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Abstract 

This paper is centred on using Geographically Weighted Regression (GWR) to investigate 
the spatial variability in the factors which influence rail demand patterns in the Sydney region 
of New South Wales, and to explicitly incorporate these variations in the demand forecasting 
process.  It explores whether allowing spatial parameter variability to be included in demand 
models enhances their explanatory power and improves their forecasting capability.  The 
paper firstly reviews the different methodologies in use for estimating and forecasting 
demand, both in the Sydney region and elsewhere around the world.  Against this 
background the methodology of GWR is explained, identifying the key differences in both 
inputs and outputs of a GWR based model.  The paper then describes the development of 
‘conventional’ global regression models of rail demand in the Sydney region, and reports on 
the recalibration of the most successful model using GWR.  A large number of explanatory 
variables are tested in the models, including catchment population and employment, 
household size, income and age profile, car ownership levels, train frequency, bus 
interchange potential, bicycle storage provision and distance to the city centre.  The results 
from the global and GWR models are then compared, with the significance of the spatial 
variation in the GWR models tested using an AICc-based criterion.  This comparison informs 
a discussion of the extent to which modelling spatial parameter variation contributes to a 
better understanding of rail demand and its forecasting. The discussion concludes by 
identifying the relative merits of the developed GWR models as compared to other models 
for forecasting rail travel. 

1. Introduction  

This paper is centred on using Geographically Weighted Regression (GWR) to investigate 
the spatial variability in the factors which influence rail demand patterns in the Sydney region 
of New South Wales (NSW), and to explicitly incorporate these variations in the rail demand 
forecasting process.  It explores whether allowing spatial parameter variability to be included 
in demand models enhances their explanatory power and improves their forecasting 
capability.  GWR has previously been used in forecasting demand for new railway stations in 
the UK (Blainey, 2010) and in the transport context in NSW, Australia in explaining vehicle 
kilometres travelled at the household level, as a prelude to forecasting.  

The paper is structured as follows.  The next section outlines the background to the study 
through a short review of the different methodologies in use for estimating and forecasting 
rail demand, both for the Sydney region and elsewhere around the world.  Against this 
background the GWR methodology is explained, identifying the key differences in both inputs 
and outputs of a GWR based model.  The paper then describes the development of 
‘conventional’ global regression models of rail demand in the Sydney region, before reporting 
on the recalibration of the most successful model using GWR.  The patterns and implications 
of the spatial variation displayed by the parameters from the GWR model are discussed in 
the penultimate section.  The final section concludes with a discussion of the relative merits 
of using GWR in this context 
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2. Background  

2.1 The Sydney rail network  

Sydney is the capital city of New South Wales state and is the largest city in Australia, as 
measured by population. In 2010, the population of the Sydney Greater Metropolitan area 
was around 5.56 million.  The primary modes of public transport in Sydney are train and bus.  
The train system serving the metropolitan area (and beyond) is operated by Rail Corporation 
New South Wales (RailCorp) as two segments: the CityRail suburban service and the 
Countrylink inter-city services linking the major settlements of NSW and beyond to other 
States in Australia.  CityRail’s suburban operations extend to 2,242km of track reaching north 
to the Hunter and Central Coast, west to the Blue Mountains and Southern Highlands and to 
South Coast regions in the south and the train network within this area is shown in Figure 1. 

Figure 1 The CityRail Network of the Sydney Metropolitan area 
Source:  www.cityrail.info/stations/network_map 
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The first link on this network between Sydney and Paramatta was opened in 1885. 
Electrification was implemented progressively from 1926 but was not fully completed on the 
network until 2002. The shape of the network was established by the late 1930s with minor 
(but important) changes coming in 1956 with the completion of the City Circle with Circular 
Quay station, the completion of the Eastern Suburbs line in 1979, and the extension of the 
Cumberland line to Blacktown in 1996. The Sydney Olympics 2000 prompted the building of 
the 5km Olympic Park Line, opened in 1999, and access to Sydney airport with a 7.3km 
airport line was created with a PPP project around the same time.  The most recent network 
extension is the 12.5km line linking Epping and Chatswood stations which opened in 2009. 
Two further rail extensions are under construction at the time of writing, the southwest and 
northwest rail links.   

2.2 Overview of existing rail modelling methods used in NSW 

In NSW, the Sydney Strategic Transport Model (STM) is utilised by the Bureau of Transport 
Statistics (BTS) to provide and predict travel patterns in the Greater Metropolitan Area (GMA) 
of Sydney under alternative land use, transport network, service and policy scenarios. The 
STM has two main parts, the population model which segments the population into groups, 
based on socio-demographic variables which affect travel choices, and the travel model 
which is primarily a four step model encompassing trip generation or travel frequency from 
origins, trip distribution identifying the destination of trips from each origin (ODs), mode 
choice, and trip assignment or route chosen for travel between each OD pair.  

The STM uses 2,690 travel zones as its basic geography. Demographic forecasts (of 
population and workforce), travel survey data, and digital representations of the transport 
network are combined with census demographics to construct current and future synthetic 
populations. The synthetic population is broken down into segments using variables known 
to be key predictors of travel behaviour, so that the STM models seven different travel 
purposes separately (work (commute from home to work and back), business, primary 
education, secondary education, tertiary education, shopping and other). The travel 
behaviour modelled in the STM is underpinned by the long-standing annual rolling 
Household Travel Survey (HTS) which gives the STM a distinctive advantage in its ability to 
use high quality data in modelling. 

Rail is one of several modes explicitly included in the mode choice model which is applied to 
each travel purpose.  This model is applied to different population segments, and is driven by 
socio-demographic variables as well as car availability and proximity to rail and competing 
public transport services, with service choices being based on travellers seeking to minimise 
generalised cost.  The STM is an iterative model and the road (and bus) speeds from one 
iteration are fed back into the accessibility and generalised cost calculations for the next.    

The BTS also has a Public Transport Project Model (PTPM) which is used in project 
evaluation to model more detailed aspects of individual projects.  This model uses current 
origin destination matrices by mode (collected through public transport OD surveys) which 
are projected into the future based on STM growth projections.  The PTPM has a more 
detailed mode choice model than the STM, explicitly modelling access mode choice, station 
choice and service crowding in the case of rail projects. 

2.3 Modelling methods used elsewhere 

Similar four-stage strategic transport models are used widely throughout the developed world 
to forecast future demand for both public and private transport, with examples being the 
PRISM model used in the West Midlands region of the UK (Mott Macdonald, 2010) and 
Transport Scotland’s TMfS model (MVA, 2011).  However, such models may not be the most 
suitable tool for forecasting usage at individual railway stations, or in particular for predicting 
the likely level of passenger demand for new railway stations or lines.  They tend to be based 
on a ‘conventional’ four stage form, with a logit-based mode choice model containing a utility 
function which may not be specified in a form which can adequately replicate the ‘step 
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change’ in rail service quality generated by the opening of a new station, particularly when 
rail has previously been a very minor mode.  As a result, rail-specific elasticity-based 
simulation models are commonly used to forecast changes in demand at existing stations 
(with a comprehensive guide to such models provided by ATOC, 2011), and ‘trip end’ or 
‘sketch’ models of rail demand have been successfully applied in both the USA and the UK 
(Lane et al., 2006; Preston, 1991) to forecast the demand for new railway stations or lines.  
In the latter context, the use of a technique called ‘Geographically Weighted Regression’ 
(GWR) during model calibration has been found to improve the fit and predictive power of 
such models (Blainey, 2010).  This paper describes the application of such a modelling 
approach to the Sydney area, along with some modifications and enhancements to this 
modelling framework. 

3. Methodology 

The modelling of rail demand in this paper involves using a trip end modelling framework to 
explain the observed patronage for all stations in the Sydney GMA (as shown in Figure 1 
above) based on the levels of a number of explanatory variables.. Trip end models are 
conventionally calibrated using multiple linear regression methods.  Traditional multiple 
regression OLS modelling assumes that the relationship to be modelled is uniform over the 
study area, but when geographical data, such as distances to stations, are used as 
explanatory variables this can give rise to spatial effects.  These effects may occur in two 
different forms: one is concerned with spatial dependency, or its weaker expression, spatial 
autocorrelation (they are not identical though they are often used interchangeably in the 
literature) and the other form is spatial heterogeneity, namely spatial non-stationarity (Anselin 
1999).  Spatial autocorrelation is a form of spatial interaction whilst spatial heterogeneity 
(spatial non-stationarity) refers to spatial structure (Anselin 1999).  The two issues of spatial 
dependency and spatial non-stationarity have been the major challenges facing spatial data 
analysis (Fotheringham et al. 2002).  

It was in order to tackle these challenges that GWR was developed by Fotheringham et al 
(2002).  GWR is a relatively new technique for spatial data analysis and has been applied in 
the transport sector for the analysis of land value uplift (Du and Mulley (2007, 2012) and in 
trip end analysis of transport demand for rail (Blainey 2010).  It has the ability to take account 
of spatial non-stationarity by accounting for coordinates in parameter estimates and spatial 
dependency by explicitly considering geographical location in calculation of the intercept 
values.  The ,methodological enhancement provided by GWR is shown below in relation to a 
traditional cross-sectional regression model (as described by Fotheringham et al (2002)), 
with this model written as 

 (1) 

GWR involves expanding this model to a form which allows for local variations in the 
parameter values which take account of the coordinates of individual regression points.  If 
the dependent variable has the coordinates (ui,vi), the model expressed in (1) above can be 
rewritten as the following GWR local model:  

             (2) 

The parameters are estimated at the location (ui, vi) using a weighted least squares method 
and a predicted value of y.  Estimation is a trade-off between efficiency and bias in the 
estimators with a weighting process using spatial kernels which capture the data points to be 
regressed by moving the regression point across the region.  The weights are chosen so that 
observations near (ui, vi), have more influence on the result than observations further away, 
with the weight being a function of the bandwidth of the distance from data point j to 
regression point i.  While the results are sensitive to the choice of bandwidth, the GWR 
software allows adaptive spatial kernels to be used so that the bandwidth is narrow when 
data are dense but wider where data are sparse. The model provides a set of parameter 

  ik ikk0iY

  ik ikkii0iii )v iui()vu()vu(Y
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estimates for each data point (or alternatively for a set of prespecified regression points), 
which then can be mapped, allowing visual inspection of spatial parameter variation.  The 
GWR process provides a unique advantage over other spatial methods in that each 
observation is treated as a separate observation, as opposed to observations lying within a 
particular boundary being grouped (for example within a particular political boundary) as is 
required by for example, multi-level modelling.  The Akaike Information Criterion (AIC) is 
used to evaluate the goodness of fit in GWR modelling as it explicitly accounts for the 
complexity of the model.  A rule of thumb is if the AIC of two models differ by more than 3 
then they are statistically significantly different with the lower AIC suggesting a better fit 
(Fotheringham et al (2002)). If adaptive kernels are used in the estimation process, the GWR 
software chooses bandwidths so as to minimise AIC( Fotheringham et al 2002). 

This paper is the first in the transport domain to use the recently released GWR4 software 
(version 4.0.72) developed at the National Centre for Geocomputation (NUIM), Ireland and 
Ritsumeikan University, Japan, and this software was used to undertake all GWR 
calibrations described here. This version provides some important improvements over earlier 
releases of the software, and particularly relevant is that it now allows the flexibility to use a 
semi-parametric (partial linear) GWR model form incorporating both fixed and geographically 
varying explanatory variables. Fixed variables may be chosen before calibration because of 
an a priori view that such variables do not vary spatially or through an empirical testing 
procedure that allows some variables to be fixed and some to vary over space. The 
GtoF/FtoG routine within GWR4 allows two different approaches for determining whether a 
semi-parametric approach is preferred. The GtoF (geographically varying to fixed) begins 
with a full GWR model and then compares models to find the optimal combination of varying 
and fixed explanatory variables in much the same way as stepwise regression proceeds for a 
traditional multiple regression. The FtoG (fixed to geographically varying) routine is the 
reverse where the yardstick is the traditional regression or global model with all parameters 
being fixed, and optimality is sought by varying explanatory variables in turn and in 
combination. Both these routines use AIC as the basis for choosing the optimal model. The 
advantage of using a semiparametric approach is that including explanatory variables as 
fixed when they do not vary significantly over space can both improve the overall model fit 
and provide a model which is more conceptually satisfactory. 

The GWR methodology requires a spatial location in terms of a Cartesian or Geographic 
coordinate. The BTS uses a Cartesian system based on The Geocentric Datum of Australia 
(GDA) and using the map grid of Australia Zone 56 – a Universal Transverse Mercator 
projection, using the GRS80 ellipsoid – and this location system was used for this paper.   

4. Results 

4.1 Global Model calibration 

The first stage in this analysis was the calibration of the best global trip end rail demand 
model given the data available for the region centred on Sydney, in New South Wales.  
Initially, all 307 stations served by the CityRail Network were selected for inclusion in the 
model, and these are mapped in Figure 1.  The dependent variable in the model is the 
number of passengers using each station per week, based on barrier count data undertaken 
by Transport for New South Wales (TfNSW).  A range of additional data on factors which 
might help to explain these rail usage levels were supplied by TNSW, and these can be 
summarised briefly as follows: 

 Daily train frequency at station, disaggregated into am peak, inter-peak, evening peak and off-peak. 

 Average headway of buses serving the station during the morning peak. 

 Number of commuter car parking spaces provided at each railway station. 

 Distance in km from station to Sydney CBD (defined as distance to Town Hall station). 

 Distance in km from station to nearest Metropolitan Strategic Centre. 
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 Interchange category as defined by TNSW (classifies stations by the extent to which interchange 
opportunities are available). 

 Number of bicycle racks and bicycle lockers provided at each station. 

 Total population within a 1200m buffer around the station (with catchments allowed to overlap 
between stations).  Null population figures are given for a small number of stations. 

 Total employment within a 1200m buffer around the station using overlapping catchments. 

 Number of people within the SA1 census zone in which the station is located falling within four age 
groupings, specifically 0-19, 20-34, 35-64 and 65+ years. 

 Total number of dwellings within the SA1 census zone in which the station is located  

 Car ownership variable, approximated by the number of dwellings within the SA1 census zone in 
which the station is located with the following numbers of motor vehicles registered: 0, 1, 2, 3 and 4+.   

 Average household size, approximated by the number of households with the following numbers of 
residents within the SA1 census zone in which the station is located: 1, 2-3, 4-5, and 6+.  . 

 Average income variable, approximated by the number of households with the following income levels 
within the SA1 census zone in which the station is located: 1-399, 400-999, 1000-1499 and 1500+AUD 
per week.   

 Assorted raw census data covering the majority of the demographic variables described above, 
permitting reallocation to non-overlapping road network based catchments. 

Ten of the stations (Kembla Grange Racecourse, Penrose, Wingello, Bell, Zig Zag, 
Mindaribba, Hilldale, Wallarobba, Wirragulla and Lochinvar) were found to have no trips 
recorded in the barrier counts, and these were therefore removed from the calibration 
dataset, as when using a double-log model form (which has previously been found to give 
superior results in such modelling (Blainey, 2010)) the dependent variable cannot take a 
value of zero.  Similarly, no train frequency data were available for three stations (Domestic 
Airport, International Airport and Mascot) which are operated by a private company.  Ideally 
the model would also include a measure of the average fare charged at each station, but no 
fare data was available for this study, and it is in any case difficult to estimate an average 
fare measure which is not strongly correlated with distance to a particular destination (such 
as central Sydney) and/or actual destination choice (which will be influenced by fare levels, 
and therefore introduce an element of circularity to the model). 

An initial model was calibrated based on the data supplied by TNSW using the effective 
catchments inferred by this data. The results showed that the model had a very good fit with 
the observed data, explaining over 87% of the logged variation in the dataset.  However, a 
number of parameters expected to be important determinants of rail demand such as 
catchment population and employment were insignificant. The model was recalibrated using 
both the stepwise and backward stepwise calibration methods, since the latter is sometimes 
a better method of ensuring the most important explanatory variables are included in the 
model.  Both these methods gave largely the same results, generating a model with 
comparable fit (adjusted R2 = 0.87), but unlike the initial model they included catchment 
population as a significant variable although catchment employment was still excluded. 
Nearly all the model parameters were of the expected sign, with rail demand expected to 
increase with an increase in train frequency, car parking provision, provision of cycle storage 
facilities (as two variables, number of cycle racks and number of cycle lockers), catchment 
population, and average catchment income, but to decline with increasing distances to 
Sydney and to metropolitan strategic centres, and with higher levels of car ownership.  Rail 
demand is also predicted to decline as the proportion of children in the catchment population 
increases, perhaps because the ‘door to door’ convenience of the car is more important 
when travelling with young children.  While the inclusion of two separate significant cycle 
storage variables in the model might appear unexpected, combining these into a single 
variable was found to reduce model fit. 

The absence of a significant employment parameter could result from correlations between 
the explanatory variables giving rise to multicollinearity. Pearson’s correlation coefficients 
were therefore calculated for each pair of explanatory variables to investigate this possibility,  
and this process identified a large number of significant correlations between the variables, 



Using Geographically Weighted Regression to forecast rail demand in the Sydney Region 

7 

as is to be expected with such a large dataset.  Many of the correlations are weak, and in 
many cases even where stronger correlations exist these do not appear to have had a major 
impact on the significance of parameter estimates in the model results, such as those 
between the distance to Sydney CBD and levels of catchment population and employment, 
or between the number of dwellings and average income.  For other correlations, such as 
those between service frequency and population, or employment and distance to central 
Sydney, there is no obvious way in which the variables could be adjusted to control for the 
correlations.  These strong correlations may indicate the presence of multicollinearity with the 
outcome of important variables losing significance but with the maintenance of a high R2.  
However, the strongest significant correlation is between catchment population and 
catchment employment (Pearson’s ρ = 0.886), which may explain why both catchment 
population and employment were not included in the models produced by stepwise 
calibration.  An attempt was made to control for this correlation by replacing the catchment 
employment variable with a variable giving the number of jobs per head of resident 
population (which was much less strongly correlated with the population variable) but further 
analysis showed that this and other similar approaches did not provide a significant 
parameter, and therefore employment was not included in the preferred model..   

Another modification tested was to combine the four age variables into a single average age 
variable, which again made little difference to model fit, but did highlight that the data on age 
distribution was missing or incomplete for some predefined catchments.  A further 
modification was therefore made to the dataset with the predefined catchment data supplied 
by TfNSW being replaced by new catchments defined using ArcGIS.  All SA1 census zones 
within NSW were allocated to their nearest railway station by road distance.  A catchment 
boundary of 1200m was defined, to give consistency with the predefined catchments, and all 
zones which were further than 1200m from a station were then removed from the dataset.  
The remaining zones were then aggregated by nearest station to give total catchment 
population and dwelling counts, and the mean age, car ownership level, household size and 
income for each catchment.  The trip end demand model was then recalibrated with these 
new values replacing those in the calibration dataset taken from the predefined catchments, 
and stepwise calibration again used to select model variables.  No data on employment 
levels within SA1 zones were available, and it was therefore necessary to use the 
employment figures from the predefined catchments.  This model gave a small improvement 
in fit over previous models (adjusted R2 = 0.889), suggesting that the non-overlapping 
catchments produced a more accurate demand model.  However, the only catchment-related 
variables included were dwelling count and vehicle ownership, and not population.  
Investigation of the correlations between the new catchment-related variables showed that 
by far the strongest significant correlation was between population and dwelling count. The 
final and best model was therefore achieved by by using stepwise calibration with the 
dwelling count variable excluded from the variable list. 

This final preferred model is defined by:   

𝑇𝑖 = 𝛼𝐹𝑖
𝛽
𝐵𝑖
𝛾
𝐶𝑖
𝜌
𝐷𝑠𝑖

𝜏𝐷𝑚𝑖
𝜁
𝐵𝑟𝑖

𝜂
𝐵𝑙𝑖

𝜅𝑃1.2𝑖
𝜆 𝑉1.2𝑖

𝜒
     (3) 

Where:  
Ti is the number of passengers per week at station i 
Fi is the daily train frequency at station i 
Bi is the average bus service headway at station i 
Ci is the number of car parking spaces provided at station i 
Dsi is the distance in km from station i to the Sydney CBD 
Dmi is the distance in km from station i to the nearest Metropolitan Strategic Centre 
Bri is the number of bicycle racks provided at station i 
Bli is the number of bicycle lockers provided at station i 
P1.2i is the total resident population within all SA1 census zones within 1.2 km of station i for 
which station i is the closest station 
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V1.2i is the average number of vehicles registered at dwellings within all SA1 census zones 
within 1.2 km of station i for which station i is the closest station  
 
Descriptive statistics for the model variables are given in Table 1 and the results from the 
global calibration of this model are summarised in Table 2. 
 
Table 1: Summary of descriptive statistics for variables used in modelling 

Variable Unit of measurement Mean  Standard 
deviation 

Train frequency  Trains per day 156.29 192.35 

Bus headway  Peak minutes between services 32.36 49.69 

Car parking  Spaces provided 118.6 228.4 

Distance to Sydney CBD  Km 62.04 58.98 

Distance to nearest 
Metropolitan Strategic Centre  

Km 16.07 2.65 

Bike racks  Spaces provided 10.4 16.85 

Bike lockers  Spaces provided 3.87 7.76 

Catchment population  Number of residents 3551.28 3478.09 

Average household vehicle 
ownership 

Number of vehicles 1.42 0.31 

 
Table 2: Summarised Results From Calibration Of the preferred global model 

Variable Value T stat 

α (intercept) 3.371 5.855 

β (train frequency) 1.084 13.329 

γ (bus headway) 0.053 2.203 

ρ (car parking) 0.108 5.017 

τ (distance to Sydney CBD) -0.266 -4.431 

δ (Distance to nearest Metropolitan Strategic Centre) -0.064 -3.827 

ε (bike racks) 0.172 4.817 

κ (bike lockers) 0.160 3.536 

λ (population) 0.136 7.684 

χ (vehicles) -0.704 -3.490 

Radj
2
 0.889 

AD 0.068 

  

The prediction errors from the preferred model are mapped in Figure 2, with the red circles 
(and their sizes) showing stations where the model underpredicted the number of trips, and 
the blue circles (and their sizes) stations where the model overpredicted the number of trips.  
This shows some apparent spatial patterns in the model prediction errors, with clusters of 
stations where demand is either underpredicted or overpredicted.  This suggests that spatial 
autocorrelation may exist in the dataset, and this justifies testing a spatial regression 
methodology in the form of GWR, as reported in the next section. 
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Figure 2: Prediction Errors From Model  
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4.2 Local Model results 

The next step is to recalibrate the preferred global model using GWR.  The GWR4 software 
was employed with adaptive spatial kernels determined using a bi-square function, as 
defined by equation (4) (Nakaya et al., 2012).  The use of an adaptive kernel means that the 
same number of observations are used in the estimation of the model at each regression 
point.  The golden section search method (a technique which successively narrows the range 
of values within which the optimum is known to exist) was used to determine optimal 
bandwidths based on small sample bias corrected AIC minimisation.  The software was set 
to test the geographical variability of local coefficients, in order to determine which 
parameters exhibited significant spatial variations in their values.  The software provides both 
global regression results to allow a consistency check with previous results (the results were 
identical to those produced by SPSS and reported above) and results from the specified 
GWR calibration, and the latter results from this calibration are summarised in Table 3. 

𝑤𝑖𝑗 =   1 − 𝑑𝑖𝑗
2 /𝜃𝑖 𝑘  

2
     

0
 𝑑𝑖𝑗 < 𝜃

𝑑𝑖𝑗 > 𝜃
     (4) 

Where: 

wij is the weight value of the observation at location j for estimating the coefficient at location i 

dij is the Euclidean distance between i and j 

θi(k) is an adaptive bandwidth size defined as the kth nearest neighbour distance  

Table 3: Summarised Results From Local GWR Calibration Of the preferred model 

Variable Mean Standard 
Deviation 

Difference of 
Criterion 

α (intercept) 3.049 1.898 -111.495 

β (train frequency) 1.068 0.270 -50.357 

γ (bus headway) 0.050 0.078 -4.766 

ρ (car parking) 0.092 0.129 -32.291 

τ (distance to Sydney CBDe) -0.132 0.229 -4.348 

δ(distance to nearest Metropolitan 
Strategic Centre) 

-0.060 0.032 2.745 

ε (bike racks) 0.157 0.051 4.949 

κ (bike lockers) 0.141 0.071 7.066 

λ (population) 0.150 0.078 -9.671 

χ (vehicles) -0.927 0.707 -5.800 

Radj
2
 0.925 

F stat 3.287 

 

This table shows the mean value for each of the model coefficients, along with the standard 
deviations of these coefficients.  Two measures of model fit are provided, allowing the GWR 
model to be compared to the previous global model.  The adjusted R2 value shows a clear 
improvement in model fit with the GWR model, and the significant F statistic (which tests the 
results of an ANOVA to establish whether the GWR model gives an improvement in fit over 
the global regression model) backs up this conclusion.  The table also gives the ‘Difference 
of Criterion’ value for each variable, which is the result of a test of spatial variability in that 
variable’s coefficient (based on an AIC criterion).  If this value is positive, it indicates that 
there is no significant spatial variability in the associated coefficient, and that the variable 
would be better represented as a global or spatially fixed term in the model.  Table 3 
suggests that there is no significant spatial variation in the effects of the two bike storage 
variables or of the distance to the nearest Metropolitan Strategic Centre on rail demand, and 
a partial GWR model may therefore give better results.  Such models have not previously 
been tested in the rail demand context, as no suitable software for calibration was available.  
However, this problem has now been overcome with the availability of GWR4, and therefore 
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a partial model was calibrated with the distance to nearest Metropolitan Strategic Centre, 
bike racks and bike lockers coefficients held constant over space, and the other coefficients 
allowed to vary.  The results from this calibration are summarised in Table . 

Table 4: Summarised Results From Partial GWR Calibration of the preferred Model  

Variable Mean Standard 
Deviation 

Difference of -
Criterion 

Local α (intercept) 3.444 2.228 -70.245 

β (train frequency) 1.009 0.299 -23.994 

γ (bus headway) 0.046 0.082 -7.276 

ρ (car parking) 0.101 0.137 -42.819 

τ (distance to Sydney CBD) -0.151 0.262 -3.959 

λ (population) 0.150 0.088 -8.955 

χ (vehicles) -0.909 0.646 -5.268 

 Value t stat  

Global δ (distance to nearest 
Metropolitan Strategic Centre) 

-0.073 -4.221  

ε (bike racks) 0.163 5.150  

κ (bike lockers) 0.163 3.976  

Radj
2
 0.927 

F stat 4.108 

 

There are a number of points to note about these results.  Firstly, the model fit shows a 
further slight improvement over the full GWR calibration, and the F statistic indicating an 
improvement in fit over the global model is more strongly significant.  The three global 
parameters are all still significant, and their values are slightly different to those given by the 
global calibration.  This is an important point, as a previous option tested for using GWR 
models to forecast demand (in the absence of partial GWR models) was to use the global 
parameter value for variables which exhibited no significant spatial variation, as a proxy for a 
partial GWR model calibration.  The differing parameter estimates obtained from the partial 
GWR calibration show that this previous option is not directly substitutable for the use of a 
partial GWR model.  The mean values of most of the spatially-varying parameters are also 
slightly different in the partial calibration from those obtained from the full GWR calibration, 
although all still exhibit significant spatial variations. 

A further option tested was to allow the GWR4 software to select which variables in the GWR 
model should in fact be fixed over space.  As described above (Section 3), the software does 
this in the GtoF routine by conducting a series of model comparison tests between the full 
GWR model and an alternative model in which one of the varying parameters has been 
changed to a fixed parameter. If the best of these alternative models has a better fit than the 
original then the relevant parameter is fixed, and further comparisons are then carried out for 
each of the remaining varying terms, until no improvement in model fit is gained by changing 
any further terms from varying to fixed.  This procedure only altered the two bike storage 
parameters from local to fixed, leaving the MSA distance parameter to vary over space.  The 
results of this model calibration are summarised in Table 1. 

Table 5 shows that while this calibration gives the same adjusted R2 value as the partial 
calibration with manual selection of global and local variables, the latter calibration gives a 
greater improvement over the global model as measured by the F statistic.  The main 
difference between the two calibrations is that the distance to Metropolitan Strategic Centre 
variable was selected as being ‘local’ by the GtoF routine even though the difference criterion 
value indicates that it should be a global variable.  The partial calibration with manual 
selection of global and local variables was therefore taken forward as the preferred option. 
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Table 1: Summarised Results from Partial GWR Calibration of the Preferred Model With Local 
To Global Variable Selection in GWR 4 

Variable Mean Standard 
Deviation 

Diff-
Criterion 

Local α (intercept) 3.359 2.250 -108.568 

β (train frequency) 1.013 0.308 -7.305 

γ (bus headway) 0.044 0.082 -5.674 

ρ (car parking) 0.100 0.134 -39.936 

τ (distance to Sydney CBD) -0.159 0.272 -4.759 

λ (population) -0.060 0.031 -10.004 

δ (distance to nearest Metropolitan 
Strategic Centre) 

0.154 0.094 4.128 

χ (vehicles) -0.983 0.788 -8.316 

 Value t stat  

Global ε (bike racks) 0.174 4.142  

κ (bike lockers) 0.163 5.219  

Radj
2
 0.927 

F stat 3.724 

 

The next stage in the investigative process was to map the local model fit and parameter 
estimates from this calibration of preferred model.  The local R2 values produced by the 
model are mapped in Figure 3, which shows that while in general model fit is reasonably 
good throughout the study area (with a minimum value of 0.778), it is best on the northern 
and southern outskirts of Sydney, and is relatively poor around the south of the city centre.  
The reasons for this are not immediately clear, although it is possible that it results from a 
greater degree of variability in station usage levels in this area. 

Figure 3: Local model fit from partial GWR calibration of the preferred model 
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The following figures show the spatial variation in the various model parameters which were 
set as being ‘local’ in the model calibration.  The local parameter estimates are contained in 
raster grids (having been calculated by the software for all 1 km by 1 km grid cells across the 
study region), and are displayed with the t statistics for the relevant variables as calculated at 
each of the observation points.  These are shown as circles on the maps, which are black 
where the parameter is statistically significant and white where it is not.  When interpreting 
the maps it is important to note that less confidence can be placed in parameter observations 
which are further away from the railway stations where the observed data were collected. 

Figure 4 shows the spatial variation in the train frequency and bus headway parameters and 
Figure 5 presents this for the car parking, distance to Sydney CBD, population and vehicle 
variables (as defined above).  Train frequency appears to have positive effect on rail demand 
everywhere, and this effect is particularly strong in the area to the north of Sydney around 
the Hawkesbury River estuary, but makes relatively little difference to the level of rail demand 
around the periphery of the study area.  The relationship between bus headway and rail 
demand appears rather more complex.  In the area to the south of Sydney rail demand 
appears to reduce as bus headways increase, indicating that bus and rail services may 
compete for patronage in this area.  In contrast, in the north-western suburbs of Sydney 
increased bus headways are positively correlated with rail demand, suggesting that bus 
services may act as feeders for the railway stations in this area.  The impact of bus headway 
is less marked throughout the rest of the study area, and the parameter is not significant in 
these areas. 

Figure 4: Spatial variation in train frequency and bus headway parameters 
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Figure 5: Spatial variation in car parking, Sydney distance, population and vehicle parameters 
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Figure 5 shows that the availability of car parking is in general positively correlated with rail 
demand, and that in general this relationship grows in strength with distance from Sydney.  
This may indicate that people making use of stations further away from Sydney CBD are 
more reliant on the car for accessing railway services, perhaps as a result of lower 
population densities and a lack of feeder bus services.  At first sight, the variation in the 
distance to Sydney CBD parameter appears extremely complex.  However, this parameter is 
in the main only significant in the southern part of the area, where it appears to indicate that 
increasing distance from Sydney leads to a reduction in rail trip making, as would intuitively 
be expected.  The population parameter is significant in the majority of the study area, with 
the exception of Sydney CBD and the area immediately to its north (perhaps unsurprisingly, 
as population is unlikely to be the key determinant of demand in the city centre).  To the west 
of the study area, Figure 5 shows a region where catchment population has a particularly 
strong positive impact on rail demand, which indicates that these are areas where rail 
commuting is particularly prevalent and the catchment population is more directly linked to 
trip rates than in other areas.  Finally, the car ownership parameter is always negatively 
correlated with rail demand (increasing car ownership is linked to lower rail usage levels), but 
its significance is somewhat patchy.  It appears to be strongly significant in the city centre, 
even though the implied elasticities here are quite small, but is also strongly significant 
around the periphery of the study area, where it also has a proportionally much larger impact 
on rail demand levels. 

5) Discussion and conclusions  

The analysis reported in this paper has shown that the use of GWR to calibrate rail demand 
models for New South Wales can give a clear improvement in model fit over equivalent 
‘conventional’ multiple regression models.  It has also demonstrated, for the first time in this 
field, that the use of partial GWR models gives superior results to models in which all 
parameters are allowed to vary over space, which has clear implications for this type of 
modelling more generally.  The GWR models have also allowed a number of apparent spatial 
variations in the impact of different explanatory variables on rail demand in the Sydney area 
to be identified.  Some suggestions for these variations have been provided in Section 4 but 
the results merit further investigation, in particular to identify whether the observed spatial 
variations result from the influence of additional variables which are not currently included in 
the demand modelling framework.  This is important because otherwise there is a risk of rail 
demand patterns being incorrectly linked to particular causal factors with consequences for 
the accuracy of any future demand forecasts made using these models.  It should also be 
noted that the model intercept parameter is still large and significant, indicating that ‘missing’ 
variables account for a non-trivial proportion of the variation in the observed data, and again 
attempts should be made to identify what these missing variables are through mapping to 
identify any significant patterns.  These modifications notwithstanding, the GWR model could 
still be used in its current form to forecast the likely demand levels at new railway stations 
within the case study area, with the spatially varying parameter estimates providing place-
specific patronage estimates which would take into account particular local circumstances.  
The next stage in this research will involve following both these steps, with the key aim being 
to use the partial GWR rail demand models to forecast passenger usage of the new Sydney 
North West Rail Link. 
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