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Abstract 

Traffic micro-simulation models have become very popular in transport studies and are 
extensively used in research and by industry.  Traffic simulation models are especially very 
useful in reflecting the dynamic nature of transportation system in a stochastic manner, 
which is beyond the capability of some classic methods.  Nevertheless, one of the major 
concerns of micro-simulation users has been the appropriate calibration of this software.  An 
inappropriate calibration may end in a wrong conclusion and decision which could result in 
irreparable costs or problems. This paper develops an efficient methodology to improve the 
calibration procedure of traffic micro-simulation models.  It applies the method to VISSIM.  It 
provides a methodology for auto-tuning of VISSIM as one of the well-known and 
commercially available traffic micro-simulations. More specifically, it looks at the car-
following and lane changing models as they form the main component of any traffic micro-
simulation. This approach uses particle swarm optimisation (PSO) method as an 
evolutionary algorithm through the VISSIM COM interface and parallel optimisation 
technique to reduce the cost of auto-tuning and calibration. This paper could be of interest to 
transport experts in particularly those who are using traffic micro-simulation and looking for 
auto-calibration approach.     

 

Keywords: Traffic micro-simulation, Calibration, Auto-tuning, Evolutionary algorithm, 
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1. Introduction 

Traffic simulation models have become an important and popular tool in modelling transport 
systems, in particular, owing to advent of fast and powerful computers.  One of the supreme 
advantages of using such tools is to assess different alternates and scenarios prior to their 
implementations. Traffic simulation models could be divided into three categories including 
microscopic, macroscopic, mesoscopic simulation models. First category simulates the 
movement of individual vehicles in a traffic stream.  Car-following and lane-changing models 
are the two fundamental components in traffic micro-simulations.  The second (macroscopic) 
category simulates transportation network section-by-section rather than by tracking 
individual vehicles. The relationships between flow, speed, and density of traffic stream form 
the fundamental basis of this category.  Mesoscopic traffic simulation models combine the 
properties of the first and second models.   
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Along with the increasing popularity and use of traffic simulations, an essential concern has 
been raised about their proper applications in the study they are used for; or more 
specifically their appropriate calibration and validation. As no single model can comprise the 
whole universe of variables, every model must be adapted for local conditions using real 
world data.  The performance of the model should be also evaluated through independent 
data sets.  These processes are known as calibration and validation.  More specifically, 
calibration of the traffic simulation normally refers to computing the magnitude of the 
parameters embedded in the simulation models to match the real traffic and local driving 
behaviour.   

The outputs of traffic simulations may not be accurate and reliable without appropriate 
calibration.  However, the calibration process, especially for microscopic simulations, could 
be a complex and time-consuming task because of the large number of unknown 
parameters (Toledo et al. 2004).  Some studies (e.g. Gardes et al. 2002, Chu et al. 2003, 
Park and Schneeberger 2003, Moridpour et al. 2012) used the generic procedure to calibrate 
traffic micro-simulations using sensitivity analysis and trial-and-error which could be very 
resource-intensive and time-consuming.  Some other studies (e.g. Lee et al. 2000, Ma and 
Abdulhai 2002, Park and Qi 2005, and Menneni et al. 2008) used an evolutionary algorithm 
like Genetic Algorithm (GA) for calibration purposes.  However, the process may be still 
time-consuming due to the significant computational load associated with large-scale traffic 
simulation runs. 

This study introduces a methodology to calibrate traffic micro-simulations based on an 
evolutionary algorithm known as Particle Swarm Optimisation (PSO).  To overcome the long 
running time, it applies multi-thread technique and implements Parallel PSO algorithm.  This 
method can use several CPUs and runs several simulation instances in parallel which can 
shorten the run time significantly. VISSIM (2012) traffic micro-simulation was used in this 
study for implementation of the algorithm.  

Section 2 explains the VISSIM interface and defines the important parameters that should be 
considered for calibration procedure. In particular, the parameters related to the driving 
behaviours are discussed in this section. Section 3 explains about the optimisation 
techniques and the particle swarm optimisation (PSO) algorithm is discussed in details. 
Section 4 presents the implementation and parallelisation of the PSO algorithm for auto-
calibration of the traffic micro-simulation. The paper is closed by providing some conclusions 
and further remarks for future work in Section 5. 

 

2. VISSIM and Calibration Parameters 

The micro-simulation which was used in this study is VISSIM (2012), version 5.40. The 
name is derived from “Verkehr In Städten - SIMulationsmodell” (German for “Traffic in cities - 
simulation model”).  The software was developed at the University of Karlsruhe, Karlsruhe, 
Germany, during the early 1970s. Commercial distribution of VISSIM began in 1993 by PTV 
Transport Verkehr AG, which has continued to distribute and maintain VISSIM till now.  
VISSIM is one of the latest traffic micro-simulations available and provides significant 
enhancements in terms of driver behaviour, multi-modal transit operations, interface with 
planning / forecasting models, and 3-D simulation.   

VISSIM (2012) is a microscopic, time step and behaviour based simulation model developed 
to analyse private and public transport operations under constraints such as lane 
configuration, vehicle composition, traffic signals and so on.  Access to model data and 
simulation is provided through a COM interface, which allows VISSIM to work as an 
Automation Server and to export the objects, methods and properties.  The VISSIM COM 
interface supports Microsoft Automation and thus the program can be implemented in any of 
the RAD (Rapid Application Development) tools ranging from scripting languages like Visual 
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Basic Script or Java Script to programming environments like Visual C++ or Visual J++.  
Also, internal driving behaviour can be replaced by a fully user-defined behaviour using the 
External Driver Model DLL Interface of VISSIM. 

The accuracy of the traffic flow simulation model is highly related to the accuracy of 
estimating vehicles’ movements in the network. The driving behaviour in the micro-
simulation is linked to each link by its behaviour type.  The traffic flow model in VISSIM is a 
discrete, stochastic, time step based, microscopic model with driver-vehicle-units as single 
objects. The model contains a psycho-physical car-following model for longitudinal vehicle 
movement and a rule-based algorithm for lateral movements. The model is based on the 
continued work of Wiedemann (1974) for car-following process and Wiedemann and Reiter 
(1992) for lane-changing manoeuvres.  The car-following and lane changing models and 
their associate parameters are explained in the following sub-sections. These parameters 
affect the vehicle interactions directly and cause substantial differences in simulation results 
and thus should be considered in the calibration procedure particularly.  However, the 
calibration parameters are not limited to the parameters associated with the car-following 
and lane changing model.  Some further parameters which could be considered are used to 
define the maximum and desired acceleration/deceleration of vehicles, desired speed 
distributions, and signal control.  Here two fundamental components within the traffic micro-
simulations are presented as an example, but the rest of parameters can be also considered 
in calibration procedure.  The proposed algorithm allows setting as many parameters as 
desired for calibration.  However, more parameters will result in more complex process and 
thus will require more running time. 

 

2.1. Car-following model  

VISSIM uses the psychophysical car-following model developed by Wiedemann (1974). The 
concept of this model is that the faster moving vehicle drivers approaching slower vehicle 
start decelerating when they reach their own individual perception threshold.  However, the 
speed may become smaller than the lead vehicle speed as the results of driver’s 
imperfection in the estimation of the lead vehicle speed. This means the driver will 
accelerate slightly again after reaching another threshold. This results in an iterative process 
of acceleration and deceleration due to drivers’ imperfections to determine the exact speeds 
of the lead vehicles. Figure 1 shows a typical car-following behaviour of a vehicle based on 
the logic explained above.  

There exist two car-following models in VISSIM: Wiedemann74 and Wiedemann99 (VISSIM 
2012).  The former one is suggested to be applied for urban arterial roads and the later one 
is more suitable for freeways. The basic idea of the models is the assumption that a driver is 
in one of the four driving modes: Free driving, Approaching, following or braking.  These 
modes are determined by the following six thresholds (also shown in Figure 1): 

 AX: the desired distance between two stationary vehicles 

 BX: the minimum following distance which is considered as a safe distance by drivers 

 CLDV: the points at short distances where drivers perceive that their speeds are 
higher than their lead vehicle speeds 

 SDV: the points at long distances where drivers perceive speed differences when 
they are approaching slower vehicles 

 OPDV: the points at short distances where drivers perceive that they are travelling at 
a lower speed than their leader  

 SDX: The maximum following distance indicating the upper limit of car-following 
process  
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Figure 1: a typical car-following behaviour of a vehicle (VISSIM 2012) 

 

 

More details about these thresholds can be found in Wiedemann (1974) or VISSIM (2012).  
For each mode, the acceleration could be determined as a result of speed, relative speed, 
space headway and the individual characteristics of driver and vehicle.   

This study explains the Wiedemann99 car-following model with more details as it is more 
suitable for freeways and contains more parameters causing more difficulties for calibration.  
Further, the relation between the calibration parameters and the perceptual thresholds are 
required to be investigated in details. Figure 2 is a snapshot of VISSIM interface showing the 
parameters associated with Wiedemann99 car-following model. The parameter explanations 
are presented below. 

The ‘Look ahead distance’ parameters determine the minimum and maximum distances as 
well as the number of vehicles in front of a driver in the same link that can be observed and 
thus influence driver’s reaction accordingly.   

The ‘Look back distance’ parameters determine the maximum and minimum distances that a 
driver can see backwards within the same link in order to react to other vehicles behind. 

The ‘temporary lack of attention’ parameters determine the probability and time duration in 
which a driver does not react to the behaviour of lead vehicle (except for emergency 
braking). 

The ‘smooth closeup behavior’ parameter determines whether or not drivers slow down 
more smoothly when approaching standing obstacles.  If it is checked, drivers will prepare to 
stop behind the obstacle from the maximum look ahead distance.  If it is not checked, drivers 
will have the normal following behaviour and will not consider the obstacle from the long 
distance. 

The ‘standstill distance for static obstacles’ parameter determines the distance that drivers 
keep while standing in upstream of all static obstacles.  The distance can be fixed by 
checking the box otherwise it would be a random value following a normal distribution with 

the mean of       and variance of        . 
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Figure 2: Parameters of Wiedemann99 car-following model in VISSIM 

 

 

In the box of car-following model parameters, there exist ten parameters (CC0-CC9).  The 
first seven parameters (CC0-CC6) are used to determine the car-following thresholds and 
the rest have different roles. The relation between the parameters and thresholds are 
defined by Equations 1 to 6.  

                                                                                          

where L is the length of the lead vehicle 

 

                                                                                       

where   is equal to subject vehicle speed if it is slower than the lead vehicle; otherwise, it is 
equal to lead vehicle speed with some random errors.  The error is determined randomly by 
multiplying the speed difference between the two vehicles by a random number between       
-0.5 and 0.5. 

                                                                                      

 

           
         

   
                                                                   

where    is the space headway between the two successive vehicles calculated from front 

bumper to front bumper. 
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where   is a dummy variable which is equal to 1 when the subject vehicle speed is greater 
than     and 0 else.   

The CC7 parameter defines the actual acceleration during the oscillation process; The CC8 
parameter defines the desired acceleration when starting from standstill condition; and the 
CC9 parameter determines the desired acceleration at the speed of 80 km/h.  

 

2.2. Lane changing model  

There are two types of lane changing models used in VISSIM:  necessary lane change and 
free lane change. Necessary lane change (Figure 3) considers the situations in which drivers 
should change their lane in order to reach the next connector of a route. The driving 
behaviour parameters in this type of lane change contain the maximum acceptable 
deceleration for the lane changing vehicle (own) and the vehicle will be its follower in the 
target lane (trailing vehicle). The target lane is the lane that the driver wishes to move into. 
The free lane change considers a lane change of a vehicle in order to obtain speed 
advantages or more space. This lane change will take place if the desired safety distance in 
the target lane is satisfied.  This safety distance is determined by speed of lane changing 
vehicle and trailing vehicle in the target lane. The parameters associate with the lane 
changing model are outlined briefly below. . For more details, the readers are referred to the 
VISSIM user manual (VISSIM 2012). 

Figure 3: Parameters of lane changing model in VISSIM 

 

 

The ‘general behavior’ defines the way of overtaking and contains two options: ‘free lane 
selection’ and ‘right side rule’ / ‘left side rule’.  The overtaking is allowed in any lane by using 
the first option but it will have some limitations if the second option is selected. As the 
parameters are the same in the two options, this study focuses on the parameters and does 
not explain the limitations 

The aggressiveness of lane changing manoeuvre is defined by deceleration thresholds for 
the lane changing vehicle (own) and its following vehicle in the target lane (trailing vehicle).  
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The thresholds are determined by the six parameters appeared under the ‘necessary lane 
change (route)’ section. 

The ‘waiting time before diffusion’ describes the maximum time that a vehicle wait at an 
emergency stop position to find a gap to change lanes and stay on its route. If the vehicle 
cannot change its lane within this time, it will be taken out from the network and an error 
message will be appeared in the VISSIM error file.  

The ‘min. Headway (front/rear)’ determines the minimum gap in front of the vehicle that 
should be available for a lane change in standstill condition. 

The Safety distance reduction factor considers a deduction in the safety distances 
associated with vehicles involved in the lane changing manoeuvre.  Smaller values result in 
more aggressive lane changing behaviour. For instance, the default value (0.6) results in 40 
precent deduction in the safety distances. 

The ‘maximum deceleration for cooperative braking’ parameter determines the maximum 
deceleration the trailing vehicle driver will accept for cooperation helping the lane changing 
vehicle to execute its manoeuvre.  A higher absolute value will result in more cooperation 
and thus lane changing. 

The ‘overtake reduced speed areas’ is unchecked by default.  However, it can be checked 
resulting in model lane-dependent speed restrictions which are considered by the vehicles 
for lane changing. 

The ‘advanced merging’ is checked by default and considers any necessary lane change 
belongs to the next link or connector along with the current connector. This means that the 
strategic plan of vehicles can be considered and they may change lanes earlier.  This may 
decrease the waiting time for lane changing and increase the capacity of the road. 

If the ‘cooperative lane change’ is checked, the trailing vehicle in the target lane may move 
to the other side in order to make room for the lane changing vehicle However, the second 
lane change will occur if it is safe and suitable for the trailing vehicle based on its own route 
plan. Further it does execute a cooperative lane change if the defined ‘maximum speed 
difference’ and ‘maximum collision time’ are not satisfied.  

 

3. Particle Swarm Optimisation 

The determination of the abovementioned parameters requires a trial-and-error or an 
optimisation procedure.  This section outlines the procedure used to develop the optimal 
values for the parameters. 

In mathematics, optimisation refers to the problem of finding the extremum value of a 
function.  So, it can refer to both minimization and maximization. Since the maximization of 
an arbitrary function f is equivalent to the minimization of its negative function(–f), the 
minimization and optimisation terms are usually used interchangeably. 

Optimisation methods can be categorized into different classes based on different points of 
view (Sedlaczek and Eberhard 2006, Engelbrecht 2007, Wang and Li 2009, Zheng and Wan 
2012, Komori et al. 2012).  From one perspective we can classify them into constrained 
optimisation and non-constrained optimisation methods as in some circumstances the 
underlying problem imposes several constraints and limitations to the variables (e.g. 
limitation on the boundaries of variables or optimising the function in a sub-area of the 
space).  In such cases, the optimisation problem should be solved satisfying all the 
constraints of the problem (i.e. equality and inequality constraints). In fact, the solutions that 
do not satisfy the constraints are not acceptable.  This kind of optimisation problems has its 
own developed methods. For example, Lagrangian optimisation method (Rockafellar 1993) 
is a well-known method that is widely used in this context.  Non-constrained optimisation 
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refers to the global optimisation of the function without any limitations.  In fact, the feasible 
space is equal to the whole search space in non-constrained optimisation problems. 

Optimisation has been extensively studied in mathematics literature (Rockafellar 1993, 
Snyman 2005, Polyak 2007, Wang and Li 2009, Narushimaa and Yabeb 2012, Zheng and 
Wan 2012). Using the derivatives of the underlying function leads to a family of methods 
called gradient-based methods (Snyman 2005, Narushimaa and Yabeb 2012).  These 
methods start from an initial point and make use of the gradient of the function to improve 
the solution in each step.  Some of these methods use the first order derivatives while some 
others make use of higher order derivatives.  For example, gradient descent, conjugate 
gradient and several other methods use the first order derivatives but Newton’s method 
(Polyak 2007) uses the second order derivatives and uses the Hessian matrix in order to 
improve the rate of convergence (Boyd and Vandenberghe 2004).   

Mathematical optimisation methods have their own limitations when the underlying function 
is non-convex.  When the function is convex, it has definitely a single minimum point (best 
solution) and several convex optimisation methods could be used to find this point.  These 
methods guarantee that they find this single minimum point of the function starting from any 
arbitrary initial point. Although they differ from each other in terms of convergence rates and 
the number of iterations, all of them are able to find the global minimum of the function. 
However, several challenges and difficulties arise when the underlying function is non-
convex which may have several local minimums.  In these cases, mathematical optimisation 
methods are sensitive to the initial points and may result in a local minimum instead of the 
global minimum of the function (Szu 1986).  Further, in some optimisation problems the goal 
is to achieve the best parameters for a system in which there is no specific mathematical 
function. Therefore, the mathematical methods are not applicable in these problems. 

To overcome the abovementioned problems, another class of optimisation methods could be 
applied to find the best solution.  This category consists of evolutionary algorithms using 
computational intelligence or soft computing methods.  They are inspired from biological 
evolution or swarm intelligence (collective animal behaviour).  The two most well-known 
methods in this category are Genetic Algorithms (Holland 1975) and Particle Swarm 
Optimisation (Kennedy and Eberhart 1995). These methods use several random search 
elements in parallel to avoid local minima. 

Genetic algorithms use two main operator named mutation and cross-over.  The mutation 
operator causes random movements in the population and causes exploration and avoiding 
local minimums.  The cross-over operator leads to fine movements and exploitation around 
the current position of population.  Although there exist continuous extensions to genetic 
algorithms, it is mainly used in binary and discrete optimisation. 

Particle swarm optimisation (PSO) was first introduced by Kennedy and Eberhart (1995, 
2001).  The idea behind the PSO algorithm came from the collective motion of a flock of 
particles: the particle swarm. In an n-dimensional function, each particle is presented as an 

n-dimensional vector representing a single point in the search space.  The position of the       

particle ( ⃗ ) can be presented as: 

 ⃗                                                                       

 

Each particle moves through the multi-dimensional search space and its position and 
velocity are updated by two elastic forces defined based on its own experience and the 
experience of the swarm.  The procedure continues until the swarm as a whole converges to 
an optimum value.  

Each particle memorizes the position vector and velocity vector as well as the best individual 
(personal) point which has produced the minimum value of the cost function.  This point is 



A NOVEL METHODOLOGY FOR EVOLUTIONARY CALIBRATION OF VISSIM BY MULTI-THREADING 

9 
 

called personal best (     ).  The best personal experience of the       particle can be 

expressed as: 

 ⃗ 
          

         
           

                                              

 

The particles can share their experience in the flock and can be affected by the best 
experience of the swarm.  The best experience of the swarm is the point which has 
produced the minimum value of the cost function within the whole population. This point is 

called global best (     )    

The basic concept of the PSO algorithm lies in updating the position of each particle towards 

its       and       points at each iteration by adding an increment vector called velocity. The 

velocity and position of the       particle at the          iteration can be determined by: 

 

 ⃗          ⃗         ⃗    [ ⃗ 
         ⃗    ]                                   

     ⃗    [ ⃗
         ⃗    ]                            

 

 ⃗        ⃗      ⃗                                    

 

where       and    are positive constants;  ⃗     and  ⃗     are vectors of random numbers 

from         in the        iteration. 

 

Figure 4 shows the flow chart of the particle swarm optimisation algorithm. The main steps 
can be summarized as follows. 

(1) Initialisation: the positions and velocities of the particles are initialised with random values 
in the n-dimensions of the search space.  

(2) Fitness calculation: the value of cost function is calculated for each particle  

(3) Find        of each particle: the fitness of each particle is compared with its previous 

personal best fitness           ; if the new fitness value is smaller than the previous       , 

the new value is considered as the new      ; otherwise the personal best will remain 
unchanged.  

(4) Find        of the population: the        of all particles in the population are compared to 

each other.  The smallest value is considered as the new global best (     ) . 

(5) Check the stopping criteria: if the stopping criteria are satisfied, go to (7); else go to (6). 

(6) Change velocities and positions: the velocity and position of each particle are updated by 
Equation 9 and Equation 10 respectively. Then go to (2). 

(7) Report       : the best fitness which has found so far, is reported as the optimum value 
and the algorithm stops. 
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Figure 4: Flow chart of PSO algorithm 

 

 

4. Implementation and Parallel Optimisation 

Calibration is referred to the adjustment of model parameters enhancing a model’s capacity 
to replicate driving behaviour and traffic characteristics.  Figure 5 shows a general 
framework which could be used for calibration. According to this framework the calibration 
process is an iterative process by which the outputs of traffic micro-simulation become close 
enough to the real world measurements. Indeed, the calibration process can be considered 
as an optimisation problem which seeks to minimize a measure of the deviation between 
observed and corresponding simulated measurements.  
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Figure 5: General framework of calibration procedure 

 

 

The simulated traffic measurements (STM) are a function of parameters associated with 
driving behaviour   , route choice (   and Origin-Destination (O-D) flows (  ; because it is 
almost impossible to segregate the impacts of driving behaviour, route choice and O-D flows 
in the total error. Therefore, the simulated traffic measurements (STM) can be expressed as: 

 

                                                                 

 

where   is the simulation process with parameter set of     and  . 

Now, the optimisation problem can be written as follow. 

 

                 
                                              

 

where   is a function that determines the difference between the simulated traffic 

measurements (STM) and the observed traffic measurements (OTM) and so-called error.  

The optimisation problem is thus defined to find     and    by which the error is minimised.  
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The optimisation problem can be solved by the PSO algorithm as explained in Section 3. 
However, when the PSO algorithm is implemented for calibration, it is required to run the 
simulation once for each particle to calculate its fitness. Therefore, the run time of the 
calibration algorithm will be prolonged due to the long running time of simulation. To 
overcome this problem, multithread technique can be applied and a program can be written 
(e.g. in C++) using the COM Interface of VISSIM to share this time consuming task with the 
other CPUs.  Based on the licence, VISSIM may allow theatrically opening unlimited 
instances for simultaneous runs.  However, the number of instances is limited by the number 
of available CPUs. 

The basic idea behind most parallel programs is to divide a large problem into smaller tasks; 
the tasks are solved simultaneously on multiple processors.  When a multi-threaded program 
runs on a multi-core system, the operating system can provide each thread with one CPU.  
Therefore the threads can run on separate CPUs simultaneously which results in parallel 
execution or parallelisation.  This technique can reduce the run time significantly.  The 
deduction time depends on the number of available CPUs.  Below the algorithm of this 
technique is presented. 

The parallel PSO can be used to speed up the calibration procedure. Therefore, the 
calibration algorithm is modified as follows.  

(1) Initialisation: positions and velocities of particles are generated randomly similar to 
original PSO.  Several threads are initialised to calculate the population fitness.  The 
number of threads should be equal or less than the number of available CPUs. Assume 

the number of threads is   and the population has   particles by which      .  To 
increase the efficiency of the program, it is recommended to determine the number of 
particles such that    becomes an integer number. 

(2) Parallel tasks: 

(2-a) Task of each thread: after initialisation of the   threads, one particle is assigned to 
each of them.  In each thread the assigned particle fitness is calculated through the 
running of the simulation.  Then the personal best position and fitness of the particle is 
updated. The micro-simulation run and the fitness calculation of the   particles are 
performed in parallel and simultaneously.   

(2-b) Repeating the task for   times: when the tasks of all threads are finished, another 

set of   particles from the remaining population are assigned to new   threads; the 
particles’ fitness and their personal best positions are updated.  This iterative procedure 

repeats   times. 

 (3) Joint tasks  

(3-a) Updating the global best: when all particles’ fitness and their personal best 
positions in the specific population are determined, the global best of the algorithm is 
updated.  

(3-b) Checking the stopping criteria: if the stopping criteria are satisfied, the algorithm 
will stop and report the global best as the optimum answer, else, the positions and 
velocities of the particles are updated and the next iteration will start by going to Task 2.  

As it can be seen, the time consuming step of calibration process which is the calculation of 
each particle’s fitness, is implemented in parallel. Therefore, it can reduce the execution time 
of the algorithm significantly.  
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5. Conclusion and Future Work 

This study provided a methodology to improve and facilitate the calibration procedure of 
traffic micro-simulations. More specifically, it developed an approach for auto-tuning of 
VISSIM as one of the commercially available traffic micro-simulations. It investigated the 
parameters within the simulation which may affect the simulation outputs and thus are 
potentially important to be considered for calibration. Car-following and lane changing 
models as the two fundamental components of any traffic micro-simulation and their 
associate parameters were discussed in details.  

The calibration process of the traffic micro-simulation was considered as an optimisation 
problem that should be solved.  The parameters should be found by which the deference 
between the observed traffic measurements and the corresponding simulated traffic 
measurements is minimised. Several measurements might be considered for this purpose 
such as travel time and traffic volume.  The Particle swarm optimisation (PSO) algorithm was 
used to solve the optimisation problem and tune the VISSIM parameters automatically. To 
reduce the run time of the algorithm, a methodology was used to implement the PSO 
approach in parallel. Detailed explanations about the PSO algorithm, parallelisation and their 
implementation for auto calibration of VISSIM were presented in this study. The 
methodology developed here could be of interest to the traffic simulation software 
developers as well as their users as its application is not limited to VISSIM.  This method 
could be used in any traffic simulations to produce accessory software facilitating the 
calibration of that specific simulation.   
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