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Abstract 
 

Transport network pricing is a topic of interest to transport planners and users alike. Pricing 
schemes are a vital traffic management strategy which can be implemented to reduce 
congestion, among other network externalities. Previous research has explored pricing schemes 
to achieve a variety of network objectives, including social and environmental concerns.  This 
work introduces a robust strategic system optimal (StrSO) pricing scheme which incorporates a 
novel user equilibrium-based behavioural model, specifically the strategic traffic equilibrium 
(StrUE) model. Prices are set on all links in a network to improve expected system performance 
by lowering expected system travel time, thus relieving congestion. The proposed solution 
method is scalable to large networks.  The results show how the introduced measures of system 
performance can be used to investigate the relationship between congestion and reliability in 
the tolled network.  
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1. Introduction 
Transport network road pricing is a topic of great interest to researchers and practitioners alike. 
It is one of the primary management tools available to road operators to improve network 
performance for the benefit of the system as a collective. Additionally, a well-planned tolling 
scheme will not only help relieve congestion, it can also produce a profit that will help operators 
expand and maintain infrastructure for a stronger, more reliable system. 
 
Road network pricing research has a well-established foundation in the literature. One common 
research topic is marginal social cost (MSC) pricing, based on the economic ideas of Pigou 
(1920). This pricing scheme assumes users behave in a "selfish" manner, seeking to minimize 
their own travel costs. Prices are then set on each link such that a user is charged a toll 
equivalent to the marginal impact of her using a given link (i.e., the increase in travel cost to 
everyone on a link resulting from a single additional user). This is also referred to as first best 
pricing, in which all links in a network are priced. Second best pricing represents an extension of 
this problem, in which a subset of the network links are tolled. 
 
While the first best pricing problem can be easily solved, a complexity is introduced when 
demand uncertainty is considered. In the short term, users face a varying day-to-day travel 
demand. For longer term planning, unpredictable changes in land use, technology, and many 
other factors make demand forecasts difficult. These inherent network uncertainties must are 
accounted for in pricing models to ensure they are robust to future changes in travel demand. 
The success of a particular project relies on accurately predicting tolling profits. Around the 
world, a surprising number of failed tollway projects have consistently relied on poorly 
forecasted demand for modelling, and suffered the consequences (Bain, 2009). 
 
A particular example of this can be found in the well known case of the Sydney Cross City 
Tunnel (Phibbs, 2008). This was a public-private partnership project intended to connect the 
eastern suburbs to the western suburbs of Sydney that opened in 2005. Unfortunately, the 
operating company went into receivership less than two years after the tunnel opened, and it is 
estimated that $220 million dollars of initial investment has been lost. While there are many 
complex factors that lead to the ultimate failure of any project, most agree that an important 
contributor to Cross City Tunnel case was the poorly forecasted demand values. It was 
estimated that a daily demand of 90,000 vehicles would use the tunnel, while the actualized 
number was closer to 30,000. Another complaint was that the toll was much too high and 
discouraged people from using the tunnel. While this is an extreme example, the importance of 
accounting for factors of uncertainty, particularly when it relates to the financing of an important 
public project, cannot be underestimated. A more detailed analysis of tollways in Australia and 
the impact of inaccurate demand forecasts can be found in Zheng et al (2011). 
 
This work specifically explores a robust first best tolling framework in which demand uncertainty 
is accounted for.  First best tolls are important both as an exploration of system behaviour and 
mathematically, even if they may are not feasible to implement at the current time for a large 
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network, such as Sydney. Second best tolls - in which optimal tolls are identified for a subset of 
links - is a challenging mathematical problem that will be explored in future work. 
 
The contribution of this work lies in the novel behavioural model that is used to determine the 
user route choice under the assigned toll values. In the strategic equilibrium based assignment 
model implemented, referred to as StrUE, users determine route choice based on the expected 
shortest cost path for a known distribution of the demand. The assignment model output is a set 
of fixed link flow proportions which defines the link flow patterns. Then, on any given day, the 
actual link flow volumes will be a function of these fixed proportions and the actual realized 
demand. Furthermore, the link flows from any given demand realization will not necessarily 
conform to a state of equilibrium, representing the chaotic network behaviour observed in reality. 
This model therefore incorporates demand uncertainty in a novel way. The traditional first best 
tolling methodology will be extended to incorporate this new assignment model, and the network 
performance under the computed tolls will be explored. A summary of strategic modelling 
approaches is contained in Figure 1. 
 
Figure 1. An outline of the strategic traffic assignment modelling approach 

 
 
The research questions motivating this work address the relationship between uncertainty and 
pricing, and are as follows: 

1. How do we derive marginal social cost prices for the StrUE model? 
2. How do marginal social cost prices perform under the StrUE assignment model? 
3. How does demand uncertainty impact network performance under the proposed pricing 

scheme? 
4. What measures can we use to quantify the performance of this pricing scheme? 

 
This paper begins with a literature review covering the topics of network uncertainty, first best 
MSC pricing, and the strategic traffic assignment approach. In Section 3, we describe the StrUE 
MSC (StrMSC) pricing problem and our measures of effectiveness of this model. Section 4 
outlines the solution methodology, while Section 5 demonstrates the models on two example 
networks. A conclusion and discussion of future research directions concludes this work in 
Section 5. 

2. Background 

Marginal social cost pricing based on Pigouvian (Pigou, 1920) taxes has a rich history in the 
literature. This method aims to set tolls in such a way that a collective system optimal behaviour 
is induced, rather than drivers choosing routes unilaterally to minimize their own travel time 

• Routes assigned to minimize the expected total system travel time 
(TSTT) 

Strategic System Optimal 
(StrSO) 

• Routes assigned to minimize the variance of total system travel time Strategic System Reliable 
(StrSR) 

• Routes assigned to represent the behavior of users– all users choose the 
expected shortest cost path 

Strategic User Equilibrium 
(StrUE) 
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(selfish behaviour) (Yang et al, 1998); (Newbery, 1990). While maximizing social welfare by 
relieving congestion may be a common goal from public planning agencies, many other 
objectives have also been explored, among those aims that may represent the interests of 
private tolling agencies, such as: maximizing revenue, minimizing tolling locations, and 
minimizing the maximum toll collected (Hearn et al, 1997); (Hearn et al, 2001). 
 
The tolling framework addressed in this work is classified as first best, which means that it is 
possible to toll every link in the network in order to achieve some objective.. Second best tolling 
scenarios, in which not all links in the network are available to be tolled because of political or 
social restrictions, have also been well-explored in the literature (Verhoef, 2002); 
(Lawphongpanich et al, 2004). However, in order to introduce the impact of the new strategic 
behavioural model on tolling, only pricing schemes in which all links in the network are priced 
are considered in this work. 
 
While the pioneering works on pricing road networks assumed travel demand and other network 
characteristics (such as link capacity) to be fixed values, the impact of uncertainties on transport 
models has become another popular topic in the literature. This is particularly important for 
tolling scenarios, because optimal prices that are calculated for an unrealized level of demand 
could have an unpredictable impact on network conditions, a fact that is further discussed in by 
Lemp and Kockelman (2009). It is commonly agreed that the main sources of uncertainty in a 
transport network result from the demand (Clark et al, 2005, Duthie et al, 2011), supply (Lo et al, 
2006), and behavioural choices from travellers (Damberg et al, 1996). Boyles et al (2010) 
examined first best pricing while accounting for uncertainty in road capacity and further looked 
at the impact of supplying users with information about the state of the network. This work 
highlights the difference between tolling schemes that respond to network conditions and tolls 
that are intended to address recurring, predictable congestion. Each of these sources could 
impact optimal toll design in different ways. Researchers begin by analysing difference sources 
in isolation (this work included), but more complicated models like Gardner et al (2011) that 
account for both uncertainty in demand and in supply may offer more realistic insights into the 
road network.  
 
A number of works have approached the issue of demand uncertainty and its impact on tolling. 
Gardner et al (2008) examine the impact of long term demand uncertainty, such as that 
resulting from changes in land use, technology, and petrol prices, on robust tolling prices, and 
evaluate a number of approaches to solve this problem. They show that the marginal social cost 
tolls that are calculated using an expected demand can result in suboptimal system 
performance, especially when the actual system performance differs significantly from what was 
forecasted. Gardner et al (2010) further explore a number of solution methods for solving a 
similar problem, finding that using an inflated demand scenario gave the most consistently 
robust results. Li et al (2008) propose a bi-level mathematical programming formulation to solve 
for first best tolls aimed at increasing network reliability, where users' choices are determined 
using a multinomial logit model. Sumalee et al (2011) also examine the impact of stochastic 
demand by treating both network demand and link flows as random variables. This work 
addresses uncertainty in user behaviour by considering how different risk attitudes from users 
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might impact pricing results, which is additionally a method of incorporating users' value of 
travel time reliability. Li et al (2012) extend this model to find the optimal tolls with the objective 
of minimizing emissions. 
 
This research differs from previous contributions in its novel behavioural model to capture the 
strategic decisions of users. Strategic traffic assignment was introduced by Dixit et al (2013), 
and finds equilibrium flows based on expected path costs. A strategic model in this context 
assumes that users in the network have learned about the distribution of the demand, implying 
that expected value and the variance of the demand distribution are known values. Users base 
their route decision on the expected shortest cost path, following this decision independent to 
the actual realization of the demand. This model results in link volumes that will vary from day-
to-day, thus accounting for short term demand uncertainty that users face making day-to-day 
route choice decisions. Waller et al (2013) propose a linear formulation for a dynamic version of 
the strategic problem that finds optimal route flows across a discrete set of possible demand 
scenarios. Additionally, Duell et al (2013) introduced the strategic system optimal (StrSO) and 
strategic system reliable (StrSR) models that are applied in the current work, and furthermore 
examined the relationship between the three models on a number of test networks. 
 
This work extends the strategic assignment model to a StrMSC first best pricing application. The 
novel approach to addressing demand uncertainty will result in different tolling schemes from 
previous work in the area. Additionally, the unique approach in this work allows us to introduce a 
new set of measures of system performance.  
 
Finally, it is worth noting that the methods proposed here are only one small part of the ultimate 
decision-making process for any tollway project. Non-technical factors such as a bias toward 
optimism and politically and/or economically motivated misrepresentation, as well as social 
attitudes towards congestion pricing, are all important factors that play a role in toll prices that 
are actually used in practice (Flyvbjerg, 2008) . In an interesting look at tollway projects in 
Australia, Davidson (2011) includes a case study for a potentially representative case for the Go 
Between Bridge in Brisbane. In this paper he noted the frequent changes to forecasted demand 
values used during the modelling process and described ways in which this value was misused. 
Such practices indicate that accounting for demand uncertainty when modelling tollway projects 
is a challenging and timely problem recognized by practitioners, and is indeed one of the 
recommendations to improve toll modelling made by Davidson in the conclusion of his paper.  

3. Problem description 

This section describes the proposed pricing model, including details about the underlying 
equilibrium model and assumptions. Additionally, the measures of effectiveness used to 
compare the model performance are defined. 
 
The StrUE model provides the proportion of the total demand 𝑝!that will choose to travel on 
each link 𝑎. Users choose their routes based on the expected cost of a path, which can be 
disaggregated to the link level. The expected link travel time, 𝑡! is a function of the proportion 
travelling on that link and the expected total number of travellers. In a first best pricing model, 
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each link is subject to a toll, 𝜏!. For a StrUE model with first best tolls, the expected cost to a 
user on link 𝑎 is: 

𝐸(𝑡! 𝑝𝑇 ) = 𝑡! 𝑝𝑇 +   𝑉𝑂𝑇𝑇𝜏! [1]  
where the VOTT (value of travel time) reflects the amount in dollars a traveller is willing to pay to 
reduce their trip by a unitary amount of time. This parameter has been empirically quantified for 
different networks. For simplicity, here we will assume that 𝑉𝑂𝑇𝑇  is such that users value travel 
time and money an equal amount, therefore 𝑉𝑂𝑇𝑇 = $1/𝑚𝑖𝑛𝑢𝑡𝑒. 
 
The first part of Equation [1] describes the travel time that a user would expect to experience 
when there is no toll. Often in traffic modelling approaches, this function is assumed to be some 
volume-delay function, in which the travel time on a link becomes greater as there are more 
travellers on that link. This work employs the well known BPR function (U.S. Department of 
Commerce, 1964), however using link proportions and a random variable 𝑇 with probability 
distribution 𝑔 𝑇   representing the total number of trips made. The link volume-delay function 
used in this research is displayed in Equation [2]. 

𝐸(𝑡! 𝑝!𝑇 ) = 𝑡!(1 + 𝛼𝑀!
𝑝!
𝑐!

!
) [2]  

Where that 𝑡! is the free flow travel time on link a, 𝑐! is the capacity of link a, 𝛼 and 𝛽 are 
shaping parameters based on link geometry. 𝑀! is a term that represents the analytical 𝛽𝑡ℎ 
moment of the demand distribution, and is not present in the traditional BPR function. 
 
The second part of Equation [1] is the travel cost in units of time, based on the monetary toll 
value applied to the link. As previously noted, the concept of a marginal social cost is extended 
to the StrUE model to compute the link toll. In order to calculate optimal toll value 𝜏! for link 𝑎, 
the proportion of flow on that link that results in the minimal expected total system travel time,𝑝!, 
needs to be computed using the StrSO model. The toll for each link is equal to the product of 
the optimal link proportion and the gradient of the expected link cost function, evaluated at the 
optimal proportion of flow. 

𝜏! = 𝑝!
𝑑𝑡!(𝑝!𝑇)
𝑑𝑝𝑇

 [3]  

After deriving the gradient of the expected link cost function, the toll for each link can be 
computed using Equation [2]:  

𝜏! = 𝑡!𝛼𝛽𝑀!
  𝑝!
𝑐

!
     [4]  

The expected travel time on the link is defined by [2], and the applied toll is defined by [4]. Thus, 
the total expected link cost experienced by the user will be the sum of [2] and [4] multiplied by 
VOTT.  The total cost to users aggregated across the network and aggregated across all users 
represents one measure of performance for evaluating the network. 
 
The inclusion of uncertainty in the proposed pricing model demands an additional measure of 
performance to quantify the variance in link travel time (dependent on the realized travel 
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demand). Link travel time variability can be quantified using the standard deviation 𝜎(𝑡!)   of the 
travel cost 𝑡!. This measure was derived in Dixit et al (2013) and is defined in Equation [5]. 
   

𝜎(𝑡!)   =
2𝛽𝑡!"𝛼!

𝑐!
!! 𝑀! −𝑀!

! 𝑝!
!!!! [5]  

3.2 System level measures of performance  
In order to evaluate the network level performance the expected total system travel time 
(E(TSTT)) is analytically computed as a measure of congestion, the standard deviation of TSTT 
(𝜎(𝑇𝑆𝑇𝑇)) is computed as  a measure of reliability, and the expected revenue, E(R) is computed 
as a measure of financial success.  
 
The expected total system travel time E(TSTT) is a system performance measure derived by 
Duell et al (2013) for an untolled network. The expected travel time experienced by users will 
remain the same in a tolled network, although there will be an additional cost experienced by 
individuals that is not included in this measure of performance. The E(TSTT) is presented in 
Equation [6]. 

𝐸 𝑇𝑆𝑇𝑇 = 𝑧 𝑝 =    (𝑡!𝑝!𝑀! + 𝑡!𝛼
𝑝!
!!!

𝑐!
𝑀!!!)

!

 
[6]  

Quantifying a system level variance is a basic measure of reliability. A system with a higher 
variance will see more fluctuation in individual link travel times, and thus will be less reliable. 
The system level measure is a reflection of the sum of the individual link variances (𝜎(𝑇𝑆𝑇𝑇) 
was derived in Duell et al (2013) for an untolled network. Equations [7] and [8] describe the 
variance of travel time. 

𝑧 𝑝 =    𝑝𝑎
2𝑡
𝑎𝑓

2 (𝑀2 − 𝑀1
2) +   2

𝛼𝑡𝑎𝑓2

𝐶𝑎
𝛽 𝑝𝑎

𝛽+2(𝑀𝛽+2 − 𝑀𝛽+1𝑀1) +   
𝛼2𝑡𝑎𝑓2

𝐶𝑎
2𝛽 𝑝𝑎

2𝛽+2(𝑀2+2𝛽
𝑎∈𝐴

− 𝑀𝛽+1
2 )  

[7]  

𝜎(𝑇𝑆𝑇𝑇) =    𝑧 𝑝  [8]  
Finally, the network operator is likely interested in the expected revenue from this tolling scheme. 
The revenue is equal to the proportion of the flow on each link which "pays" the toll multiplied by 
the first moment of the demand distribution, which is simply the total number of expected trips.  

𝐸 𝑅 = 𝑝!𝑀!𝜏!
!

 
[9]  

Where 𝑀! is the first analytical moment of the demand distribution, which is equal to the 
expected value of the demand. 

3.3 System level measures of effectiveness  
The motivation behind marginal social cost tolls is to improve social welfare, which can be 
accomplished by reducing network wide travel cost.  Under uncertainty, this is mathematically 
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equivalent to reducing the E(TSTT). The lowest E(TSTT) is achieved by StrSO, which is the 
assignment model used to set the tolls. When tolls are applied, the E(TSTT) can be computed 
using StrUE. The percentage difference between E(TSTT) from the StrUE model without tolls 
and the StrUE model with tolls can be used to define a measure of effectiveness, ΔE, which is 
defined in Equation [10]. This represents the amount of congestion that has been relieved by 
the applied pricing scheme. A larger ΔE equates to a less congested network under tolling, thus 
a successful pricing scheme. If ΔE  is negative the pricing scheme has actually caused 
congestion to increase relative to the un-tolled network. 
 

ΔE = 1 −
𝐸 𝑇𝑆𝑇𝑇 !"#$%!!"##$

𝐸 𝑇𝑆𝑇𝑇 !"#$%
 [10]  

 
Another important measure of effectiveness is variability in total system travel time. A system 
with less variability will be more reliable for users. In particular, the network operator will be 
interested in how much more reliable the network is under the proposed pricing scheme. Similar 
to equation [11], Δσ reflects the percentage decrease in standard deviation of of network TSTT 
resulting from tolling. 

Δσ =   1 −
𝜎 𝑇𝑆𝑇𝑇 !"#$%!!"##$

𝜎 𝑇𝑆𝑇𝑇 !"#$%
 [11]  

 
A summary of the system performance measures and their interpretations can be found in 
Figure 2. 
 
Figure 2. System performance measures for the strategic approach 

 

4. Solution Methodology 
The previous section described the pricing model and performance metrics that will be used to 
evaluate the proposed model. This section briefly summarizes the solution methodology and 
model assumptions. The following assumptions are necessary in order to solve the StrUE with 
MSC tolls model: 

• The demand for each origin-destination pair is proportional to the expected demand; that 
is, the proportion of the total demand that travels between each OD pair does not 
change. The change in observed link volumes results from the range of actualized 
demand values. 

• The total amount of travel time expected in the network (minutes) E(TSTT) 
• The standard deviation of total system travel time – a measure of 
reliability and robustness (minutes). σ(TSTT) 

• The reduction in travel time due to the tolls (%) ΔE 
• The reduction in standard deviation due to the tolls (%) Δσ 
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• Link travel times are independent, which implies that the 𝜎(𝑇𝑆𝑇𝑇) does not include any 
covariance terms.  

• There is no error in user perception. This implies that all users know the expected 
shortest cost path and do not make errors in their route choice. This is a common 
assumption in traffic assignment models, although using logit choice models is another 
option which may be investigated further in the future. 

• The VOTT of all network users is uniform and equal to $1/minute, implying that users 
equally value travel time and money. Lacking network specific data, this assumption is 
employed for model tractability. However, assuming that all network users have the 
same VOTT, then this assumption affects only the E(R) by a factor. It does not affect 
other performance measures. 

• The demand fits a lognormal distribution (with known mean and variance). Therefore the 
higher level moments may be solved analytically as: 

𝑀! = exp  (𝑠𝜇 + 0.5𝑠!𝜎!) [12]  

• The link volume-delay relationships are represented using the BPR function.  
 
The following describes the steps used to solve the proposed pricing model: 

1. Solve the StrUE model and determine base case E(TSTT) and σ(TSTT); 
2. Solve the StrSO model to determine the link flows 𝒑, E(TSTT′) and σ(TSTT′); 
3. Determine the marginal cost tolls using Equation [3]; 
4. Solve the StrUE model with the applied tolls and compute the E(TSTT) and σ(TSTT); 
5. Calculate the performance measures listed in Section 3.3. 

 

5. Results and Discussion 
This section contains a demonstration of the StrMSC model on two example networks and 
discusses the implications of varying levels of demand volatility, defined by the coefficient of 
variation, on network performance. 

5.1 Example network 
Figure 3 shows the simple example network used to illustrate the approach to solving the 
StrMSC model. This is similar to the Braess's paradox network, consisting of four nodes and five 
links. It is well known that due to the equilibrium behaviour of users, the E(TSTT) of the network 
in Figure 3 is greater than it would be if the link connecting nodes two and three were to be 
removed. In the case of strategic marginal social cost tolling, a network manager is able to 
determine optimal toll values to reroute users to achieve a less congested system performance. 
The demand between (1,4) is lognormally distributed with a mean of 100 and with a standard 
deviation of 5.  
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Figure 3. Demonstration network 
 

 
 
The StrUE model results in an E(TSTT) of 1,465 minutes with a 𝜎(𝑇𝑆𝑇𝑇) of 559 minutes. When 
the tolls are applied, the E(TSTT) is reduced by 30% and the 𝜎(𝑇𝑆𝑇𝑇) by 70%.  
 
Table 1. Network performance measures for the demonstration network 

 
StrUE   StrMSC StrSO 

E(TSTT) (min) 1,465 1,021 1,014 
STD(TSTT) (min) 559 170 146 

 
Table 2 displays the proportions of the aggregate demand on each flow that are the output of 
the StrUE, StrSO, and StrMSC models, as well as the toll “price” that was charged on each link. 
In a deterministic model, the flow patterns resulting from the equilibrium model and the MSC 
model would be exactly the same; however, with the added uncertainty inherent in the StrMSC 
approach, the resultant flow patterns are not exactly equal to the StrSO model. 
 
Table 2. Link proportions and MSC tolls from the demonstration network 

Link StrUE StrSO StrMSC Tolls 
1-2 0.899 0.646 0.680 22.88 
1-3 0.101 0.355 0.321 6.26 
2-3 0.798 0.291 0.360 0.09 
2-4 0.101 0.355 0.319 6.26 
3-4 0.899 0.646 0.681 22.89 

 

5.2. Example grid network 

A larger test network was chosen to demonstrate the scalability of the strategic MSC tolling 
approach. Figure 4 illustrates this network. This is a common test network in transport literature 
based on Sioux Falls, South Dakota, consisting of 24 nodes and 76 links. All nodes are both 
origins and destinations. Network and demand information was obtained from Bar-Gera (2011). 
The demand for the example grid network followed a lognormal distribution with a mean of 
360,600. 
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Figure 4. Example grid network 
 

 
 
The volatility of the demand is defined by the coefficient of variation of a demand scenario. In 
highly volatile systems, the aggregate demand has a higher standard deviation, implying that 
the demand actualization is fluctuating between a greater range of values. This section 
examines the impact of demand volatility on the StrMSC model by performing an experiment in 
which the coefficient of variation is varied from 0 – 1.0 in increments of 0.05 and the StrMSC 
pricing model is solved for each level of demand volatility.  
 
The results of this experiment on total system travel time are displayed in Figure 5. The 
horizontal axis of Figure 5 shows increasing coefficient of variation. Additionally, Figure 5 
contains two system performance measures; the left vertical axis contains the value for E(TSTT), 
corresponding to the dashed blue line. The right-hand vertical axis shows the percentage 
decrease in the system congestion achieved by the volatility scenario. These results are 
represented by the red line, ∆𝐸. 

Figure 5. Impact of demand volatility on E(TSTT) in example grid network 
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Figure 5 showed that as demand uncertainty increased, so did E TSTT . However, the opposite 
was true for ΔE. This implied that the reduction in E(TSTT) that was possible decreased 
significantly in highly volatile systems.  Figure 5 only displays results when the coefficient of 
variation is between 0 - 0.7, although the sharp increase in E(TSTT) continues. However, such 
volatile systems were considered unrealistic and not shown here. The ∆E was the greatest in 
systems with less volatility, which implies that planners can achieve a greater system 
improvement when the demand actualizations do not vary as much. With a coefficient of 
variation greater than 0.7, both StrUE and StrSO identified the same solution, meaning that no 
improvement in system performance was possible.  
 
The σ(TSTT) and its corresponding performance metric ∆𝜎 reflect the reliability of the system to 
its users. A system with less variation in total system travel time will experience less fluctuation 
in individual link travel times. Thus, it is also important to examine the effects of demand 
uncertainty on the   σ(TSTT). These results are shown in Figure 6. Again, the horizontal axis 
reflects an increasing level of volatility in the system, while the left-hand vertical axis shows the 
σ(TSTT) and corresponds to the blue line, and the right-hand vertical axis shows the ∆𝜎 , 
corresponding to the red line.  
 
Figure 6. Impact of demand volatility on 𝝈(𝑻𝑺𝑻𝑻) for the example grid network 

 
The 𝜎(𝑇𝑆𝑇𝑇) increased as the volatility associated with the demand increased in a way that 
looked to be similar to the increase in E(TSTT). However, the ∆𝜎 is the greatest in less volatile 
systems, and decreases in a linear manner to almost zero when the coefficient of variation was 
greater than 0.6. When ∆𝜎 is near zero, no pricing scheme is able to improve system conditions. 
For the example grid network, the greatest improvements in reliability were possible in the less 
volatile systems. 
 
Another factor of interest in the StrMSC pricing model is the amount that users pay to tolling 
operators. However, this measure will be dependent on the VOTT utilized in the tolling 
framework. This work assumes a value of 1, meaning that people equally value time and money, 
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which is not realistic. However, if we assume that all people in the network have the same 
monetary value of time, then the E(R) value calculated from the StrMSC model will be inflated 
by some factor, and the relative change in E(R) due to varying levels of system volatility is still a 
measure of interest. 
 
Figure 7 contains the E(R) with respect to different levels of demand volatility. Similar to 
previous experiments, the E(R) value was found as an output to the StrMSC model while 
varying the coefficient of variation between 0-0.65 in increments of 0.05. However, in order to 
display the relative behaviour, the E(R) has been "normalised" such that the greatest E(R) was 
set equal to one, and the other E(R) values were adjusted accordingly; therefore, Figure 7 
contains no information about the magnitude of E(R). Figure 7 show that the E(R) increases 
nonlinearly as the system volatility increases. This observation suggested two things; first, the 
scenarios with a high volatility of demand require users to pay a higher cost, but they 
experience less improvement in the system performance (which was observed in Figures 5 and 
6). However, when users are paying a higher cost, the E(R) is also higher, meaning this may be 
a more desirable scenario for a toll operator.  
 
Figure 7. The impact of varying volatility of demand on E(R) 

 

6. Conclusion 
This work proposed a novel method to determine marginal social cost tolls accounting for the 
inherent uncertainty in demand that users face when making individual route choice decisions 
on a day-to-day time frame. Determining optimal tolls in an important practical problem. We 
describe the StrMSC tolling framework, as well as a number of system performance measures 
that planners can use to examine the performance and reliability of the tolled network. One 
example network suggested that as there is a higher amount of volatility associated with the 
demand, the amount of system improvement that can be achieved in the network decreases. 
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In the future, this work will examine a pricing scheme that is based on the Strategic System 
Reliable formulation (Duell et al, 2013), that will instead charge users for the additional system 
travel time variability that is added due to their individual route choice. Furthermore, this 
approach accounts only for a short term uncertainty that users face while choosing routes, not 
the long term planning uncertainty that is also a prevalent factor in transport models. Future 
work will need to explore methods of accounting for additional sources of uncertainty, both long 
term travel demand and that resulting from the supply. Additionally, the StrMSC pricing model 
should be compared to pricing schemes that account for uncertainty using alternative 
approaches. 
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