small enough in order to guarantee 
convergence of the algorithm (Jayakrishnan et al., 1994). In our study it was set to 0.25 
because this value allows all tested instances to converge (Jayakrishnan et al. (1994) 
recommend to set it to 1). 
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The main idea of the PG algorithm is to move flow from the paths that have cost greater than 
the current average path cost to the paths that have cost less than the average value. It is 
equivalent to defining the following direction of descent d: 

d C C , ∀k ∈ K  (4.6) 

where C
∑ ∈

 is the average cost of the paths of O-D pair p. In order to find the 

appropriate amount of flow to move line search is applied along direction d. As a result, step 
size λ is calculated. We used quadratic interpolation for this purpose, see Section 4.1. The 
path flows are updated accordingly: F F λd , ∀k ∈ K . 

The ISP algorithm is based on the idea of “social pressure” which is defined as the difference 
between a path cost and the cost of the shortest path. All the paths are divided into two 
groups P ⊂ K  (paths with the cost less than or equal to some value π) andP ⊂ K 	(paths 

with the cost greater than π) such that P ∪ P K . π is determined at each iteration and is 

defined as follows: π C δ C C , where C  and C  are the costs of current shortest and 
longest paths, δ is a predefined constant that was set to 0.15 as suggested in the paper of 
Kumar and Peeta (2011). Flow is shifted from the paths belonging to set P  to the paths 

belonging to set P . This is also equivalent to defining a direction of descent d and moving 

the solution along this direction. Direction d is as follows:  

								 								d C C , ∀k ∈ P ,

																					d
∑ Δ∈ F

s F ∑ 1
s F∈

, ∀l ∈ P , (4.7) 

where s F  is the first derivative of the cost function of the path m with respect to path 

flow: s F ∑ ∈ . The step size λ is calculated as presented in Section 4.1 and 

path flows are updated as follows: F F λd , ∀k ∈ K . 

4.3 Origin-based Algorithms 

Origin-based algorithms also exploit the O-D pair separability of the TA problem. But instead 
of decomposing the problem into sub-problems corresponding to each O-D pair, the 
algorithms of this type decompose the problem into sub-problems corresponding to each 
origin. As a result, at each iteration flows are moved within one origin using a special data 
structure called bush. A bush is a directed sub-network of the original network G A, N  rooted 
at a given origin o such that it is (Nie, 2010): 

 Connected, i.e. using only links in the bush it is possible to reach every node that was 
reachable in the original network; 

 Acyclic, i.e. the bush does not contain directed cycles. 

We denote a bush by B N, A ⊂ G A, N , where A ⊂ A. Let O ⊆ N denote the set of origins. 
Then, at each iteration only one bush B N, A  is considered. The current link-based solution 
f is the sum of |O|	link flows of B N, A , ∀o ∈ O, i.e. f ∑ f∈ , ∀a ∈ A, where f  denotes 
the flow on link a of the bush B N, A  (Dial, 2006). 
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Figure 3: Framework for origin-based algorithms 

 

The motivation to decompose the traffic assignment problem by origins consists in the 
acyclicity of user equilibrium: for the single-origin formulation of the traffic assignment 
problem, links that have positive flow at user equilibrium never form a directed cycle (Nie, 
2010). This property gives several interesting advantages from a practical point of view since 
different operations such as shortest path calculations can be performed more efficiently on 
acyclic structures (such as bushes) than on general networks (Nie, 2010). 

All algorithms that decompose the TA problem by origins share a general framework 
presented in Figure 3.  

Each bush B N, A  is usually initialised with a shortest path tree rooted at origin o and the 
link flows are initialised by AON assignment.  

As in the case of path-based methods, bushes are constructed iteratively by adding 
promising links and removing unused ones. The removal of links is performed in the following 
way: links that carry zero flow are dropped if the connectivity of the bush is retained. The 
addition of new links must be performed with care in such a way that directed cycles are not 
created. The reader is referred to Nie (2010) for a detailed explanation of this algorithmic 
step. 

In our study we consider only one origin-based algorithm called algorithm B, see Dial (2006). 
Its main idea is similar to PE (see Section 4.2), namely the flow is shifted from the longest 
used path to the shortest path, but within a given bush. We implemented the same approach 
as in the case of the PE algorithm: the Newton step is applied to equalise the path costs. It 
must be noticed that the explicit storage of paths is not required anymore, because the 
calculation of the longest path can be done in linear time on the bush due to its acyclicity. In 
the case of path-based algorithms the paths must be stored because the longest path 
calculation is NP-complete on general graphs (Patriksson, 1994).  

5. Computational Study 

5.1 Environment and Problem Instances 

This section summarises our empirical study. All algorithms were implemented in the C++ 
programming language and compiled using g++ 4.7.3 (Ubuntu/Linaro 4.7.3-1ubuntu1). All 
runs were performed under the following environment: 
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 OS: Ubuntu Release 13.04 64-bit; 
 CPU: Intel Core i5-2500 CPU, 4 Core, 3.30GHz; 
 RAM: 7.7 GB. 

The tests were performed on the instances available at the web-site: 
http://www.bgu.ac.il/~bargera/tntp/. The main characteristics of these instances are 
presented in Table 3.   

Table 3: Problem instances 

Instance name Nodes Links Zones O-D pairs 

Sioux-Falls 24 76 24 528 

Anaheim 416 914 38 1406 

Barcelona 1020 2522 110 7922 

Winnipeg 1052 2836 147 4344 

Chicago Sketch 933 2950 387 93135 

 

We use the relative gap RGAP (see Section 3) as a convergence criterion for two reasons: it 
is a common measure of convergence, see Slavin et al. (2006), Florian et al. (2009), Dial 
(2006), Nie (2010), and it can be calculated for all tested algorithms. The required accuracy 
of the solution was set to ϵ 10 , i.e. the algorithms were stopped after the relative gap 
was less than ϵ.  

We have also performed one more numerical test on the Chicago Regional network that is 
much larger than the instances presented in Table 3. It has 1791 nodes, 39018 links, 1790 
zones and 2296227 O-D pairs. For this test we set a time limit of 8 hours for every algorithm. 
The results are discussed in the following sections. 

5.2 Implementation 

All algorithms were implemented in terms of the frameworks presented in Section 4. This 
ensures the usage of common code wherever possible. 

Each TA method requires solving the shortest path problem multiple times. Link-based 
approaches need a single-source shortest path algorithm for general graphs. The same 
algorithm is also required for the relative gap calculation. For this purpose we implemented 
the label correcting algorithm presented in Sheffi (1985). Path-based approaches, on the 
other hand, require a point-to-point shortest path method since at each iteration only one O-
D pair is considered. For this case we used the A* algorithm2, see Goldberg et al. (2006). For 
origin-based algorithm B we implemented the conventional shortest path algorithm for 
directed acyclic graphs that uses topological order, see Dasgupta et al. (2006). It should also 
be noticed that each bush is constructed iteratively. This means that topological sorting can 
be performed dynamically (Pearce and Kelly, 2006). However, our current implementation 
does not exploit this fact and the topological order is computed from scratch each time the 
bush topology changes.  

In Florian et al. (2009) it is mentioned that when the solution is close to the optimal one, 
many O-D pairs are equilibrated and there is no need to change their path flows and improve 
path sets. Our implementation does not take into account this empirical fact. Consequently, 
some algorithmic steps are performed even in the case when this is not necessary. For 

                                                 
2 An implementation of the A* algorithm was kindly provided by Boshen Chen. 
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example, the improvement of path set K  which involves calculation of the shortest path is 
performed at each iteration regardless how close to equilibrium O-D pair p is.  

Also our current implementation is not optimised with respect to memory usage. For all 
algorithms we used extended floating point precision (C++ long double type). 

5.3 Results 

Our first numerical test was performed on the small and medium size instances presented in 
Table 3. All link-based methods were not able to reach the required accuracy of relative gap 
in a reasonable amount of time (execution time of all algorithms was limited to 8 hours). The 
PG algorithm showed unstable numerical behaviour consisting in the loss of flow at each 
iteration. Basically, because of rounding errors in the computation of the average path cost, 
the amount of flow lost at each iteration prevents this algorithm from converging when the 
required precision is approximately less than 10  (this value depends on the problem 
instance).  

Figure 4 presents running times of the algorithms that were able to reach the required 
precision. According to these results, algorithm B is usually significantly faster than other 
methods. PE shows the best performance among path-based algorithms followed by ISP and 
GP. GP is usually slower because its performance depends on parameter α. In our numerical 
tests we didn't adjust this parameter to improve performance of the algorithm since it is 
instance-dependent. We think that ISP is slower than PE mainly because it requires 
additional computations at each step, see Section 4.2. 

Figures 5 and 7 show convergence of the algorithms on the Barcelona and Chicago Sketch 
instances, respectively, whereas Figures 6 and 8 show early stages of the same 
convergence. After analysing these results, we can conclude that link-based methods 
converge fast on early iterations, but start tailing in the vicinity of the optimum. Usually, if the 
required level of precision is 10  of relative gap, link-based methods represent a reasonable 
alternative to other approaches. Among the algorithms of this type BFW demonstrated the 
best performance on the majority of the tested instances. If the required precision is stricter, 
then algorithm B is a good choice in terms of both memory usage and running time 
compared to path-based approaches.  

Different convergence patterns of different groups of algorithms occur in Figures 5 and 7. In 
particular, all link-based methods tail in the vicinity of optimum. As mentioned in Patriksson 
(1994), Jayakrishnan et al. (1994) and Mitradjieva and Lindberg (2012), this happens 
because the search direction is perpendicular to the gradient of the objective function when 
the algorithm approaches the optimal solution. This does not happen for path- and origin-
based algorithms. In Figure 5 the relative gap of algorithm B and PE drops by a factor of 10 
after reaching a value of 10 . This behaviour is not common (for example, see Figure 7). 
One possible explanation of this phenomenon is the fact that the relative gap is measured 
after all O-D pairs are considered and not after each flow move. Therefore, for this particular 
instance, the relative gap might reduce by a factor of 10 after flows are shifted within all O-D 
pairs.  

Our second numerical test was performed on a large instance of the Chicago Regional 
network. The required precision was set to 10  of relative gap and time of execution was 
limited to 8 hours. All path-based algorithms were not able to reach the required precision 
because of the lack of memory. One obvious reason is absence of memory usage 
optimisation of the current implementation. The convergence of the algorithms is presented 
in Figure 9, with a few first iterations of path-based algorithms before they run out of memory 
(the PG algorithm is not presented because it ran out of memory after the first iteration). As 
can be seen from the results, the fastest algorithm was BFW. Algorithm B starts dominating 
FW and CFW when the relative gap is less than 10 . However, on this level of solution 
accuracy it is still slower than BFW. 
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5.4 Summary 

Each type of algorithm presented above has its advantages and disadvantages that must be 
taken into account when solving the TA problem. Depending on the particular requirements 
on the solution, a problem instance and available resources, preference must be given to a 
particular algorithm. Table 4 presents some potential trade-offs of different approaches. 

6. Conclusion and Future Work 

This work starts with a literature overview of existing traffic assignment algorithms, based on 
which we selected and implemented the most promising ones. The main aim of our 
numerical study is to compare the algorithms under the same computational environment 
and in terms of a framework that insures that common code is used wherever possible. We 
implemented and analysed several algorithms belonging to link-, path- and origin-based 
methods, namely FW, CFW, BFW, PE, GP, PG, ISP and B.  

Based on the performed computational study we can conclude that link-based algorithms 
represent a good alternative to other methods when the required level of precision is low. 
Path-based algorithms must be implemented with care in terms of memory usage, especially 
if the problem instance is large. Origin-based algorithm B is capable to achieve a high level 
of precision with moderate memory consumption and is preferable when high precision of the 
solution is needed. Numerical stability of the algorithms is also an important issue especially 
if high accuracy of the solution is necessary and must be taken into account. 

The future development of this study consists in implementing the most recent algorithms 
such as LUCE and TAPAS and in improving the current code by reducing memory usage of 
path-based algorithms, adding on-line topological sorting and other TA specific features that 
can be exploited by different methods. Also we plan to study the performance of algorithms 
with respect to the representative operation counts in order to identify and analyse the 
asymptotic bottleneck operations. 

Figure 4: Running time of algorithms 
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Table 4: Trade-offs of different TA algorithms 

Factor Link-based  Path-base  Origin-based 

Memory 
requirements 

Low: | |  
High: potentially exponential 
(number of paths in graph is 
exponential) 

Moderate: | || |  

Solution 
precision 

Low: usually cannot 
achieve high precision in 
reasonable amount of time 

High High 

Shortest path 
algorithm  

Single-source shortest path 
on general graph 

Point-to-point shortest path 
on general graph 

Single-source shortest 
path on directed 
acyclic graph 

Flow moves at 
each iteration 

Flows are moved within 
entire network 

Flows are moved within path 
set  

Flows are moved 
within bush 

Convergence 
behaviour 

Quickly converges in the 
beginning, tails near vicinity 
of optimum  

Do not tail in the vicinity of optimum 

 

 

Figure 5: Convergence of algorithms. Barcelona instance 
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Figure 6: Convergence of algorithms on early stages. Barcelona instance 

 

 

 

 

Figure 7: Convergence of algorithms. Chicago Sketch instance 
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Figure 8: Convergence of algorithms on early stages. Chicago Sketch instance 

 

 

Figure 9: Convergence of algorithms. Chicago Regional instance 
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