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Abstract 
An airport network is a fundamental component of an air transportation infrastructure and has 
to be designed in such a manner that failure of any of its arbitrary components should not 
cascade into a catastrophic event. Resilience analysis of the Airports Network can offer an 
insight into airport network readiness and response behaviour to any catastrophic event. A 
complex network analysis approach of such a network can offer an insight about its structure, 
performance and resilience under various levels of perturbation. 

In this paper, we present a complex network approach for measuring the performance and 
estimating the resilience of an airport network using the Australian Airports Network (AAN) as 
a case study. Real air traffic data for all domestic flights in the Australian airspace for the 
year 2011 is used to form the network. Resilience is then assessed under different failure 
scenarios. The complex network analysis reveals that the AAN can be classified as a scale-
free small-world network and that its structure is resilient to random failures of airports (e.g.,  
shutdowns) and random disruptions of flight paths (e.g., airways unavailable due to bad 
weather). It also indicates that the AAN remains connected and incurs minimal increase in 
travel times and reduced ‘reachability’ when a majority of its nodes (airports) are removed or 
its edges (airways) become randomly unavailable. In the case of a targeted failure (a 
targeted isolated airport shutdown), the AAN is more sensitive to node failure by a 
descending order of degree as well as ‘betweenness centrality’. 

1. Introduction 
An air transport system and, more generally, any transportation infrastructure, plays a 
strategic role in our society in terms of both its economic significance and social impact. Air 
transportation is a principal means of the fast and effective movements of people and goods 
over large distances across countries and around the world, and is critical to the functioning 
of countries and the world economy as a whole. 

Building an aggregate network of airports considering all flights among all destination airports 
throughout a country and the globe (the world airline network (WAN)) has been the subject of 
a great deal of recent complex network research (Amaral, Scala et al. 2000; Guimera and 
Amaral 2004; Bagler 2008; Wang, Mo et al. 2011). Network analysis to characterise complex 
systems has become widespread during the last few decades while complex network 
frameworks have been applied in a growing range of disciplines, such as technology 
(Huberman, Pirolli et al. 1998), artificial intelligence (Hossain 2010; Hossain, Abbass et al. 
2010), biology (Yeger-Lotem, Sattath et al. 2004) and sociology (Castellano, Fortunato et al. 
2009). More recently, the advancement of complex network theory has generated a huge 
interest in the area of applications in airport network systems (Guimera and Amaral 2004; 
Guimera, Mossa et al. 2005; Bagler 2008; Wang, Mo et al. 2011) in which the focus has 
been on analysing the overall network features and flow patterns, as well as identifying the 
importance of individual airports (Guimera, Mossa et al. 2005). 
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In complex network theory, an airport network is modelled as a graph (network), comprising 
the airports as vertices or nodes linked by flights connecting them. Interestingly, many real 
networks, including airport networks, share a certain number of topological properties; for 
example, most are small worlds (Amaral, Scala et al. 2000; Guimera, Mossa et al. 2005), that 
is, the average topological distances between nodes increase very slowly (logarithmically or 
even more slowly) with increases in the number of nodes. Additionally, ‘hubs’ (nodes with 
very large degrees (k) compared with the mean of the degree distribution (𝑃(𝑘)) are often 
encountered. More precisely, in many cases, the degree distributions exhibit heavy tails 
which are often well approximated for a significant range of values of 𝑘 by a power-law 
behaviour (𝑃(𝑘)~𝑘−𝛾) (Albert and Barabási 2002; Dorogovtsev and Mendes 2003). Although 
these topological features are extremely relevant for characterising network topology, 
research is needed to identify the topological features required to assess an air 
transportation network’s robustness or vulnerability. This is important and has been linked to 
events such as 9/11, natural disasters such as Hurricane Katrina, the Icelandic volcano 
which erupted in 2010 and blocked air travel in a large area, fatal runway incursions (e.g., the 
Linate runway collision in 2001) and fatal mid-air collisions (e.g., over Ueberlingen in 2002). 
With the aim of hedging against natural disasters and hazardous events, a majority of the 
complex network literature focuses on the graph characteristics of the associated application 
to evaluate a network’s reliability and vulnerability (Holme, Kim et al. 2002; Chassin and 
Posse 2005).  

However, in order to be able to evaluate the reliability and vulnerability of an airport network, 
a measure or set of measures that can quantifiably capture its efficiency/performance and 
resilience must be developed. To achieve this, we are interested in two main questions: 

(i) which network measures are best suited for assessing the damage incurred by 
airport networks and characterising the most effective attack (protection) 
strategies; and  

(ii) how does a network’s structure influence its/the system’s robustness?  

Therefore, our attention is focused on network topology and the analysis of its structural 
vulnerability with respect to various centrality-driven failure (attack) strategies. In particular 
we propose a series of topological features that can be used to identify the most important 
node(s) of an airport network.  

Although the topological structure of a network obviously has an impact on the network’s 
performance and vulnerability, we believe that the traffic flowing through such structure is 
also an important indicator, as are its induced costs and users’ behaviour. A network’s flows 
represent its usage and the paths and links with positive flows, together with their 
magnitudes, are relevant in the case of network disruptions. Therefore, a network efficiency 
measure that captures flows and their associated costs along with topology is a higher 
resolution indicator for network resilience.  

As a case study, we investigate the features and resilience under disruption of the Australian 
Airport Network (AAN). There are two main types of disruption that can occur in an airport 
network.  

(i) Short-term outages of resources, such as airspace closures for special purposes 
(e.g., military use), unavailability of the runway and other airport facilities due to bad 
weather or congestion, limited operation of control tower radar due to servicing and 
breakdowns in communication links, are usually recovered within a short period of 
time and normally only slightly impact on the overall performance of the relevant 
systems. In the current air transportation system, if an airport is congested, all its 
departure flights are delayed and its expected arrival traffic delayed in the airports of 
origin. Airborne flights travelling to a malfunctioning airport are either put in a holding 
pattern if possible or diverted to another airport until the problem is rectified. 
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(ii) Long-term resource outages resulting from: events such as terrorist actions (e.g., 
9/11 in 2001) or volcanic ash in the sky (e.g., following the volcanic eruption in 
Iceland in 2010) which cause the suspension of air travel over large areas; airports 
being affected by flooding; runway accidents that damage the runway; and airports 
being damaged by tornadoes or typhoons. These are rare events that cannot be 
recovered in a short period of time, and could trigger a catastrophic failure of entire 
systems.  

In this study, although we focus on the effect of a long-term disruption on the resilience of the 
AAN, the results and insights are applicable to other airport or transportation networks with 
similar features. We analyse the AAN’s topological features and resilience by considering the 
intensity of its interactions in order to gain an insight into its features and characteristics 
which may help in the design of a more efficient air transport network with high resilient to 
node failures (airport shutdowns) and link disturbances (airspace disruptions or service 
closures). 

The rest of this paper is structured as follows: in section 2, the model representing an airport 
network is defined as a graph; in section 3, the topological features characterising the AAN 
are described; in section 4, a resilience evaluation and several centrality-based failure 
(attack) strategies are presented; in section 5, the resilience and traffic re-routing costs are 
evaluated and analysed and finally the conclusions are drawn. 

2. Network Modelling 
The AAN consists of domestic and international airports for handling regular passenger 
flights conducted by more than 20 airlines (domestic and regional). The air movement data 
for Australian airport-pairs for the year 2011 was obtained from the Bureau of Infrastructure, 
Transport and Regional Economics, Australia (http://www.bitre.gov.au) and Official Airline 
Guide–OAG (http://www.oag.com). 

Figure 1: Spatial distributions of nodes and edges of AAN 
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A graph (𝐺(𝑉,𝐸)) is used to describe the AAN in which the node set (𝑉) represents all 𝑛 
airports and the edge set (𝐸) all the 𝑚 direct flight routes between airports. The network is 
represented by an adjacency matrix (𝐴𝑛×𝑛) such that 𝑎𝑖𝑗 = 1 if a flight link exists between the 
city-pair 𝑖 and 𝑗, otherwise  𝑎𝑖𝑗 = 0. From the results, we find that the AAN is a directed 
network in which all major airports have direct connections. For developing the network links, 
both direct and stop-over air routes are considered, with links created from a start to stop-
over airport, from it to the next stop-over airport (if there is more than one stop-over) and 
then to the destination airport. Duplicate air routes are removed, with only the unique ones 
maintained between each airport-pair which results in the AAN consisting of 𝑛 = 131 airports 
and 𝑚 =  596 links (directed links). 

As for other complex networks, the flow of information (traffic load) is a crucial factor for any 
transportation network and, to accommodate it, the AAN is represented as a weighted 
network by considering the number of flights flying on a route as the ‘weight’ of that particular 
link defined by a weight matrix ( 𝐴𝑤), where each element (𝑤𝑖𝑗) represents the total number 
of flights from airport 𝑖 to airport 𝑗. Figure 1 shows the weighted AAN in which the 
proportional circles represent the number of air connections of airports (number of routes) 
and the widths of the links the monthly average volume of traffic. 

Table 1: Top 10 Airports by number of flights in 2011 

Rank Airport Number of 
connected routes 

Flight total  
(in thousands) 

1 Sydney 99 158.212 
2 Melbourne 66 149.196 
3 Brisbane 81 110.209 
4 Perth 57 58.352 
5 Adelaide 47 47.584 
6 Gold Coast 25 31.711 
7 Cairns 46 24.829 
8 Canberra 24 31.011 
9 Hobart 10 14.761 

10 Darwin 41 11.321 
 

Table 1 summarises the air-traffic volumes and routes (numbers of links connected with 
other airports) of the top 10 cities of the AAN from January 2011 to December 2011. The air-
route data includes all the airlines (domestic and regional) that provide connectivity between 
the airport-pairs and, of the 131 airports, Sydney has the highest number of both air-route 
connections and flight movements. 

3. Network Features and Definition 
Network structures occur in a wide range of different contexts, such as technological and 
transportation infrastructures, social phenomena and biological systems, and each class 
presents specific topological features which characterise the connectivity, interaction and 
dynamical processes executed by each type of network (Barrat, Barthelemy et al. 2004). 
Therefore, the analysis, discrimination and synthesis of a complex network relies on the use 
of measurements capable of expressing the most relevant topological features which enable 
us to characterise its complex statistical properties (Costa, Rodrigues et al. 2007). Several 
basic indices are used in this study to characterise the topology of the AAN and its 
robustness. 

Degree Distribution: The degree is the most important characteristic of a vertex or node 
and is the number of edges a node shares with others (Barabási and Albert 1999), with that 
of node i defined as: 
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𝑘𝑖 = �𝑎𝑖𝑗

𝑛

𝑗=1

 

The average degree of a network is the average number of neighbours a node has which is 
denoted as ⟨𝑘⟩ and written as: 

⟨k⟩ =
1
𝑛
�𝑘𝑖

𝑛

𝑖=1

 

The value of its degree symbolises the importance of a node in a network – the larger it is, 
the more important the node – and, based on the degrees of its vertices, it is possible to 
derive important measures for the network, including its degree distribution. For a network 
with 𝑛 nodes, if 𝑛𝑘 of them have a degree of 𝑘, the degree distribution (𝑃(𝑘)) is defined as the 
fraction of these 𝑘-degree nodes, i.e., 𝑛𝑘 𝑛�  . 𝑃(> 𝑘) represents the cumulative degree 
distribution, i.e., the fraction of nodes with degrees greater than or equal to 𝑘  and is 
formulated as: 

𝑃(> 𝑘) = � 𝑃(𝑘′)
∞

𝑘′=𝑘

 

The distribution of degrees in a network is an important feature which reflects the topology of 
the network and sheds light on the process by which it came into existence. A random 
network (an Erdös-Renyi graph) shows a Poisson (exponential) connectivity distribution 
(𝑃(𝑘)) (the probability that a node has degree k) that peaks at ⟨𝑘⟩ and decays exponentially 
for large 𝑘, and no nodes play any type of central role in it. As, for a scale-free network, 𝑃(𝑘) 
decays as a power law (𝑃(𝑘)~𝑘−𝛾), it may be described as being free of any single, 
characteristic scale (Albert and Barabási 2002).  

In a scale-free network, it is likely that more of its connections will use a hub, a dependence 
which is an important factor governing the behaviour of the two types of network under 
degradation, e.g., when and how hubs fail. Thus, while certain scale-free networks may 
display high levels of resilience to degradation (due to failure or attack), others may be more 
sensitive than a random network if the hubs are more likely to fail. Although the power-law 
distribution implies that nodes with smaller connectivities will be affected by much higher 
probabilities of random disruption, this cannot be assumed to be the case with air transport 
hubs.  

Figure 2: Cumulative degree distribution of AAN 
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The cumulative degree distribution (𝑃(> 𝑘)) of the AAN is illustrated in Figure 2 in which it 
can be seen that it follows a power-law distribution 𝑃(> 𝑘)~𝑘−1.211, with a wide range of 
degrees (𝑘𝑖), which confirms that a small number of nodes carry the majority of the routes. 
Indeed, as the top 10 most-connected airports account for 43% of the air routes, this scale-
free structure could be robust to a random failure but vulnerable to a targeted or specific 
failure. 

Weight and Strength: The weighted counterpart of degree is called strength (𝑆𝑖) which is 
the total load on all its links (Barrat, Barthelemy et al. 2004) and is formulated as: 

𝑆𝑖 = �𝑎𝑖𝑗𝑤𝑖𝑗

𝑛

𝑗=1

 

The cumulative weight distribution (𝑃(> 𝑤)) of the AAN is plotted in Figure 3 in a double-
logarithmic scale. The statistical analysis of the weights between pairs of airports (𝑤𝑖𝑗) 
indicates the presence of right-skewed distributions which signal a high level of heterogeneity 
in the system,a phenomenon also found in the case of the airport networks of India (Bagler 
2008) and China (Wang, Mo et al. 2011), and the WAN (Guimera, Mossa et al. 2005). 
 

Figure 3: Cumulative weight distribution of AAN 

 
It has been observed that the weights of its individual links do not provide a general picture of 
a network’s complexity (Yook, Jeong et al. 2001) and a more significant measure of this 
considering the flow of information could be its node strengths (𝑆𝑖). This parameter measures 
the strength of a node in terms of the total weight of its connections and is a natural measure 
of the node’s importance or complexity in the network. To capture the relationship between a 
node’s strength and degree, we investigate the dependency of 𝑆𝑖  on 𝑘𝑖, as shown in Figure 4 
for the average strengths of nodes with degree 𝑘 (𝑠(𝑘)). We find that, in the AAN, 𝑠(𝑘) 
increases with increasing degrees as  𝑠(𝑘)  ∼  𝑘𝛽=1.735 while the value of  𝛽 =  1.735 implies 
that the nodes’ strengths are strongly correlated with their degrees, an expected behaviour 
because it is plausible that the larger an airport in terms of connections, the more traffic it 
handles. 

 

 



Australian Airport Network Robustness Analysis: A Complex Network Approach 

7 

 

Figure 4: Average strength (𝒔(𝒌)) as a function of degree k 

 
Clustering coefficient: The clustering coefficient (𝐶𝑖) of a node ( 𝑖 ) is defined as the ratio of 
the number of links it shares with its neighbouring nodes up to the maximum possible 
number. In other words, 𝐶𝑖 is the probability that two nodes are linked to each other given 
that they are both connected to 𝑖 (Newman 2001) and, for node 𝑖 is formulated as: 

𝐶𝑖 =
1

𝑘𝑖(𝑘𝑖 − 1)
�𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑖𝑘
𝑖,𝑗,𝑘

 

 In a network, a large value of 𝐶𝑖, means that node 𝑖 has a more compact system of 
connections with its neighbour and, in a fully connected network, the 𝐶𝑖 of all the nodes equal 
1. On the other hand, if a node has only one neighbour, i.e., a degree of 1, its 𝐶𝑖 equals 0. 
The clustering coefficient of the overall network (𝐶) is the average of all individual 𝐶𝑖, and 
mathematically represented as: 

𝐶 =
1
𝑛
�𝐶𝑖
𝑖

 

The AAN’s  𝐶 =  0.50 which is much larger than that of a random network (𝐶𝑟𝑤  =  0.091) of 
the same size and similar to that of a small-world network (𝐶𝑠𝑤  =  0.635). This confirms the 
AAN’s high degree of concentration and also implies a high probability of travelling in it with 
fewer stop over. 

Characteristics Path Length (𝑳): The characteristics path length of a network is defined as 
the average number of edges along the shortest paths for all its possible node-pairs (Watts 
and Strogatz 1998) which is also known as the average shortest path length and written as: 

𝐿 =
1

𝑛(𝑛 − 1)� � 𝑑(𝑣,𝑤)
𝑤≠𝑣 ∈𝑉𝑣∈𝑉

 

where 𝑑(𝑣,𝑤) is the length of the geodesic between 𝑣 and 𝑤 (𝑣,𝑤 ∈ 𝑉), i.e., the number of 
edges in the shortest path connecting the two, and the factor 𝑛(𝑛 − 1) the number of pairs of 
nodes. From the geodesic, one important property of a network, the ‘diameter’, is defined as 
the maximum value of 𝑑(𝑣,𝑤) of all node-pairs.  
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In a weighted network, unequal link capacities make some specific paths more favourable 
than others for connecting two of its nodes. A passenger’s choice of route depends roughly 
on the geographical distance of, and the number of flights operating on a route. A 
straightforward way of generalising the hop distance in a weighted network should include 
the number of flights and physical distance between airports 𝑖 and 𝑗 ( wij and dij, 
respectively). It is quite obvious that the effective distance between two connected nodes is a 
decreasing function of the weight (traffic) of the link. In others words, the larger the traffic flow 
on a route, the more frequent and faster will be the exchange of physical quantities, and it 
also reflects users’ choice. Therefore, we define the effective distance of a link (route) as a 
ratio of 𝑑𝑖𝑗   to  𝑤𝑖𝑗 and, in this paper, represent this measure as 𝜑 and define it as: 

𝜑𝑖𝑗 = �
𝑑𝑖𝑗  
𝑤𝑖𝑗    

                 𝑖𝑓 𝑎𝑖𝑗 = 1

∞                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�   

To generalise the notation of the characteristics path length through a weighted network, 
especially an air transportation network, we propose that the shortest paths defined by the 
hop distance be replaced by the effective distance of an edge (𝜑𝑖𝑗) which can be 
mathematically formulated as: 

𝐿𝜑 =
1

𝑛(𝑛 − 1)� � 𝑑𝜑(𝑣,𝑤),
𝑤≠𝑣 ∈𝑉𝑣∈𝑉

 

where 𝑑𝜑(𝑣,𝑤) is the shortest path of effective distance between 𝑣 and 𝑤. 

Table 2: Characteristics of air transport network of Australia 
and other countries/regions 

Author Country No. of 
nodes (n) 

No. of 
edges ⟨k⟩ L C Network 

structure 

Bagler India 79 455 11.52 2.26 0.66 SW 
Guimer´a et al. World 3883 27051 13.93 4.4 0.62 SF SW 
Guida and Maria Italy 50 310 12.4 1.98∼2.14 0.07~0.1 SF SW Fractal 
Xu and Harriss US 272 6566 48.28 1.84∼1.93 0.73~0.78 SW 
J. Wang et al. China 144 1018 14.14 2.23 0.69 SW 
In this paper Australia 131 596 9.10 2.90 0.50 SW 

 

Table 2 compares the topological properties of the AAN with those of other similar types of 
air transport networks. The average shortest path length ( 𝐿) of the AAN which is 2.90, 
implies that, on average, it requires almost three flight changes to connect most city-pairs, 
and is slightly larger than those of China (2.23) and India (2.26) but much larger than that of 
the US (which ranges from 1.84 to 1.93). As, according to Watts and Strogatz (1998), if 𝐿  
increases almost as fast as 𝑙𝑜𝑔(𝑛), where 𝑛 is the number of nodes, the corresponding 
network can be defined as a small-world network, from this analysis, it can be inferred that 
the AAN has evolved as a small-world topology which means that it might be possible to 
connect from one node to another through a small number of nodes (even in the absence of 
hubs); in particular, for the AAN, 𝐿 = 2.90 and 𝑙𝑜𝑔(𝑛) = 2.12 for 𝑛 = 131. As this relatively 
larger value of 𝐿 implies that more flight stops are needed to connect any two cities in the 
AAN, there is a great deal of room to improve its efficiency in terms of connections.  

The average degree of the AAN of ⟨𝑘⟩ = 9.10 is the lowest of the networks considered in this 
paper whereas its clustering coefficient (𝐶 = 0.5) is slightly smaller than those of India (0.66) 
and China (0.69) but much smaller than that of the US (0.73-0.78). All the network features 
presented in Table 2 confirm that the AAN has properties similar to small-world 
characteristics. 
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3.1. Centrality Measures 
A key issue in the characterisation of a network is identification of its most important nodes 
which can be achieved through the concept of centrality which can be quantified by various 
measures. The degree (𝑘𝑖) is the first intuitive parameter that gives an idea of the importance 
of a node in terms of connectivity while the strength ( 𝑆𝑖,) takes its amount of traffic (operating 
load) into account.  

However, these local measures do not consider non-local effects, such as the existence of 
bottleneck nodes which may have small degrees but act as bridges between different parts 
of a network. In this context, a well-accepted parameter for investigating node centrality is 
the ‘betweenness centrality’ (Freeman 1977) which, for a node ( 𝑖) is defined as the ratio of 
all the shortest paths passing through it and reflects its transitivity. More precisely, if 𝜎𝑘𝑗 is 
the total number of shortest paths from node (vertex) 𝑘 to 𝑗  and 𝜎𝑘𝑗(𝑖) the number of them 
that pass through node 𝑖, the betweenness centrality of node 𝑖 is defined as: 

𝐵𝑣(𝑖) = � 𝜎𝑘𝑗(𝑖)
𝜎𝑘𝑗

𝑘≠𝑗≠𝑖

 

The betweenness of a network (𝐵𝑣)  is the average of the node betweenness of all its nodes.  
Figure 5: Betweenness centrality distribution of AAN 

 
Figure 5 shows the distribution of the node betweenness centrality of the AAN which shows 
that 118 nodes (around 90% of the total number) have less than average betweenness 
values (𝐵𝑣 = 0.0145). The sharp decline in the betweenness curve and the large number of 
nodes with low betweenness values suggest the existence of bottlenecks within the AAN, as 
confirmed by its low clustering coefficient (𝐶 =  0.5). 

Similar to the importance of the most central nodes in a network, the most weighted links are 
also significant, especially in a transportation network. As suggested by (Newman and 
Girvan 2004), the links with the highest betweenness values are most likely to lie between 
sub-graphs rather than inside a sub-graph. Consequently, successively removing the link 
(edge) with the highest edge-betweenness value will eventually fragment a network 
consisting of nodes that share connections with only the other nodes in the same sub-
network. The edge-betweenness (𝐵𝑒) for edge m is defined as: 

𝐵𝑒(𝑚) = �𝜎𝑘𝑗(𝑚)
𝜎𝑘𝑗

𝑘≠𝑗

 

where 𝜎𝑘𝑗(𝑚) is the total number of shortest path edges between nodes k and j that include 
the edge m.  
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Table 3: Top 20 Airports by degree and betweenness centrality 

Rank Degree Betweenness 

1 Sydney Brisbane 

2 Brisbane Sydney 

3 Melbourne Cairns 

4 Perth Perth 

5 Adelaide Adelaide 

6 Cairns Darwin 

7 Darwin Melbourne 

8 Townsville Mount Isa 

9 Gold Coast Townsville 

10 Canberra Toowoomba 

11 Broome Launceston 

12 Avalon Charleville 

13 Alice Springs St. George 

14 Mount Isa Boulia 

15 Launceston Gold Coast 

16 Newcastle Avalon 

17 Karratha Quilpie 

18 Mackay Doomadgee Mission 

19 Rockhampton Cunnamulla 

20 Geraldton Bedourie 
 

Table 3 lists the top 20 Australian cities, the most central nodes in the AAN, by degree and 
betweenness which shows that the same 13 are in both centrality indices. Brisbane is ranked 
at the top for betweenness and Sydney at the top for degree, followed by Brisbane. 
Melbourne is ranked 3rd for degree and 7th for betweenness which indicates a high level of 
inconsistency in the centrality indices. Perth and Adelaide rank in 4th and 5th places, 
respectively, in both indices. The national capital, Canberra, is ranked 10th for degree but is 
not in the top 20 for betweenness. 

4. Resilience of Australian Airport Network 
Resilience refers to the ability of a network to avoid malfunctioning when a fraction of its 
constituents are damaged. According to Eurocontrol (2009), “Resilience is the intrinsic ability 
of a system to adjust its functioning prior to, during, or following changes and disturbances, 
so that it can sustain required operations under both expected and unexpected conditions.” 
Thus, the resilience analysis of a transportation network is very important to the 
understanding of its sustainability as it directly affects the efficiency of any process running 
on top of the network and is one of the important issues being explored in the literature 
(Newth and Ash 2004; Boccaletti, Latora et al. 2006; Wuellner, Roy et al. 2010). As the use 
of multiple metrics and simulation provides a promising approach for addressing the 
complexity of resilience, this paper measures an airport network’s resilience through 
evaluating its topological and reachability metrics.  

4.1. Metrics for Damage Characterization 
To analysis the sensitivity of the AAN to various failure scenarios, we primarily use two 
types of measures: (i) topological sensitivity; and (ii) reachability and re-routing cost. 
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4.1.1. Topological Sensitivity 

There are several ways of measuring the topological sensitivity of a network, with one key 
parameter, the average geodesic path length ( 𝑳). As the number of removed nodes or links 
increases—leading to the network eventually breaking into disconnected sub-networks (sub-
graphs)—𝑳 will approach infinity for such a disconnected graph. It is then wise to study the 
average inverse geodesic length as: 

ℓ−1 =
1

𝑛(𝑛 − 1)� �
1

𝑑(𝑣,𝑤)
𝑤≠𝑣 ∈𝑉

,
𝑣∈𝑉

 

which is a finite quantity even for a disconnected graph since 1 𝑑(𝑣,𝑤) = 0⁄  when there is no 
path connecting 𝑣 and 𝑤.  

For many applications, the distance between a pair of nodes in the network is one of the 
most important determinants of network efficiency. When nodes are separated by short 
effective distances, they can easily communicate and distribute resources to each other. This 
idea motivated the following ‘distance-attenuated reach’ metric that includes the effective 
distance to the average inverse geodesic length. 

(ℓ𝜑)−1 =
1

𝑛(𝑛 − 1)� �
1

𝑑𝜑(𝑣,𝑤)
𝑤≠𝑣 ∈𝑉𝑣∈𝑉

 

Since subsequent failures of nodes or links might fragment a network, two important 
quantities for measuring its sensitivity are the number of sub-graphs and size of the largest 
connected sub-graph (giant component) which, in this paper, are represented by 𝑁𝑐 and 𝑆, 
respectively. In order to quantify the effect of any node or link failure, the values of the 
average inverse geodesic length, distance-attenuated reach, number of sub-graphs and 
giant component are normalised by the corresponding values of the initial or original network 
and represented by ℓ−1� , (ℓ𝜑)−1,�    𝑁𝑐 �𝑎𝑛𝑑  𝑆  � respectively. 

4.1.2. Reachability and Re-routing cost 

If a node or link is removed from a directed network, this raises the question as to whether 
the network is fully reachable, that is, starting from any node, is it possible to reach all other 
nodes in the network?. In order to assess the reachability of the AAN, we calculate the 
probability of the connectivity between any pair of its nodes,(𝑣,𝑤), which is represented by 
𝑅, and the reachability of node 𝑅𝑖  is calculated as:  

𝑅𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖

𝑛 − 1
 

The reachability (𝑅) of the overall network is defined as the average of all 𝑅𝑖, with a fully 
reachable network achieving 1 and an isolated network with no physical connection (links) 
between the nodes is always 0.  

We turn our attention to traffic flows following the failure of some of a network’s elements. If a 
node is disconnected from the network, the traffic associated with it raises the question of 
related damage costs (traffic re-routing) as, after a node failure, the traffic destined for that 
airport needs to be re-routed to the nearest possible airport. But this raises the issue of 
whether or not the nearest airport is capable of handling any types of aircraft (light, medium 
and heavy)? Since some airports are incapable of handling heavy and medium aircraft, 
flights must be re-routed to the closest appropriate airport. For example, if Sydney suffers an 
operational failure, all the light and medium aircraft could be re-directed to Newcastle airport 
and the heavy aircraft re-routed to Canberra. Thus Newcastle and Canberra could act as 
‘surrogate airports’ for Sydney. This re-routing definitely incurs additional costs to airline 
operators, such as those of flights which might need to travel greater geographical distances 
as well as those associated with landing in surrogate airports. To estimate the re-routing cost 
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of a node failure, we first define the operating cost (𝑐𝑖𝑗) of a city pair (𝑖, 𝑗) as a product of the 
related geographical distance (𝑑𝑖𝑗) and traffic (𝑤𝑖𝑗) as 𝑐𝑖𝑗 = 𝑤𝑖𝑗𝑑𝑖𝑗. Then, the re-routing cost 
for a node ‘𝑥’ failure (𝑅𝐶(𝑥)) is calculated using the following algorithm. 

Algorithm I: Re-routing cost estimation 

𝑥-failed node; 𝑤𝑖𝑥 - weight (traffic) from node 𝑖 to node 𝑥 
1:  for each source and destination to ‘𝑥’-node pairs (𝑖, 𝑥) 
2:         if  𝑤𝑖𝑥 ≠ 0 then 
3:    decompose light (𝑤𝑖𝑥

𝑙 ), medium (𝑤𝑖𝑥𝑚), and heavy (𝑤𝑖𝑥ℎ ) where 𝑤𝑖𝑥𝑙 + 𝑤𝑖𝑥𝑚  +  𝑤𝑖𝑥ℎ = 𝑤𝑖𝑥 
4:    𝑠𝑙:  surrogate node of 𝑥 that can handle light aircraft 
5:    𝑟𝑐𝑙 ← (𝑤𝑖𝑥𝑙  |𝑃𝑠𝑙|  + 𝑐 𝑤𝑖𝑥𝑙  𝑑𝑠𝑙 𝑥 − 𝑤𝑖𝑥𝑙  𝑑𝑖𝑥) ; where |𝑃𝑠𝑙| is the length of shortest path from 𝑖 to 𝑠𝑙 
7:    𝑠𝑚 = surrogate node of 𝑥 that can handle medium aircraft 
8:   𝑟𝑐𝑚 ← 〖(𝑤〗𝑖𝑥𝑚 |𝑃𝑠𝑚|  + 𝑐 𝑤𝑖𝑥𝑚 𝑑𝑠𝑚 𝑥 − 𝑤𝑖𝑥𝑚 𝑑𝑖𝑥) 
10:    𝑠ℎ:  surrogate node of 𝑥 that can handle heavy aircraft 
11:    𝑟𝑐ℎ ← (𝑤𝑖𝑥ℎ  |𝑃𝑠ℎ|  + 𝑐 𝑤𝑖𝑥ℎ  𝑑𝑠ℎ 𝑥 − 𝑤𝑖𝑥ℎ  𝑑𝑖𝑥) ;    
12:    𝑟𝑐𝑖 ← 𝑟𝑐𝑙 + 𝑟𝑐𝑚 + 𝑟𝑐ℎ 
13: end if 
14:  end for 
15:  𝑅𝐶(𝑥) =  ∑𝑟𝑐𝑖 

 

For estimating the re-routing costs, besides that of re-routing the traffic to a surrogate 
node(s), there are other consequences, such as passengers needing to travel to their original 
destinations by other forms of transport which will be more expensive than the normal 
operating cost (∑ 𝑤𝑖𝑥𝑑𝑠 𝑥𝑖 ) of travelling from the surrogate to failed node. We consider that the 
extra cost is ‘c’ times ∑ 𝑤𝑖𝑥𝑑𝑠 𝑥𝑖  which is added to the overall re-routing cost ( 𝑅𝐶(𝑥)) and set 
𝑐 = 1.5.  

4.2. Failure Scenarios  
In order to evaluate the vulnerability of an airport network, the selection procedure for the 
order in which nodes or links could be removed is an open choice. A node failure simply 
corresponds to the closure of an airport whereas a link (edge) failure corresponds to, for 
instance, disturbances such as weather or airspace closures which prevent travel between a 
pair of airports. We analyse the behaviour of damage measures in the presence of a 
progressive random damage and provide several attack strategies.  

Transportation networks are inherently resilient to random node or edge failures and, even 
after a large number of them, all the metrics measures decrease only moderately and do not 
seem to reach a sharp threshold after that the network is virtually destroyed (Dall’Asta, Barrat 
et al. 2006). Since one of the objectives is to identify the nodes or edges which maximise 
disruption in a network, one approach is to select the most central nodes. A straightforward 
choice is to select the nodes (vertices) in a descending order of degrees of the initial network 
and then remove them one by one starting from that with the highest degree (Barabási and 
Albert 1999). In addition, we use various strategies based on the different definitions of 
centrality ranking of the most important node and a node can be removed according to its 
strength (𝑆𝑖) and topological betweenness ( 𝐵𝑣(𝑖)). Apart from a node failure, edge or link 
failures also play very important roles in analysing the resilience of a transportation network. 
Edge selection can be random or in a descending order of the weight (traffic) and edge 
betweenness (𝐵𝑒(𝑚)) of the original network. 
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5. Results and Analysis 
5.1. Tolerance to Node Failure 
Tolerance to errors (or random failures) is understood as the capability of a system to restore 
its structural properties after deletion of a fraction of its nodes or edges. At first, we simulate 
the failure vulnerability of the AAN under a randomly fractional node failure (𝑓𝑣) and then 
according to the ranks of the degree (𝑘𝑖), node betweenness (𝐵𝑣(𝑖)), strength (𝑆𝑖) and φ-
strength (𝑆𝑖

𝜑) strategies. 

Figure 6: AAN resilience against node failure 

 
Figure 6, summarises the results obtained by the node failure measure of topological 
sensitivity – the number of sub-graphs  (𝑁𝑐/𝑁), relative size of the giant component � S��, 
average inverse geodesic distance (ℓ−1(topological ) and (ℓ𝜑)−1 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑)) and network 
reachability (𝑅) as functions of the number of node failure ( 𝑓𝑣 = 𝑁𝑟𝑚/𝑁).  
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Figure 6 (a) shows how the network fragments as the number of node failure ( 𝑓𝑣 = 𝑁𝑟𝑚/𝑁) 
increases. Within the range of 50% of the nodes failing (removed), the number of sub-graphs 
(𝑁𝑐) increases more rapidly for a centrality-based node failure. In this measure, the degree- 
and betweenness-based failure strategies have almost the same network fragmentation 
effect.  

Figure 6(b) illustrates the changes in size of the giant component with the increasing number 
of node failures. After removing about 10% of the highly connected or high betweenness 
nodes, the size of the gain component (the largest sub-graph) reduces abruptly to 20% of the 
original size of the AAN, with similar behaviour observed for a strength-based failure. After 
removing 50% of the nodes, as the network becomes almost fragmented at that point, the 
size of the largest sub-graph is too small and, as a consequence, the network loses its 
functionality. However, for a random node failure, the relative number of sub-graphs (𝑁𝑐/𝑁) 
and size of the giant component ( S�) change linearly with 𝑓𝑣.   

However, if we look at the network efficiency measured by the average inverse geodesic 
distance (ℓ−1 and (ℓ𝜑)−1) and network reachability (𝑅), all these metrics behave almost 
identically regarding any method of node failure. For centrality-based failures (degree and 
betweenness), network efficiency drops abruptly at the very beginning of the process, with 
the values of ℓ−1, (ℓ𝜑)−1 and 𝑅 decreasing to almost zero just after 10% of the highly 
connected or central node breaks down. It implies that after removing a few hubs from the 
network, the probability of a pair of nodes becoming connected is very low, the geodesic 
distance between them increases and, as a result, the inverse geodesic distance (ℓ−1) 
becomes very small and triggers a high transportation cost.  

On the other hand, in the case of a random failure, the network seems highly robust as the 
topological and reachability metrics change almost linearly with the number of node failures 
( 𝑓𝑣 = 𝑁𝑟𝑚/𝑁). From Figure 6, it can be summarised that the removal of a small proportion of 
the highly connected or central nodes produces catastrophic changes in the network 
topology and functionality. This analysis suggests that the AAN is highly vulnerable under 
centrally driven failure scenarios compared with random or unintentional failures. 

5.2. Node Criticality 
Up to this point in the comparison of vulnerability approaches, it is difficult to determine the 
failure of which node would be most damaging in terms of both topological sensitivity and re-
routing cost. That said, an alternative approach, particularly a node-by-node failure approach 
for capturing the topological sensitivity and re-routing cost measures, provides a better 
summary of node criticality or importance. To measure the sensitivity of a node, we measure 
its topological metric by removing it from the network and comparing its resilience metric with 
its corresponding value in the original AAN. The re-routing cost for traffic due to the failure or 
shutdown of a node is calculated using Algorithm I described in section 4.1.2.  

Figure 7 shows the route map of the original AAN (left side) and re-routing of the traffic (right 
side) if Sydney airport’s operation fails (shutdown) in which case all flights to Sydney are re-
routed to either Newcastle (light and medium aircraft) or Canberra (heavy aircraft) which act 
as Sydney’s surrogate airports. In Figure 7, the blue lines represent the links where the 
numbers of flights (traffic) remain unchanged and the red line represents increase in the 
traffic. In this re-adjusted route map (right side), it is noticeable that the impact of Sydney 
airport being disconnected from the network causes a large number of traffic re-routing as 
shows in the figure 7 where there are a large numbers of red lines and intermediate nodes 
(black circles surrounded by green). Table 4 shows the importance of a particular airport 
failure and its impact on topological features, resilience metrics and traffic re-routing costs. 
For each measure, the bold text represents the highest value of the corresponding metric 
found in the AAN. 
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Figure 7: Traffic re-routing and sensitivity of Sydney airport failure 

   
 

Table 4: Node importance in terms of resilience measures 

Airport Network Features Resilience Measures Re-route cost 
per day  

(in thousands)  𝑘𝑖  𝑆𝑖 𝐵𝑣(𝑖)  𝑁𝑐  ∆𝐿 %  ∆ℓ−1�%  ∆𝑫�% ∆𝑹�% 
 Sydney 99 114052 0.2940 8 7.13 15.90 14.29 11.92 78.05 
 Brisbane 81 72199 0.3118 4 17.18 14.12 100.00 6.79 29.48 
 Melbourne 66 85033 0.1172 3 1.33 4.77 0.00 3.05 83.03 
 Perth 57 33345 0.1785 5 6.00 10.81 14.29 9.00 57.80 
 Adelaide 47 35242 0.1475 9 11.54 11.77 0.00 11.93 47.99 
 Cairns 46 18289 0.1846 6 10.02 13.28 28.57 12.62 20.35 
 Darwin 41 9585 0.1410 7 11.86 11.40 0.00 11.89 19.44 
 Townsville 29 10450 0.0621 2 0.05 2.68 0.00 1.53 32.05 
 Gold Coast 25 16513 0.0199 2 1.13 2.03 0.00 1.53 3.79 
 Canberra 24 21681 0.0087 2 1.16 2.00 0.00 1.53 15.99 
 Broome 21 2824 0.0116 2 1.18 1.96 0.00 1.53 9.90 
 Avalon 20 3463 0.0196 2 0.86 2.13 0.00 1.53 1.33 
 Alice Springs 19 3159 0.0029 2 1.14 2.00 0.00 1.53 5.40 
 Mount Isa 18 2530 0.0949 2 3.69 3.55 42.86 1.53 1.29 
 Launceston 16 5535 0.0333 3 2.54 3.33 0.00 3.05 3.88 
 Newcastle 16 7588 0.0013 2 1.32 1.76 0.00 1.53 3.82 
 Karratha 15 3912 0.0044 2 1.27 1.82 0.00 1.53 3.40 
 Mackay 14 6684 0.0016 2 1.29 1.78 0.00 1.53 8.59 
 Rockhampton 14 5759 0.0016 2 1.29 1.78 0.00 1.53 1.56 
 Geraldton 14 1563 0.0008 2 1.54 1.52 0.00 1.53 1.13 
 Port Hedland 12 2424 0.0018 2 1.33 1.73 0.00 1.53 1.66 
 Learmonth 12 629 0.0003 2 1.55 1.50 0.00 1.53 0.39 
 Kalgoorlie-
Boulder 10 1447 0.0018 2 1.38 1.70 0.00 1.53 2.54 
 Hobart 10 7100 0.0000 2 1.33 1.72 0.00 1.53 1.70 

 

In Table 4, we can see that Sydney is the most connected airport in the network and also 
handles the highest amount of traffic as it has the highest strength value. If it is removed from 
the network, sensitivities measure by of the characteristics path length and network diameter 
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will increase to ∆𝐿 = 7.13% and ∆𝐷�%=14.29%, respectively. Failure of Sydney airport will 
also decrease the efficiency of the network (∆ℓ−1� = 15.90%) and it will cost 78 thousand units of 
re-routing cost per day, the second highest after Melbourne.  

As Brisbane is the second highest in terms of connectivity and most central node in the 
network (highest betweenness value), it serves as an important bridge in the network and, as 
a result, if it breaks down, will increase the network’s diameter to twice (∆𝐷� = 100%) of its 
original size; for example, it requires 14 hops to travel from Taree to Birdsville or vice versa 
but only 7 if Brisbane is connected. Therefore, removing Brisbane from the network will 
significantly slow down the physical movements of passengers and goods across the AAN. 
From its high betweenness value and the effect of the increase in its diameter, it is clear that, 
if we want to protect, or break down the flow of any material or disease, Brisbane would be 
the first place to stop it.   

Although Melbourne is found to be one of the least sensitive and has no impact in terms of 
changing the diameter of the network, it would have the highest re-routing cost of 83.03k per 
day. The reason for this is its geographical location in the network and its lack of any close 
airports that could serve as surrogates. If we look at the reachability measures, only the top 7 
connected airports have a significant impact on it, with Cairns found to be the most sensitive.  

Canberra has high degree and betweenness values but a significant re-routing cost because 
of its geographical location in the network and airports in close proximity that could act as 
surrogate airports for heavy aircraft. As a consequence, all heavy aircraft have to be re-
routed to Sydney which significantly increases the re-routing cost. 

Figure 8: Effect of different node failures on the traffic re-routing cost 

 
Figure 8 shows the re-routing costs for the top 20 connected airports in which we can see 
that the most connected are not always the most costly, with the most important nodes in 
terms of cost being Melbourne and Sydney because of their high strengths and geographical 
locations. However, although Brisbane is also a highly connected airport and, in fact, the 
second highest, it has a low re-routing cost because it has a very close surrogate airport, i.e., 
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Gold Coast, which is only approximately 100km away and capable of handling all type of 
aircraft (light, medium and heavy). From this analysis, we find that the re-routing cost is 
highly correlated with the geographical location of an airport and the availability and 
capability of any nearby surrogate airport.  

Table 5 lists the correlations among the network features and traffic re-routing costs of the 
AAN in which significant levels are observed: nodes that have large degrees also have 
typically large strength and betweenness values; the re-routing cost is more highly correlated 
with strength than betweenness; the clustering coefficient (𝐶𝑖 ,𝐶𝑖𝑤) is negatively correlated 
with all other network features as well as the re-routing cost because the cost of adding a 
route/link does not depend on the geographical constraint in the case of an airport network. It 
is relatively easier to add an air connection to an existing network than to add a data or 
electrical cable for comparable geographical distances. 

Table 5: Similarities of features and re-routing costs of AAN 

Correlation coefficient 𝒌𝒊 𝑪𝒊 𝑪𝒊𝒘 𝑺𝒊 𝑩𝒗(𝒊) 𝑹𝒆𝒓𝒐𝒖𝒕𝒆  
𝑪𝒐𝒔𝒕 

Degree, 𝑘𝑖 1 -0.1094 0.0896 0.9221 0.9276 0.8956 
Clustering coefficient, 𝐶𝑖 

 
1 0.5928 -0.1425 -0.1923 -0.1461 

Clustering coefficient weighted, 𝐶𝑖𝑤 
  

1 0.0093 -0.102 0.0055 
Strength, 𝑆𝑖 

   
1 0.8395 0.9076 

Node betweenness, 𝐵𝑣(𝑖) 
    

1 0.7907 
𝑅𝑒𝑟𝑜𝑢𝑡𝑒 𝐶𝑜𝑠𝑡 

     
1 

 

Although the high betweenness nodes are the most central in terms of information sharing or 
load carrying, it is far easier to obtain a surrogate node which ensures that costs remain low. 
From the analysis presented in this section, it can be summarised that high central nodes are 
not always the most critical in terms of vulnerability and that resilience cannot be measured 
by a single metric. However, it remains unclear as to how sensitive these measures are for 
assessing which combinations of failed nodes would have the most significant impact on the 
AAN’s vulnerability.  

To gain an insight into this issue, we couple two node failures according to their degrees and 
compare their resilience measures with those of the original AAN and, to visualise the 
effects, we plot a coloured map for each metric. In this analysis, the original AAN network is 
considered a baseline network with which the modified (after two high-degree node failures) 
networks are compared, with the effects highlighted in the coloured maps. To capture the 
changes after this pair of node failures, we calculate each metric’s difference from its 
corresponding value in the original AAN. Figure 9 shows the effect of the resilience 
measures after the simultaneous failures of a pair of high-degree nodes in which the axis 
represents the rank of a node according to its degree, where rank 1 indicates the highest 
degree. Since these maps show the effects of a pair of node failures, as the right diagonal 
value represents only one node failure, its value is omitted and all its elements left white. 

The top left coloured map in Figure 9 shows changes in the numbers of components (∆𝑁𝑐 = 
𝑁𝑐 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝐴𝑁) in which it can be seen that failure of the pair 
with ranks 1 and 5 (Sydney and Adelaide) is the most affected. The top right, bottom left and 
bottom right maps show changes in size of the giant component (∆𝑆̃) from that of the existing 
AAN), average inverse geodesic distance ( ∆ℓ−1) and reachability difference, (∆𝑅), 
respectively.  
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Figure 9: Coloured maps of pair of high-degree node failure 

 
From these maps, it is easily noticeable that the Sydney-Adelaide pair is the most affected 
according to the ∆𝑁𝑐, ∆𝑆̃ and ∆𝑅 measures, with only ∆ℓ−1 having a discrepancy for which 
the Sydney-Brisbane pair is the most affected while, in the ∆𝑆̃ and △R measures, the Cairns-
Darwin pair has the second highest effect. However, for each of the pairs, row or column 3 
has less impact which means that, if Melbourne is involved in the failure pair, on average, it 
will have a lower impact than the others. Also, it can be observed that the bottom part of 
each map always has less impact and it is clear that only the top 7 connected airports have 
more significant impacts on the resilience measure than the others.  

5.3. Tolerance to Edge Failure 
Apart from node failures (airport shutdowns), we also investigate the vulnerability of the AAN 
subjected to various types of edge failure scenarios. Figure 10 shows the results for the 
resilience or vulnerability to edge failure according to a descending order of weights (amount 
of traffic) and edge betweenness (edge bottleneck). When the edges are removed, the total 
number of nodes (𝑁) does not change which makes ℓ−1 a monotonically decreasing function 
with the fraction of removed edges (𝑓𝑒). 

In Figure 10(a) and 10(b), it can be seen that the network remains connected until 20% of its 
highly weighted links have been removed although this is not true in the case of the removal 
of bottleneck edges. However, the number of sub-graphs increases monotonically with 
increasing numbers of edge failures.  
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Figure 10: Resilience measures of AAN against edge failure (links breakdown) 

 
It can also be inferred from Figure 10 (a) and 10(b) that the highly weighted links are not the 
most critical links in the network as, for all the measures (topological sensitivity and 
reachability), removing bottleneck edges (edge betweenness) has much more effect than 
removing highly weighted links (edge weight) which suggests that edge betweenness is a 
more suitable quantity than weight for measuring the importance of an edge (link). Of all four 
metrics, the greatest differences between the two edge-failure strategies are observed in the 
range from 𝑓𝑒 = 0.25 to 𝑓𝑒 = 0.5 but, after 80% of edges are removed, they are identical. After 
25% (𝑓𝑒 = 0.25) of bottleneck edges break down, the reachability (𝑅) drops sharply to almost 
30% of its original network value. 

In the analysis summary presented in this section, it is notable that, in the case of node 
failures (both degree- and betweenness-based), all the resilience metrics decrease sharply in 
contrast to their behaviour for an edge failure. Due to the hub and spoke nature of the AAN, 
a highly connected node failure is the most destructive of all the resilience measures. 
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However, because of the heterogeneity of the weights associated with its links, the network 
is fairly robust to edge failures but vulnerable to high-degree node failures. 

6. Conclusion 
In this paper, the infrastructure of the AAN was analysed from a complex network theory 
point of view. The AAN model was constructed by associating a node with each airport and 
creating a link to each directly connecting passenger flight operating between different 
airports using air traffic data from the year 2011. The results indicated that the AAN is a 
small-world structure in which the numbers of non-stop connections from, and shortest paths 
going through, a given airport have scale-free distributions that indicate the presence of high-
degree nodes (called hubs), particularly the three largest airports (Sydney, Brisbane and 
Melbourne). The traffic (number of flights) of the AAN was found to accumulate on an 
interconnected group of high degree nodes.  

These analyses provided valuable information about the characteristics of the AAN and the 
level of vulnerability to which it can be exposed through random, most central nodes and link 
failures. The study of the responses of the AAN subjected to different node and edge failure 
scenarios showed that it is comparatively robust in terms of edge or air-route shutdowns but 
very sensitive (less robust) to central node failures, particularly of the high-degree and high-
betweenness nodes.  

We defined the importance of a node closing or shutting down in terms of the traffic re-
routing cost and found the cost of such a node failure depends on its physical location in the 
network and is highly correlated with its strength. Airports those are closely surrounded by 
other airports that can handle the same or even better classes of aircraft usually have low 
sensitivity in terms of traffic re-routing.   

The analysis also revealed that the most central nodes are not always the most critical. Most 
importantly, the robustness of an airport network cannot be expressed quantitatively by a 
single measure as it is a complex combination of several topological and operational metrics. 
Although the focus of this research was on the AAN, its results and insights are applicable to 
other airport or transportation networks with similar network features. This paper presented 
various network parameters that could potentially be used as measures of the performance 
of, and risks to, an airport network. However, as the further integration of social and 
economic rules governing airline operations remains an important challenge for achieving a 
comprehensive understanding of the socio-economic dynamics associated with the AAN, 
these properties will be examined in future together with the role of the AAN in the larger 
context of the WAN. 
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