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Abstract 

One of the essential quantities in macro traffic simulation is the ‘who goes where’ OD matrix. 
This is usually estimated through an optimization problem of minimizing the squared 
differences between observed and simulated traffic counts. The choice of the mean square 
error loss is due to its good statistical properties and the fact that the related quadratic 
optimization problem is easy to deal with. However, in many applications following the 
recommendations of validation criteria suggested in many guidelines published by different 
road administrations, such as FHWA in USA, ARRB in Australia or Highways Agency in UK, 
the quality of a static OD adjustment is assessed with other quantities such as the relative 
error or the GEH index.  

A direct minimization of the GEH index involves technical difficulties. However, recent 
developments in optimization theory give the opportunity of solving such problem using 
gradient descent techniques. We apply this method to some static OD estimation problems in 
real traffic networks. Empirical evidence show that GEH minimization converges slower than 
least squares. On the other hand the former is more robust against measurement errors on 
data.  

This paper show numerical results of real networks, comparing the OD estimation using least 
squares and GEH index, concluding with the benefit of including this optimization method for 
static OD estimation. 

1. Introduction 

The static Origin-Destination (OD) estimation or adjustment matrix is a classical problem 
applied and solved in Transport Planning. This class of problems can take on many different 
formats, depending upon what is considered to be known and what assumptions are made to 
derive the missing parameters. The description of generic problem is described below. 

Given an OD matrix  , denote by    the volume on a link   as a result of a particular traffic 

assignment with OD matrix  . In practice, we are often interested in the reverse problem, that 
is, given a set of links         and observed volumes in such set    

     , find an OD matrix   

such that the assigned volumes    are as close as possible to the measured ones. Usually 
an initial matrix   , regarding prior information about traffic behavior (obtained for instance by 

a survey), is required and the objective is to modify    to fit current data. This process is 
called matrix adjustment or estimation. When traffic flows are modelled time-independently 
the matrix adjustment process is called static. Otherwise it is called dynamic. See (Bera & 
Rao, 2011) and the references therein for a summary of the main techniques used to 
approach this problem. In this paper, we will focus on bi-level static based techniques where 
the optimization problem has two levels: the inner or lowest is, for a given OD matrix, the 
traffic assignment, and the outer or upper is the minimization with respect to OD matrices of 
the errors between observed and assigned flows. Spiess (Spiess, 1990) solved this problem 
using a gradient based approach with minor modifications to ensure preservation of unused 
paths. In (Yang et al, 1994) and (Yang, 1994) heuristic approaches were proposed to deal 
with the bi-level mathematical programming. A Gauss-Seidel type coordinate decent 
approach can be found in (Florian & Chen, 1995).  

Traditionally square error loss has been chosen to measure disagreement between assigned 
and measured volumes. The reason is that it is a widely studied loss (with a central role in 
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statistics) and it is easy to use (differentiable and easy to calculate). Thus, the matrix 
adjustment problem can be stated as  

             
        (1) 

Another relevant quantity in transportation is the so called GEH. The GEH of two traffic 
volumes, usually measured and predicted or simulated nonnegative data, is defined as 

           
        

    
  

      

         
  

The GEH formula gets its name from Geoffrey E. Havers (UK Highways Agency, 1992). 
Although its mathematical form is similar to a chi-squared test, is not a true statistical test. 
Rather, it is an empirical formula that has proven useful for a variety of traffic analysis 
purposes. The main trait of the GEH formula is that, unlike the relative error, differences in 
high volumes are relatively more important that in lower volumes. This index is commonly 
used as validation criteria in many applications following the recommendations suggested in 
many guidelines published by different road administrations, such as FHWA in USA, ARRB 
in Australia or Highways Agency in UK. For traffic modelling the different guidelines has the 
following consensus: a GEH index of less than 5.0 in a measurement point is considered a 
good match between the modelled and observed volumes, and 85% of the volumes in a 
traffic model should have a GEH less than 5.0 for all measurement points. 

Analogously to problem (1), one can consider the following optimization problem 

   
 

          
  

   

  

Such a problem can become difficult because both the numerator and denominator depend 
on  . For this reason we consider the approximation  

      
      

  

   
       

provided that 
     

 

 
   .  

Another interesting optimization problem would be to find an OD matrix such that the 85% of 
the assigned volumes have a GEH less than 5.0. This could be solved by minimizing directly 
the number of detectors that have a geh greater than 5. However, this problem turns out to 
be a much more difficult problem, since the loss function is not even continuous. Thus, the 
introduction of techniques for minimizing the sum of gehs can be though as a first step 
towards the solution of such difficult problem. 

In addition to the square error loss and the geh, another typical quantity is the relative error, 
yielding to the optimization problem 

      
      

  

  
       

The aim of this paper is to study differences in OD estimation arising from the loss choice. 
For completeness (and symmetry), we will include three loss functions more. The set of 
studied losses and their related optimization problems in this paper becomes then: 

 Square error (which will be denoted by L2), 

   
 

        
   

   

  

 Absolute deviation error,  
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 Weighted square error with exponent one (which will be denoted by L21), 

   
 

  
     

 

   
 

 

 

   

    
 

 
 

  
        

    

   

 

 Geh (with some abuse of notation),  

   
 

 
      

  

   
 

   

  

 

 Weighted square error with exponent two (which will be denoted by L22), 

   
 

  
     

 

  
  

 

   

    
 

 
 

   
   

       
   

   

   

 Relative error,  

   
 

 
      

  

  
 

   

  

 

The use of the absolute deviation loss 

       
         

    

brings technical difficulties. Namely, it is not differentiable, and thus classical gradient 
descent techniques cannot be directly implemented. Fitting linear models using absolute 
deviation loss, called median regression, is a well researched area. See (Koenker, 2005) for 
a comprehensive treatment on the subject. It is well known that one of the strengths of using 
absolute value loss is that the resulting models are more robust against outliers. Usually 
median regression models are solved transforming the problem into a linear programming 
one and applying techniques such as the simplex or interior point methods. Instead, in this 
paper, we follow a more flexible approach based on Staines and Barber (2012). First we find 
differentiable functions      as    . Then, for a selected sequence   , we find    
minimizing 

               
        (2) 

using classical gradient descent techniques. In this way, the resulting    approximates the 

optimal   . 

 

We have to make a distinction here, between the objective loss, which we will call evaluation 
loss, and the loss used in our optimization method, which will be denoted method loss. Our 
main interest should rely on optimizing the evaluation loss, since it contains the way we 
choose to measure the performance of our estimations. A priori, no loss is better to any 
other. So the choice is rather subjective. One may think that the chosen evaluation loss 
represents our interests the best possible way. On the other hand, the method is just the 
technique used to achieve such goal. Following this principle, one should choose a loss first 
for its meaning and after that look for a way of optimizing it. This has not always been the 
case with the L2 loss: often it is used because of its good optimization properties, instead of 
its implications on further decisions in traffic modelling.  

It is natural to use the same evaluation and method losses, expecting that other methods will 
be less efficient. However this is not always the case, as we will see in the results section 
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with the absolute error. If one does not have a clear preference for a particular loss, he or 
she should take a method that has a good behaviour among several evaluation losses. 

2. Algorithm 

The algorithms used in this paper are based on Spiess (1990), which describes an 
optimization algorithm for estimating OD matrices using the L2 loss. Since the L21 and L22 
cases are weighted versions, they can be easily implemented with minor modifications. 
Spiess’s method is gradient descent type algorithm. It assumes that path flows are locally 
constant to find an approximate gradient at each step. In addition, he finds a closed formula 
to approximate the optimal step size.   

Since the loss function        
         

   is nondifferentiable, we cannot directly calculate 
the gradient. Instead, in order to apply the approximation scheme described above, we find 
the functions     following Staines and Barber (2012): we consider the convolution of the 

absolute error with the gaussian kernel        
 

    
 
 

  

   , 

               
 

    
      

 
      

       
  

   
 
 
  

             
 

 
    

where   is the cumulative distribution function of the standard Gaussian kernel       . 
When    is small, the function       at point   can be regarded as a weighted average of the 
absolute value function with the points near  . It is a calculus exercise to see that       
     uniformly as    . Moreover, the functions    are infinitely differentiable. In Figure 1 we 
show a sequence of approximations with                    . 

 

Figure 1 Functions    

 

Now, it is easy to modify Spiess’s algorithm so as to minimize problem (2). Analogously to 
the square error case, the relative error and (simplified) geh losses can be easily 
implemented via a weighted version of the algorithm. The interested reader can find the 
details in Ruiz de Villa et al (2013). 

 

Figure 2 Test network with detectors 
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3. Results 

We tested our method on a network of a medium sized city of Spain. The implementation has 
been done in a combination of Aimsun (2013) and R (2012).  

3.1 Network 

The network that has been used to perform the experiments is a medium urban network with 
a highway stretch north of the city centre. The network comprises a total road length of 631 
km and the different zones are modelled with 57 centroids. The network detection consists of 
362 count detectors which are located both in the urban centre as on the highway stretch.  In 
the Figure 2 the distribution of the detectors is shown in which the green dots represent the 
count detectors. 

The assignment period is the evening peak hour in which a total of 35000 cars are assigned 
to the road network.  With this demand a synthetic dataset has been created which will be 
used to validate the O/D estimation procedure. 

The original demand matrix is perturbed in order to be used as a starting point for the O/D 
estimation procedure. Each cell is multiplied by a random normal distribution with mean 0.9 
and standard deviation 0.2. In the Figure 3 the trip values of the original matrix are plotted 
against the perturbed trip values to show the degree of perturbation of the original matrix. 

Figure 3 Perturbed cells 

 
 

The assignment method that has been used for this experiment is the Frank-Wolfe algorithm, 
which is available in the traffic simulation package Aimsun (2013). The network achieves an 
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equilibrium status with a relative gap below 1% after 50. From the assignment result the path 
proportions are extracted to be used in the O/D estimation. 

3.2 Experiments 

Heuristically we found that often, with the absolute deviation loss and its weighted versions, 
the proposed direction by the algorithm was not a real descent direction, since it led to bigger 
losses. In this case we applied a naïve line search: we tempted smaller step sizes (up to 20 
equally distributed values between 0 and the proposed step size) to find a reliable descent 
direction. In order to compare the performance of the proposed method with the least 
squares estimation of Spiess (1990), we also applied this strategy to the L2 and related 
losses. 

 

In the following figures we distinguish between the optimization method, called method, and 
the evaluated loss or objective function, called evaluation. Two types of perturbations have 
been considered. On the one hand, in applications, since we do not know the OD matrix that 
generates the observed data, an estimated initial OD matrix is obtained from external 
sources, such as a survey. Thus, the original matrix in our experiments has been perturbed 
as explained above with some random noise. On the other hand, usually observed data is 
perturbed due to measurement errors and many other causes. For this reason we have also 
noising the assigned volumes from the original matrix in two ways. In the first one, all of the 
assigned volumes from the original matrix have been perturbed with random gaussian 
distributions with factors of 5% and 15%. The second set of experiments recreates the effect 
of outliers: the volume of four relevant detectors (with high flow) has been increased in a 
30%.  

 

Figure 4 Method/Evaluation error comparison 

 
 

The results are shown in Figure 4. Different line types denote different minimization 
algorithms. The evaluation loss is displayed in the vertical axis of the panel. The horizontal 
axis of the panel is used for the type of perturbation. Matching methods and evaluations (for 
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instance when the L2 loss is used in both the minimization and the evaluation) are marked 
with thicker lines. 

Generally speaking the minimization of a quantity forces the others also to decrease. We see 
that for each evaluation loss, its corresponding optimization method is among the ones that 
achieve better results, with the exception of the absolute loss. In this case we attribute the 
lack of efficiency of the method to its slowness. In fact, in all experiments the absolute error 
is the slowest one. We also highlight the fact that the L2 loss does not have a monotonically 
decreasing trajectory if evaluated with the relative error or its squared counterpart, the L22. It 
also has a slightly increasing trajectory with the geh and L21 evaluations. 

To have a more quantitative comparison of the different methods, we introduce Figure 5. As 
seen in Figure 4, different losses lead to different ranges of values, thus the efficiency of the 
methods is not comparable among evaluation losses. In an attempt to elude this effect, we 
rescale the results up to the maximum loss achieved, thus showing a percentage with 
respect to the greatest value. In Figure 5, such percentages are displayed from the last 
iteration (number 40). The matching methods and evaluations are put into a black frame and 
the minimum value achieved is displayed above the related method.  

The first thing to notice is that the traditional L2 method is not necessarily the best among the 
tested in this paper. It outperforms the rest of methods if we evaluate also with the L2 loss, 
but has poor performance within the rest of evaluations. So, unless one has a clear 
preference for the L2 evaluation, the L2 method should not be an automatic choice. On the 
other hand, as expected from our previous results, the absolute loss is among the worse 
methods, having poor performances even if we use the absolute error evaluation.  

Among the remaining methods, we see that the L21 method has relevant results in the 5% 
and 15% sets and good performances in the outliers set. Comparing per blocks, 
differentiable (L21 and L22) vs no differentiable (geh and relative error), we see that, 
excluding the L2 evaluation, both have parallel results. It is also remarkable that the 
efficiency of the no differentiable block improves slightly in the presence of outliers: all the 
minimums with the absolute error, geh and relative errors belong to the no differentiable 
block and in the L21 case there is a significant decrease of errors with respect to the 5% and 
15% sets. As presented at the introduction, in statistics it is well known that the absolute 
error loss is more robust against outliers than the L2 loss. We thus regard our results as a 
confirmation of this effect. 

 

Figure 5 Last iteration error comparison 
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Now, we analyze the differences of the methods when evaluated with the denoted “#geh<5” 
function, that is, the number of detectors with geh less than 5. As explained in the 
introduction, it is commonly requested that 85% of detectors have a geh less than 5. In 
Figure 6, we display the evolution of the #geh<5. In Figure 7 we show the percentage of 
detectors having a geh less than five at the last iteration. The main differences arise in the 
15% set, where the L21 outperforms the rest of methods. Instead, in the outliers set, 
differences among sets decrease. In Figure 8, we display the minimum number of iterations 
needed to achieve that the percentage of detectors with a geh less than 5 is greater than 
85%. The methods with 40 iterations in the graph are the ones that did not achieve such 
result. 
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Figure 6 #geh<5 error comparison

 

 

 

Figure 7 geh<5% last iteration 

 

Figure 8 Minimum number of iterations 
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Finally we show the computational times for each method. Recall that we applied a line 
search strategy, thus the total number of iterations are not the ones showed in the graphs. 
This also leads to different computational times between methods. Clearly the absolute error 
needs more computational effort. Notice that, on average, the 15% set is the fastest set. We 
attribute this to the fact that since the two others was previously more optimized (with less 
initial error), it was harder to find reliable descent directions. 

 

Figure 9 Computational Time 

 

4. Conclusions 

The main objective of this paper is to provide an alternative to the traditional mean square 
error in static OD estimation problems. This is done by introducing the absolute error loss 
and some variations of it. We give the technical tools to deal with such problems in a flexible 
way. 
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We have compared through empirical studies six different methods and the effect they have 
on the widely used “geh<5%” index. We have compared the methods using two types of 
perturbations, gaussian and with outliers, and we have to conclude that losses involving the 
absolute deviation loss have a relevant place in the presence of outliers. The authors 
suspect that more differences could arise if other types of perturbations were introduced, 
namely higher levels of outliers or nonsymmetric perturbations. These could be subject for 
further studies. Finally, we have seen that using the so called L21 loss has generally shown 
better results than the others, while the presented algorithm for the absolute error loss is by 
far the slowest. 
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