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Abstract 

In this study, a Discrete Particle Swarm Optimization (DPSO) algorithm is assimilated to 
solve the Transit Network Design Problem (TNDP). First, A Mixed Integer Model is 
developed for the TNDP. The solution methodology utilized here is made of two major 
elements. A route generation module is firstly developed to generate all the feasible transit 
lines. Through the second part, a DPSO algorithm is utilized to select the optimal set of lines 
from the constructed ones. The objective function is to maximize coverage index while 
satisfying the operator cost upper level constraints. The efficacy and accuracy of the 
implemented algorithms is compared with ones obtained by an enumeration process as well 
as an enumeration-based heuristic approach. Results confirmed that the PSO algorithm can 
find the optimum combination with significant decrease in the computational costs. 

1. Introduction 

Public transportation is known as a viable option for sustainable development of the 
transportation systems in urban areas. Improving the mobility, relieving the traffic congestion, 
its specific equity considerations, and noticeable reduction in fuel consumption and air 
pollution  reduction is reported as the benefits of public transportation systems  
(Kepaptsoglou and Karlaftis, 2009). The problems of optimization of public transit systems 
are categorized into strategic, tactical, operational, and real-time control levels (Desaulniers 
and Hickman, 2007). The transit network design problem which is the focus of this paper is 
classified in the strategic level (Asadi Bagloee and Ceder, 2011). 

The Transit Network Design Problem (TNDP) can be stated as designing a new transit 
network or to redesign (developing or modifying) an existing one (Ceder, 2007). This problem 
involves the minimization (or maximization) of a defined objective function. Numerous 
objective functions have been defined in the literature of this realm. Ceder (2007) classified 
the objective functions utilized for TNDP. Besides, Kepaptsoglou and Karlaftis (2009) 
performed a comprehensive review on the previous research and classified them based on 
their objective function, parameters, and solution methodology. Among the defined objective 
functions for the transit network design problem, maximization of the covered trips is the 
objective function of a handful of research. It urges the algorithm to select a set of rapid lines 
which provide a plausible serving time to as many demands as possible. Laporte et al. 
(2007) presented a mixed-integer model for Rapid Transit Network Design Problem (RTNDP) 
where the trip coverage were defined as the objective function. Marín (2007)  then presented 
the extended model of the previously presented one. In their new formulation, the number of 
lines assumed to be a variable. Besides, the definition of origins and destinations for the lines 
were relaxed. Escudero and Muñoz (2009) developed a two-stage method to solve RTND 
where a connected graph were firstly resulted and the transit routes were then extracted from 
that graph. Kermanshahi et al. (2010) studied RTND and presented a new model and 
solution algorithm that considered the transfer penalty. Maximization of the trip coverage is 
what we utilized in the present study. 
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Swarm intelligence is a branch of artificial intelligence which is based on study of individuals’ 
behavior in various decentralized systems  (Teodorovic, 2008). In this realm, a swarm is 
defined as a group of agents which communicate with each other in a defined region 
(searching space) to find the optimal solution. Different interaction methodologies have 
resulted in the emergence of a variety of problem-solving approaches over the past years. 
Particle Swarm Optimization (Kennedy and Eberhart, 1995), Ant Colony Optimization (Dorigo 
et al., 2006), Stochastic Diffusion Search (Bishop, 2007), and Bee Colony Optimization 
(Teodorović and Dell’Orco, 2005) can be mentioned as the most known swarm based 
algorithms. Among them, Ant Colony Optimization has absorbed researcher’s attention for 
tackling complex transportation problems such as vehicle routing and scheduling, public 
transit, traffic engineering, as well as control problems(Teodorovic, 2008). Particle Swarm 
Optimization, on the other hand, in spite of its robust potential upon complex engineering 
problems, is rarely applied to transportation problems. Application of Discrete Particle Swarm 
Optimization(Kennedy and Eberhart, 1997) to vehicle routing problem (XIAO et al., 2005) 
(XIAO et al., 2005) and network design problem (Babazadeh et al., 2011) can be found in the 
literature. 

In this study, a Discrete Particle Swarm Optimization (DPSO) algorithm is utilized for solving 
the Transit Network Design Problem (TNDP). The solution methodology utilized here is made 
of two major elements. First, a route generation module is developed to generate all the 
feasible transit lines. Through the second part, a DPSO algorithm is utilized to select the 
optimal set of lines from the constructed lines. The objective function is to maximize 
coverage index while satisfying the operator cost upper level constraint. The efficacy and 
accuracy of the implemented algorithms is compared with ones obtained by an enumeration 
process as well as an enumeration-based heuristic approach.  

The subsequent sections of this paper are organized as follows. The next section is devoted 
to definition of the transit network design problem. Particle Swarm Optimization method is 
described in the fourth section. Then a case study example is solved and the results are 
compared with what we obtained using exhaustive and modified enumeration methods. 

1. PROBLEM FORMULATION 
The Transit Network Design Problem can be stated as a discrete combinatorial optimization 
problem:  The selection of a pre-specified number of transit routes from a given set of 
candidate paths. The objective function is to maximize the defined coverage index while 
satisfying the budget upper bound constraints. The coverage index of a possible network is 
the summation of all the covered demand in the network. To obtain this value, it is assumed 
that the travel time for each origin-destination (named here as Target Travel Time) is given 
and known. It may be valuable to study passenger preferences to generate a target travel 
matrix, probably for different passenger market segments. For each possible set of transit 
lines, the transit travel time for each trip would be calculated. If this value is smaller than the 
corresponding target travel time, the trip is assumed to be covered. It is noteworthy to 
mention that the main inputs of the model are the set of candidate routes, demand matrix, 
and Target Travel Time matrix.  

The objective function utilized in this study is the generalized definition of Laporte et al. 
(2007).  To calculate the transit travel time, all the elements of a trip (access time, egress 
time, waiting time, transfer penalty, and in-vehicle time) are considered. The details of the 
calculations are presented through the previous work of the authors (Kermanshahi, 2012) 
thus not presented in this paper.  The mathematical formulation of the problem can be 
presented as follows: 

            ∑       
                                              (1) 

∑         
                                                          (2) 
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                                               (3) 

            (    )                       (4) 

When 

binary variable of coverage, which is 1 if w is covered and 0, otherwise    

number of trips between w OD pair     

binary variable of selecting route l which is 1 if route l is selected and 0, otherwise    

construction cost of route l    

budget level   

If link ij belongs to route l and route l is selected in the solution.    
  

is 1 if link ij belongs to route l and 0, otherwise    
  

target travel time between w OD pair     

transit travel time, obtained from the transit assignment procedure     

a big enough number   

Equation (1) represents the objective function that is the summation of covered trips over all 
OD pairs. Constraint (2) stands to guarantee that the solution is budget feasible. The 
construction cost of each single route is calculated at route generation procedure. 
Constraints (3) guarantee that if a route is not selected, it is not used by transit passengers. 
Constraints (4) reflect the coverage definition for an OD pair w; if the provided service by 
transit system (   ) is greater than    (the target travel time of w), then the corresponding 
coverage binary variable, is forced to be zero. The procedure of route generation procedure 
as well as the transit assignment is comprehensibly described in (Kermanshahi, 2012). Some 
of the major constraints of BRT route layout and passengers movement in the transit network 
are not presented in this formulation. Indeed, the constraints and characteristics of the transit 
lines are implicitly considered in the route generation module. 

2. SOLUTION METHODOLOGY 
In this study, we utilized a Discrete PSO algorithm for solving the transit network design 
problem. Upon the previous work of the authors, the problem was solved using an 
enumeration based method.  Here we assimilated a PSO method to select a set of candidate 
paths which maximizes the coverage index while the budget limitation constraint is not 
violated. The variables of the problem are the indexes of the lines. Furthermore, the 
dimension of the problem is maximum number of lines that can be added to the current 
system. Since this value is not known, one plausible strategy is to solve the problem for 
different dimensions. Here we used the values obtained from the enumeration-based 
methods, developed by  Kermanshahi (2012). 

 

2.2 Particle Swarm Optimization 

Inspired by the social behavior of bird flocking and fish schooling, particle swarm optimization 
is an evolutionary computation model that has its roots in artificial life. First proposed by 
Kennedy and Eberhart (1995) , PSO performs a swarm-based search using particles to 
represent potential solutions within the search space. Each particle is characterized by its 
position, velocity, and a record of its past performance. 
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In the basic PSO algorithm, using the following equations, the position (x) and velocity (v) of 
each particle in the swarm can be updated upon each iteration. 

 (   )   ( )   (   )                                                                                     (5) 

 (   )   ( )      ( )[ ( )   ( )]        ( )[ ( )   ( )]                (6) 

Where C1 and C2 are the accelerator constants, r1 and r2 are randomly generated numbers 
that distribute uniformly in the [0,1] interval, g(t) is the best answer found by the population to 
that point, and p(t) is the best answer found by each particle. 

There are many extensions of basic PSO to improve its convergence behavior.Shi and 
Eberhart (1998) introduced the “inertia weight model” in which the inertia of the particle (the 
v(t) term) would be multiplied by a w parameter. This parameter plays an important role in 
trading off the exploration and exploitation of the algorithm. Large amounts of inertia weight 
will improve the exploration, but the diversity may also increase. In contrast, small values of w 
increase the possibility of searching in a specific area to obtain better solutions but may also 
increase the probability of trapping in local optimums (Parsopoulos and Vrahatis, 2010). 
Consequently, equation (6) can be rewritten as: 

 (   )    ( )      ( )[ ( )   ( )]      ( )[ ( )   ( )]             (7) 

In this equation, the inertia weight can either stay constant or decrease during the iterations 
of the algorithm. A dynamic value for the inertia weight is utilized in this study. 

Another modification is velocity clamping (Eberhart et al., 1996). In each iteration, if the 
calculated displacement of a particle exceeds the specified maximum velocity, it is set to the 
maximum value. Let Vmax,j denote the maximum velocity allowed in dimension j. The particle 
velocity is then adjusted before the position update using. 

   (   )  {
   

 (   )             
 (   )        

                          
 (   )        

                                (8) 

Since the basic PSO is developed for tackling problems with continuous domain, it should be 
modified for solving the addressed TNDP which is discrete problem. This modifications is 
performed using a simple converting from real values to integer ones, applied on each single 
term of the equation (7).  In other words, the velocity updating equation is modified as follows: 

 (   )     (  ( ))     (    ( )) [ ( )   ( )]     (    ( ))[ ( )   ( )]         (9) 

Once the terms were converted to integer values, the velocity of the particles in each step 
would be integer as well. Consequently, PSO is forced to search only the integer values (i.e. 
the index of each candidate path) as the variables. 

Figure 1 exhibits the flowchart of the PSO algorithm which we utilized for tackling the transit 
network design problem.  
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Figure 1: Flowchart of the PSO Algorithm 
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3. NUMERICAL EXAMPLE 
The software was developed in the .Net environment using the C# programming language. 
All the runs were performed on a laptop computer with an Intel® Core™ 2 Dual 2.80-GHz 
processor and 4 GB of installed memory (RAM). The calculation of objective function and the 
generation of initial answers were performed using a unique module to make the runs of the 
algorithms analogous. The stopping criterion is assigned to be met when no improvement is 
observed over a predefined number of iterations. 

The model and solution algorithm was applied to the Isfahan metropolitan road network. The 
network is consisted of a set of available rapid transit lines. Figure 2 shows the Isfahan 
metropolitan road network and the existing transit lines. The lines are either constructed or 
approved. Our goal is to extend rapid transit network using BRT lines.  
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Figure 2: Isfahan Metropolitan Area and the existing Transit Lines 

 

The inputs of the model are classified as threefold. 1) BRT system specifications; 2) Network 
information; and 3) demand information. Further details for each single input is presented at 
(Kermanshahi, 2012) and are not replicated in this paper. The Input data files are also 
available at www.mehdibagherian.com/GreaterIsfahanData. The characteristics of the 
network as well as the parameters assumed for this example are summarized in table 1.  

Table 1: Network Characteristics and parameters assumed for the case study 

Parameter Value 

Total Number of Links 129 

Total Number of Nodes 113 

Number of Terminal Nodes 14 

Total Number of Trips 2148000 

Covered Trips in existing Network 1357006 

BRT Speed(Km/h) 30 

Minimum Length of Transit Lines(Km) 8 

Maximum Length of Transit Lines(Km) 15 

Candidate Paths 56 

 

Upon the previous works, We solved the problem for different upper level of budgets using 
an enumeration method as well as a enumeration-based heuristic approach(Kermanshahi, 
2012). In other words, all the possible combinations were evaluated and the ones which 
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resulted the maximum coverage while satisfied the constraint were identified. The results are 
utilized here as the benchmark and the results obtained by the PSO algorithm were 
compared to evaluate the efficiency of this swarm based approach. 

3.1 Tuning of the PSO Algorithm 
PSO has a set of parameters which need to be tuned, including the swarm size, inertia 
weight, and accelerator coefficients. Although some recommendations are available in the 
literature for selection of optimum parameters, they are problem dependent and should be 
calibrated for each single problem. In this study, we performed a sensitivity analysis on the 
parameters of the algorithm to address the trend of the PSO algorithm. Unless otherwise 
specified, the following values are taken for the PSO parameters: Swarm Size = 60, 
C1=C2=2, Vmax=0.4 of the range of variables upon each single iteration, and a dynamic Inertia 
Weight (w), changing from 0.9 to 0.1 over the searching process. These values are selected 
according to the values suggested in the literature of PSO method. For each single scenario, 
ten different runs were performed. 

Table 2 demonstrates the impact of the swarm size on the objective function and number of 
evaluations. More particles of the swarm cause the better diversity of the swarm and more 
appropriate coverage of the searching space. However, increasing the swarm size causes 
further computational costs and the searching process degrades to a parallel random 
search(Engelbrecht, 2007). It can be seen that the swarm sizes of 60, 70, and 80 caused the 
best answers without trapping in local optimums through the performed runs. Among them, 
the efficiency of the algorithm (the speed of convergence) for swarm size=60 is better than 
the other two amounts. To present the efficiency of each single algorithm in reaching the 
optimal answer, the percentage of error index is defined using the following equation: 

      
 (             )  (         )

 (             )
                 (10) 

Where C (Algorithm) =the best objective function found by the algorithm and C (Best 
Solution) = the optimum solution of the algorithm, found by enumeration method.  

Table 2: Sensitivity analysis on the swarm size 

Swarm Size Number of 
Fails 

Average 
Value 

Error (x10E3) STD Number of 
Evaluations 

10 8 1584560 1.223 2719 792 

20 7 1585087 0.890 2525 1116 

30 4 1586387 0.070 137 1620 

40 3 1585916 0.368 1568 1208 

50 3 1586415 0.053 128 1725 

60 0 1586499 0.000 0 2422 

70 0 1586499 0.000 0 2891 

80 0 1586499 0.000 0 2672 

90 3 1586415 0.053 128 3195 

 

Five different sets of accelerator coefficient values were observed to determine which would 
lead to a better solution. The acceleration coefficients, C1 and C2, together with the random 
vectors, r1 and r2, control the stochastic influence of the cognitive and social components on 
the overall velocity of a particle. While C1 controls the effect of the best solution found by 
each particle, the C2 value is the weight of the best solution found by the swarm so far. Figure 
2 demonstrates the results obtained for different values of the accelerator coefficient. Results 
show that the PSO algorithm could find the optimum solution in three defined scenarios. 
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However, the cognitive and social only models (C1=4, C2=0 and C1=0, C2=4, respectively) 
resulted in inferior answers. 

 

Figure 3  Sensitivity Analysis on the Accelerator Coefficients (C1,C2) 

 

4. Computational Results  
We solved the TNDP for the Isfahan Network for different levels of available budget. Table 3 
summarizes the results obtained for different scenarios. As shown in the table, the increase 
in objective function is commensurate with the budget level. Furthermore, since the 
construction cost is the function of total length of proposed lines, the number of lines in the 
optimum combination increases with augmentation in the available budget. The characteristic 
of each single combination is summarized in the table. 

The results obtained by three different solution methodologies (i.e. exhaustive enumeration, 
an enumeration-based heuristic approach, and the DPSO algorithm) are also shown in this 
table. Comparing the required evaluations for DPSO with the results of the prior research 
(Kermanshahi, 2012), the optimum solution is acquired with a significant decrease in the 
performed objective function calculations. Indeed, On the contrary of the number of 
evaluations performed in enumeration-based methods, we can observe a slight change in 
calculation cost while increasing the level of budget.  This trend is exponentially changing 
with increase in budget for the previously used solution methodologies. 

Figure 4 shows the required number of evaluations to find the optimum combination for 
different budgets. For the lower available budgets, the computational cost in enumeration-
based methods is comparable with the PSO-based one’s. In these scenarios, since the 
number of possible combinations is limited and enumerable, using the exact methods seems 
plausible. However, the algorithms’ efficiency is disparate in higher budgets. For example, 
comparing the results for the budget of USD 120 million, PSO could find the answer with only 
2422 evaluations which is almost 13 times faster than the method presented in 
(Kermanshahi, 2012) and 380 times faster than performing an exhaustive enumeration method. 

The significant achieved value in saving the computational costs is remarkable while solving the 

problems with larger feasible searching space where the enumeration-based methods are no longer 

efficient. 
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Table 3 : Optimization results, obtained for different levels of available budget 

Budget 
(million 

USD) 

Objecti
ve 

functio
n 

Optimal combination 
Coverage 

Ratio 

Number of Evaluations 

Exhaustive 
Enumeration 

Modified 
Enumeration 

DPSO 

30 
144485
6 

Route 5: 6-9-22-24-26-12-13-14-

15 
67.2 46 34 120 

60 
149912
2 

Route 5: 6-9-22-24-26-12-13-14-

15 69.7 1993 956 960 

Route 17: 2-15-14-30-28-16 

90 
155816
4 

Route 17: 2-15-14-30-28-16 

72.5 85038 10870 1938 
Route 23: 5-7-10-9 

Route 25: 6-9-22-24-26-12-13-14 

Route 38: 5-7-11 

120 
158649
9 

Route 5: 6-9-22-24-26-12-13-14-
15 

73.8 919038 31077 2422 

Route 9: 5-7-11-18-17 

Route 17: 2-15-14-30-28-16 

Route 23: 5-7-10-9 

Route 27: 3-1-20-17-18-11 

 
 

Figure 4  Number of Evaluations for obtaining the Optimal Solution 

 

5. CONCLUSION 
In this study, the efficiency of a Discrete Particle Swarm Optimization algorithm was 
observed for solving the Transit Network Design Problem. The DPSO algorithm was 
assimilated to find the optimal set of lines from the constructed lines. The objective function 
was defined as maximization of the coverage index while satisfying the upper level of budget 
constraints. The solution method was utilized for solving the problem in different level of 
budget. In all the scenarios, the optimum solution was found upon a plausible number of 
evaluations. The required number of evaluations to reach the optimum combination was 
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compared with the results obtained by an exhaustive enumeration method as well as an 
enumeration-based heuristic approach. The results confirmed the capability of the DPSO to 
find the optimum solution with a significant decrease in the total computational cost.  
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