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Abstract 
Stated preference experiment design for discrete choice modelling has been recognised as 
an important yet difficult task with regard to the selection of choice alternatives, attributes 
and their levels. This paper illustrates techniques for stated preference experiment design 
and data application in discrete choice modelling for transit-oriented development (TOD) 
study in a rail corridor. Based on analyses of local census data, station observations and 
focus groups, this experiment design selects major transport modes as alternatives for 
building a railway station access mode choice model and local house types for building a 
residential location choice model. Factors that contributed to people’s choices were selected 
as attributes for the models, and the resident’s preferences on these attributes were defined 
as attribute levels. To optimise survey design, this experiment adopted Bayesian efficient 
design with estimated prior parameters derived from transport experts in the field. These 
parameters then applied in utilities for testing different types of computing algorithm 
selections and draws to obtain an optimised efficient design resulting in lower value of D-
error and S-estimates. The designed survey was tested in a pilot study and a full scale 
survey is just starting. Latent Class models, Random Parameters model and Error 
Component model were derived from pilot data with the comparison of different draws and 
random parameter distributions. The initial results suggest that the waiting time for bus is a 
significant contributor for the station access mode choice, while house type, affordability and 
the distance from home to preferred school are important for residential choice. The distance 
from home to the railway station is vital for both choices. The empirical experiment showed 
the suggested design technique has a high potential for being able to provide policy 
indications for TOD planning.  
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1 Introduction 
 
Discrete choice modelling has been promoted as a method to assist in analysing the multi-
faceted factors of travel behaviour in regards to travel demand and travel mode choice, 
including the built-environment and residents characteristics. A list of relevant modelling 
studies can be found in McFadden (1972, 1974, 1978), McFadden and Train (2000), Walker 
and Li (2007), Olaru, Smith and Taplin (2011). These studies have demonstrated well 
established theoretical modelling techniques not only in fundamental Multinomial Logit model 
(MNL) but also in extended forms of Latent Class model (LCM), Nested Logit model (NL) 
model and Mixed Multinomial Logit (MMNL) model. However, in these studies, it is hard to 
find any explanation of how choice data surveys have been designed.  Experiment design 
for discrete choice modelling data collection remains an under investigation and an 
interesting topic even though it is not new in the field. 
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Analysts collecting choice data are required to make assumptions on what sort of choice 
would be likely to be optimal. This ‘assumption’ had been discussed for centuries. Sir Donald 
R. Fisher’s study, ‘The design of experiments’ (1935), suggested that inductive inference 
should be adopted while also advocating Tomas Bayes’s prior parameter (1763) for statistic 
estimation. However, his work was considered as highly controversial at the time by many 
conventional statisticians. An alternative method for making assumptions is called 
orthogonal design (Louviere 1988; Tarokh, Jafarkhani & Calderbank 1999; Louviere, 
Hensher & Swait 2000; Hensher, Rose & Greene 2005; Lancsar, Louviere & Flynn 2006). It 
assumes the attribute levels are allocated within an orthogonal matrix which may be deficient 
if orthogonality is lost during the design. Interestingly, some other studies have claimed that 
using Bayesian parameters usually has an advantage in making this assumption (Fowkes & 
Wardman 1988; Huber & Zwerina 1996; Sándor & Wedel 2001; Kanninen 2002; Sándor & 
Wedel 2002). Their main argument is that the properties of orthogonal design are unrelated 
to real world scenarios, as if they were it would reduce the strength of the relationship 
among parameters while the Bayesian design distinguishes the unobserved heterogeneity 
between the attributes. These works reintroduce a Bayesian theory to discrete choice 
modelling application and the theory has been recognised by many researchers as an 
improved experiment design compared with orthogonal designs (Hensher & Rose 2007; 
Rose et al. 2008) 
 
In recent practical modelling works (Jaeger & Rose 2008; Olaru, Smith & Taplin 2011), 
Bayesian design has been adopted but it is rare to find any study that provides detailed 
estimations of how to define prior parameters, particularly in regards to transport modelling. 
The research detailed in this paper is based on an empirical modelling study using a rail 
corridor as the case site investigate why people choose their mode of transport. This is 
intended to be used in helping promoting a local transit-oriented development (TOD). The 
study demonstrates how to define specific transport issues, select discrete choice model’s 
alternatives, attributes and levels, and how to estimate Bayesian prior parameters for 
constructing optimised hypothetical choice survey questionnaires, from where the derived 
models could provide robust and statistically significant modelling results. 
 
This paper firstly introduces the specifications of discrete choice modelling and explains the 
advanced model options. In section 3, Bayesian efficient experiment design and efficient 
measuring criteria are demonstrated. Section 4 demonstrates the fundamental processes 
and techniques in experiment design, which includes estimating prior parameters and 
explaining techniques that can be applied to gain lower efficiency criteria before defining an 
optimized survey questionnaire. Section 5 uses data collected from the designed 
questionnaire to build different forms of discrete choice models and explains the model 
results. The final section provides discussion on experiment design and future study.  
 

2 Discrete choice model 
Discrete choice models analyse individual behaviour related to variable attributes in 
hypothetical choices. The MNL model is a fundamental fomulation. It is defined as: 
 

��� = ���	(
��)
∑ ���	(
��)�

                                                            (1) 

 
where pmi is the probability that individual i will select alternative m from a set of alternative 
choices, where the value of each alternative to i is given by its utility function Umi. 
 

��� = ��� + ���                                                              (2) 
 

where Vmj is a function of the measured attributes, εmj is unobserved attributes.  
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A full derivation of the MNL model and description of the utility function may be found in 
references such as Ortúzar and Willumsen (2002). MNL models are confined by the 
Independence of Irrelevant Alternatives (IIA) axiom, which suggests that with any two 
alternatives, one chosen probability is unaffected by the existence of other alternatives in the 
choice set (Ortúzar & Willumsen 2002). This requries necessary and sufficient conditions in 
experimental designs for model formalization (Louviere 1988).  
 
2.1 Alternative discrete choice models 
The IIA enables the MNL model to be used to simplify econometric estimations and 
forecasting, but it cannot estimate accurate choices if the IIA assumption is violated. There 
are alternative model types, which relax the IIA assumption and demonstrate different 
statistical properties. This study applies the variety of MMNL models which relax the IIA 
assumption. 
 
The Mixed Multinomial Logit (MMNL) model, or Mixed Logit (ML) model, provides the 
flexibility to accommodate general characteristics as well as differences across individuals 
presented in the variables (Bhat 2001). This model treats variance and covariance in the 
random component that it represents as an “unobservable” component in the utility. 

���� = ������ + ����                                                          (4) 
                                                                                                    

where Xjnt is a vector of observable variables, θn is a vector of unknown coefficients that vary 
randomly according to the individual and εjnt is unobserved attributes. There are also 
different formulations of MMNL models. Three of which, being the Latent Class model, 
Random Parameter model and Error Component model will be described below. 
 

Latent Class model 

An Laten Class model (LCM) refers to a choice model formulation that considers the 
inclusion of ‘classes’ which are defined priori by the analysts depending on observable 
attributes and unobserved latent heterogeneity (Greene & Hensher 2003). The overall 
probabilities of classes are defined on the basis of estimating the class specific parameters 
for each respondent.  

���� = ����/� + ����/�                                                         (3) 
 
where Vnsj/c is a function of the measured attributes in a latent class c, and εnsj/c is the 
unobserved attributes in a latent class c. Within each class, the probability assumption is 
treated the same as in MNL models. 

Random Parameter model  

MMNL models can be interpreted in several ways by specifying different utilities, e.g. the 
cross sectional model: 

��� = ��� ��� + ���                                                           (5) 
where εnj is a random term and an Independent and Identically Distributed (IID) extreme 
value. Probability then depends on covariance density f (β) based on β which is distributed 
normally as β~N (µ,σ2) or another distribution (Train 2003). This specification estimates the 
heterogeneity existing both within and between individuals and we named it Random 
Parameter model (RPM).  

Error Component model 

When the MMNL model ignores random-coefficients, then the error components create 
correlations among alternatives in a different utility: 

��� = ��� ���+ �� !�� + ���                                                    (6) 
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where,  �� !�� + ���	  are error components as a random portion of the utility which is 
dependent on znj, for a standard MMNL, znj=0 (Train 2003). This interpretation is called an 
Error Component model (ECM). Error terms are added into the utility function, to estimate 
the heterogeneity between random parameters associated with alternatives or nested 
alternatives, by estimating different error variances associated with these alternatives.  
 
2.2 Data requirements 
Discrete choice models require two types of data sets for parameter estimation, being 
revealed preference data and stated preference data. Revealed preference data comes from 
real markets but is based on the decision maker’s perceptions of the real market and can be 
collected by asking individuals in each transit node about their current travel behaviour 
(Louviere, Hensher & Swait 2000). Revealed preference data questionnaires are designed 
with straight forward questions to collect socio-demographic information, such as age, 
gender, income, car ownership and also travel patterns.  
 
Stated preference data comes from choice experiments which require the generation of 
hypothetical choice scenarios. These scenarios need to be composed by the analyst to be 
as close to a realistic situation as possible. The data collected can be used to investigate 
people’s perception of new transport facilities or future residential developments that may 
not yet exist. This information may be useful for policy makers in planning forecasts and in 
reforming urban structure and transport infrastructure, especially for TOD planning. 
 
It is important to combine revealed preference data and stated preference data sets, 
because the combination of the two overcomes the limitations of each single set and 
identifies estimated parameters of an optimal design (Louviere, Hensher & Swait 2000; 
Hensher, Rose & Greene 2005). 

3 Experiment design 
A  stated choice experiment is ‘a way of manipulating attributes and their levels to permit 
rigorous testing of criteria in hypotheses of interest’ (Louviere, Hensher & Swait 2000, p. 84). 
In the design, alternative attribute levels will be constructed into an asymptotic variance-
covariance (AVC) matrix, with each column representing an attribute and each row 
representing a choice task (Rose & Bliemer 2005). A survey questionnaire with efficient 
allocated attribute levels enables the collection of high quality information that can be used 
for discrete choice modelling and minimises the burden and fatigue of respondents. This 
study will focus on Bayesian design methodology as it has been recognised as an 
improvement on the original orthogonal design (Hensher & Rose 2007). 
 
3.1 Bayesian efficient design 
The uncertainty in obtaining prior information for a discrete choice model utility function is 
referred to as an expected loss in the Bayesian expected utility function. It can be presented 
by parameter θ representing a vector or matrix. A particular action will be denoted as a, 
while all possible actions will be denoted as A. The random variable outcome will be denoted 
X (a vector), X=(X1,X2,… ,Xn), Xi represents the independent observation from a common 
distribution. A particular realization of X is denoted x. The probability distribution of X 
depends upon the unknown θ. Pθ (A) that denotes the probability of the event A, assumed to 
be with a density f (x|θ), then  

�"	(#) = $ f(x|θ) dx*                                                                 (7) 
The expectation over X of a real value function u(x), the expected utility function, will be 

+",-(�). = $ -(�)/(�|�) 0�1                                                       (8) 

then 

+",-(�). = $ -(�) 01 23(�|�)                                                    (9) 
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The posterior distribution is combining prior information π (θ|x), which is the conditional 
distribution of θ given the sample observation x.  
 

P5	(A) = $ dF(x|θ) = $ π(θ|x)dθ99                                            (10) 
 
A more detailed explanation was found in Berger (1985). In Bayesian efficient designs, prior 
distribution π (θ|x) presents the likely parameter values and optimizes the design over that 
distribution. The more reliable this prior information is, the more accurate parameter 
estimation will be. 
 
3.2 Efficiency criteria 
Efficient design assumes parameters for standard error and approximates the AVC matrix 
prior to conducting the complete survey. Consequently the applied mathematical derivation 
can only be called a best guess of the true value of the parameters. 
  
The log likelihood function is described as: 

:;(<|3,>) = ∑ ∑ ∑ ?���@
�AB

C�AB;�AB DEF����(�|�)                                   (11) 
where 

����(�|�) = GHIJKLM(3|<)
∑ GHIJKLM(3|<)N
�OP

                                                (12) 

 
����(�|�) = ∑ �QRQAB ��Q��                                                  (13) 

 
The Fisher information matrix is obtained after two derivations: 
 

S;(�|�, ?) = −+> UV
WXY(<|3,>)
V<V<Z [                                            (14) 

VWX(3|<)
V<\PV<\W

= ∑ ∑ ∑ ��QP������(�|�)]��QW�� − ∑ ��QW������(�|�)@
�AB ^@

�AB
C�AB;�AB         (15) 

 
So the AVC matrix can be: 

Ω;(�|�) = S;̀B(�|�)                                                                (16) 
 

Ω;(�|�) =
a
b
b
c�GP

W

; ⋯
⋮ ⋱ ⋮

⋯ �G\W
; g
h
h
i
                                                           (17) 

 
where, j represents alternative ( j = 1, …, J ), k represents attribute ( k = 1, …, K ), s 
represents choice situation ( s = 1, …, S ), n represents respondent ( n = 1, …, N ), design X 
consisting of attribute levels Xjksn, choice observations y, where yjsn=1 if respondent n 
chooses alternative j in choice situation s (and 0 otherwise), β is parameters to be estimated. 
After the second derivation, the AVC matrix is independent of observation y, then prior 
parameters can be estimated without responding data and greater efficiency is then also 
given by the AVC matrix. These equations were originally stated by McFadden (1974), and 
slightly modified by Bliemer and Rose (2009).  

D-error 

The standard errors for parameter constants have a large impact on the efficiency. The 
measure of efficiency can be the determinant by the AVC matrix: 

D-error=det (Ω)1/K                                                         (18) 
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 In Bayesian efficient design, the prior parameter values are only approximately known, 
assuming the prior parameter is randomly distributed. Using D-efficient design, 
assuming	�~k( , lm): 

Do − pqqEq = $ ]r(�|�)^B/R/(�|-, lm)< 0�                          (19) 

A detailed explanation can be referred to Bliemer, Rose and Hess (2008).  

S-estimates 

S-estimates generate a lower sample size by applying asymptotic t-ratios. If the t-ratio is 
larger than 1.96, a 95% certainty is obtained (Bliemer & Rose 2009).  
Sample size for estimating parameter �Q: 

k ≥ U�GP(<\)�∗<\
[
m
                                                             (20) 

Where N is sample size. This provides for the minimum sample size and minimum 
observations. It can be explained for a given assumed prior as, at least N times for all 
parameters to be statistically significant with a t-ratio of at least 1.96. The highest asymptotic 
t-ratio may provide the optimal parameter values. 

A-error 

A-error is the trace of the AVC matrix, which is the summation of all diagonal elements of the 
matrix. This arithmetic mean is variant according to the design of matrix, e.g. level coding 
(Zwerina, Huber & Kuhfeld 1996). 

4 Experimental design applied to a TOD case study 
Applying experimental design to a TOD case study requires a consideration of TOD factors 
which forms the basis for choosing the model, alternatives, attributes and levels and 
designing utility functions. Prior parameters need to be elicited and algorithms need be 
carefully applied and adjusted by computing to achieve optimal efficiency. This study uses 
Ngene, an experiment design software developed for computational assistance by Choice 
Metrics Pty Ltd. (2009). 
 
4.1 Observations 
To assist in experimental design and as part of the wider research scope, this study has 
collected and analysed a number of related data bases. This has included the analysis of 
Australian Census data on travel to work modes, an observational survey conducted on 
railway station access modes and focus groups invited residents from the corridor. The 
analyses of these observed data provide important information for experiment design. 
 
Adelaide’s Northern rail corridor has a good overall mix of land uses with local residents 
tending to use a car as their main transport mode. Even people who live close to the railway 
line use rail less than their car (Australian Bureau of Statistics 2006). A railway station 
observational survey conducted in 2010 at major transport interchanges, such as Mawson 
Lakes, covered all the station access points from 6am–7pm on one day each and recorded 
in 5 minute intervals the passenger transport demands. The survey results from Mawson 
Lakes show that ‘park and ride’ users caused a car park occupancy rate of 85 per cent for 
most of the day out of a total of 418 available car parks. A total of 1602 passengers used the 
train mode to depart the station, whist arriving at the station by bus, car, cycling or walking. 
Nine feeder bus routes bring in 740 passengers per day. Walk and cycle arrivals only 
account for 10 per cent of total train users while 17 per cent of users arrived by someone 
drop off as ‘kiss and ride’. This demonstrates that people use motorised modes of arrival 
more than walking or cycling.  
 
In follow-up focus group sessions, questions were designed based on literature reviews 
about TOD features and observations. Discussions with local residents centred on questions 
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such as ‘how often do you use the train?’, ‘why do you use or not use the train?’, ‘where and 
what kind of house do you live in?’, ‘how do you travel in your local area?’. The highlighted 
issues focus groups were combined with TOD literatures to form the basis for the discrete 
choice model alternatives and attributes levels. More information about this corridor 
observation can be found in Meng, Holyoak and Taylor (2011). 
 
4.2 The models, alternatives, attributes and levels 
 Based on an analysis of the observational survey and focus groups, two models were 
designed. The station access mode choice (SAMC) model is developed for the purpose of 
assisting in increasing rail patronage in the short term and evaluates the passenger’s choice 
of mode to access the train. The residential location choice (RLC) model was designed to 
assist in evaluating policies to encourage people to move closer to public transport and 
services in the long term. Table 1 shows detailed alternatives and attributes belonging to the 
specific models. It was important to describe the attributes to be easy-to- understand and as 
simple as possible. 

Models 

A MMNL model structure is powerful for identifying heterogeneity across individual 
preferences (Jaeger & Rose 2008). Both the SAMC and RLC models were expected to run 
the RPM and ECM models to test the efficiency of the model and to identify heterogeneity. 
An LCM is preferable for estimating unobserved preferences with latent heterogeneity in 
preferences and to separate the population into classes to focus on TOD planning (Greene 
& Hensher 2003; Olaru, Smith & Taplin 2011). Latent classes are constituted by different 
levels of socio-demographic factors, such as age, gender, income, and family size, which will 
be developed to analyse different groups of people’s preferences on mode choices and 
housing choices. In SAMC model, some environmental attributes influence the mode choice 
but are not a distinguishing feature of the mode itself. These attributes form a ‘travel 
occasion’ which reduces their impact on model design compared with mode-related major 
attributes. These include station safety and security, time of day, weather conditions, train 
frequency, and accompanied or unaccompanied travel. Each of the 12 sub-model condition 
scenarios are applied as a condition for each of the 12 main model scenarios. For a similar 
example of this design application type, see (Jaeger & Rose 2008).  

Alternatives 

Some research suggests that the number of alternatives forms a U–shape relationship with 
the variance of the error term. Three to four alternatives possess the highest scale 
parameter and designs (DeShazo & Fermo 2002; Caussade et al. 2005). For the SAMC 
model, the four labelled alternatives, Car, Bus, Walk and Bike, which contain different 
attributes, are major modes for TOD station access. For the RLC model, the 3 unlabelled 
alternatives, A, B and C, which all have the same attributes are presented as different house 
types, being separate house, semi-detached/townhouse and apartment/flat. House type is 
an attribute of all the alternatives. A ‘no choice’ alternative is included in the RLC model for 
when a respondent has no perceived attractiveness of the available options in comparison 
with other alternatives (Dhar & Simonson 2003). 
 



Stated Preference Survey Experiment Design for Transit-Oriented Development Modelling 

8 
 

Table 1: SAMC model and RLC model alternatives, attributes, levels and coding 
 
Attributes Attribute 

Index 
Level No. Attribute Levels Level Code 

SAMC model     

[Dist]Travel 
Distance to station 

A 1, 2, 3, 4, 5, 6 3km, 2.5km, 2km, 1.5km,1.0km, 0.5km 2, 4, 6, 8, 10, 12 

[Parka]Parking 
availability 

B 1, 2, 3, 4 $4.00, $2.00, Free parking, drop off -3, -1, 1, 3 

[WtimeB]Wait Time 
for Bus 

C 1, 2, 3, 4 20mins, 15mins, 10mins, 5mins -3, -1, 1, 3 

[Wway]Quality walk 
route 

D 1, 2 Poor, Good -3, 3 

[Bway]Quality bike 
route 

E 1, 2 Poor, Good -3, 3 

SAMC model -Sub Conditional model 

[Ssafe]Station 
design/Security 

A 1, 2 Not safe, Safe -6, 6 

[Weather]Weather 
Condition 

B 1, 2, 3 Wet, Hot, Fine 1, 2, 3 

[Trainf]Train 
frequency 

C 1, 2, 3, 4 20mins, 15mins, 10mins, 5mins 2, 4, 6, 8 

[Soc]Social 
Interaction With 
Others 

D 1, 2 Not with friend, With friend -1, 1 

[TimeD]Safety/ 
Time of Day 

F 1, 2 Nighttime, Daytime -4, 4 

     

RLC model     

[HouseT]House 
Type 

A 1, 2, 3 Separate House, Semi-
Detached/Townhouse, Apartment/Flat 

2, 4, 6 

[Haffor]House 
Cost/Affordability 

B 1, 2, 3, 4 40%, 30%, 20%, 10% 4, 8, 12, 16 

[DistTS]Travel 
Distance to Rail 
Station 

C 1, 2, 3, 4, 5, 6 3km, 2.5km, 2km, 1.5km, 1.0 km 0.5km 2, 4, 6, 8, 10, 12 

[DistBS]Distance to 
Nearest Bus Stop 

D 1, 2, 3, 4, 5, 6 0.6km, 0.5km, 0.4km, 0.3km, 0.2km, 
0.1km 

2, 4, 6, 8, 10, 12 

[WorkA]Employmen
t opportunity 
distance from house 

E 1, 2, 3 2.4km, 1.6km, 0.8km 2, 4, 6 

[School]Facilities 
and Service - 
Preferable School 

F 1, 2, 3, 4, 5, 6 1.8km, 1.5km, 1.2km, 0.9km, 0.6km, 
0.3km 

2, 4, 6, 8, 10, 12 

[Shop]Facilities and 
Service - Shops 

G 1, 2, 3, 4, 5, 6 1.8km, 1.5km, 1.2km, 0.9km, 0.6km, 
0.3km 

2, 4, 6, 8, 10, 12 

[Park]Facilities and 
Service - Parks and 
Outdoor Areas 

H 1, 2, 3, 4, 5, 6 1.8km, 1.5km, 1.2km, 0.9km, 0.6km, 
0.3km 

2, 4, 6, 8, 10, 12 

Attributes 

Allowing too many attributes could increase the error variance due to inconsistent choices 
(DeShazo & Fermo 2002; Caussade et al. 2005). The distance from home to the railway 
station is a shared alternative for both models. Other attributes included in the SAMC model 
include station parking fee, bus waiting time, and the quality of walk and bike route as 
alternative specific attributes. Other alternatives included in the RLC model are house 
affordability, the distance to public transport nodes, employment, shops, schools and parks. 
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Levels 

Levels of attributes take into account respondents’ weights for each attribute for determining 
preferred alternatives in the process of estimating parameters. Huber and Zwerina (1996) 
claimed that a level is only meaningful when compared to others in a choice set, although, 
the predicted average attribute levels may influence the D-error (Rose et al. 2008). A wide 
range of attribute levels is preferred, but too wide a range will result in a higher error term 
(Caussade et al. 2005). Columns 3 and 4 in Table 1 demonstrate the levels of attributes for 
both models, which are inferred from the perception of respondents of focus groups and 
literatures for related factors. Most of these levels were defined by taking into account the 
local conditions of the study site. One example is the waiting time for a bus is generally 15 
minutes while some routes have a 10 minute waiting period in peak hour and 5 minutes 
might be a possible scenario for the future. Another example is the distance to the nearest 
bus stop which has been set at 100m to 600m, because the standard distance between bus 
stops in Adelaide is planned to be no longer than 600m. 
 
4.3  Utility function, prior parameters and algorithm 
A computer programming technique was applied for the estimation of the optimised efficient 
design, deciding whether to use random or Bayesian parameters, estimating prior 
parameters and choosing algorithms which all influence the optimal design result. 

Utility functions 

The utility function of the alternative is constituted by attributes and parameters. The number 
of attributes included and the type of parameter, such as a generic, alternative constant or 
alternative specific parameter directly defines the number of choice scenarios. As number of 
choice scenarios have a significant influence upon error variances and we should choose 
small enough to enable respondents to complete the survey without feeling over-burdened 
or fatigued (Caussade et al. 2005). Rose and Bliemer (2005) suggested that total number of 
choice probabilities should be equal to or greater than the number of parameters to be 
estimated. 
 
The SAMC model has labelled alternatives. Therefore the parameter is either alternative 
specific or a generic parameter if an attribute assigns the same weight to each mode (Rose 
& Bliemer 2005). There are 8 alternative specific parameters, 3 constant parameters and 1 
error component, totalling 12 choice sets. The RLC model design with unlabelled attributes 
will only include 10 generic parameter estimates (Bliemer & Rose 2009). There are 10 
choice sets possible to estimate 10 parameters. However, to balance the attribute levels of 
the models (Bliemer & Rose 2009), this number was increased to 12. To reduce the chance 
of losing data due to respondents not answering all questions, the choice sets of both 
models were designed to separate into 2 blocks.  

Prior parameters 

Estimating prior parameter values by providing a prior distribution on parameter values were 
applied in studies, such as Box and Lucas (1959) and Chaloner and Verdinelli (1995). 
Researchers (e.g. Rose et al. 2008), claimed that such estimations involve uncertainty and 
therefore confronts challenges. Studies have tried to acquire experts who ‘assess the 
probability in an actual decision situation’ based on their experience and intuition then 
directly sketching a prior density (Murphy & Winkler 1970; Berger 1985). This method has 
been discussed as the ‘paper-and-pencil’ elicitation method in studies of Van Lenthe (1993) 
Sándor & Wedel (2001) and Rose et al. (2008).  
 
This study first invited three assessors, who have extensive research experience in transport 
and land use, to estimate the probabilities of specific levels for one particular attribute, as if 
this choice is provided by all possible combinations of the attributes and levels. The 
distributions of the parameters were then derived as a normal distribution (e.g. Kessels et al. 
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2009), see Figure 1 and Figure 2. For example, ‘Dist car’ means distance to railway station 
for car alternative parameters that follows a prior density β~N (0.17, 0.07) in the SAMC 
model. For negative attributes, we define the attributes level as a minus, which enables the 
prior parameter to be positive (Kanninen 2002). For improved certainty, the assumed prior 
parameter could be tested by a pilot study, with small samples that may provide reasonable 
priors (Huber & Zwerina 1996).  
 
Figure 2: Estimated prior parameter distribution for SAMC model attributes 
 

 
 
Figure 3: Estimated prior parameter distribution for RLC model attributes 
 

 
 

Efficiency and algorithm 

Several algorithms can be used for design generation, such as relabeling, swapping, cycling 
or a Modified Federov algorithm (Huber & Zwerina 1996; Sándor & Wedel 2001). The first 
three are column based algorithms that reassign, shift and rotate the levels of attributes in 
choice sets for smaller errors. The modified Federov algorithm searches for the lowest 
efficient error in all possible combinations of the choice situation and is based on rows. 
Algorithms will improve the result of the AVC matrix, by providing lower D-error and A-error 
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(Sándor & Wedel 2002). They suggested that the cycling algorithm performance suits 
Bayesian design more than relabeling or swapping, but it requests all attribute have the 
same set of levels. This study does meet the condition of same levels of each attribute, we 
elected swapping generation (as relabeling experienced a difficulty in the simulation which 
need further investigate).  
 
For computing the design, the choice can be Quasi-random Monte Carlo simulation (MC) or 
Gaussian quadrature (Bliemer, Rose & Hess 2008). Quasi-random MC is computed by 
Halton sequences which divide 0-1 spaces into prime segments or Sobol sequences which 
provide a more multi-dimensional coverage in a higher dimension than Halton. The 
Gaussian quadrature method uses cubature methods for orthogonal polynomials, up to 10 
abscissas (Bliemer, Rose & Hess 2008).   
 
This study compares the three draw types in random draws and Bayesian draws. Initially, all 
parameter estimations were assigned with a Bayesian draw parameter, however, this 
resulted in additional choice sets. The simple solution is to apply the parameters with a lower 
estimated t-ratio to a random draw parameter (Bliemer, Rose & Hess 2008). The experiment 
tried different algorithms by using both Bayesian and random parameter (see Figure 4). In 
the experiments for the RLC model, we have found Gaussian draws with 2 abscissas for 
random parameters and with different abscissa (e.g., G 2 G 1322223), for Bayesian draws, 
providing Db-error=0.038, Ab-error= 0.125, outperformed other draws in Db-error and Ab-error 
which meets with the suggestion that Gaussian draws outperform other draws in a previous 
study (Bliemer, Rose & Hess 2008). Figure 5 shows the S-estimate for the RLC model, G 2 
G 2 provides a lower S-estimate of 21 but a higher Db error with 0.04. 
 
Figure 4: RLC model A-Error and D-Error result with different draws 
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Figure 5: RLC model s-estimate result with different draws  
 

 
 
In performing tests of draws for the SAMC model, a high S-estimate of 595.8 was computed. 
This suggested further investigation to overcome the high number.  

Efficiency and attribute, attribute levels and prior parameter 

In re-considering the design of the SAMC model, the influence of the selected attributes and 
levels needed to be analysed to consider whether they fit the objectives of the model. One 
area that could have created uncertainty could be the attribute of car parking provided in the 
train station. In the original design, the attribute ‘parking cost’ had a ‘None’ level, which 
includes existing levels of ‘drop off’ and ‘free parking’. There is a significant difference 
between those two options which strongly affect station area land use and station access 
mode choice. Capturing the ‘drop off’ and ‘free parking’ values separately might be more 
valuable for making policy suggestions on station land use. Therefore the ‘parking cost’ 
attribute was changed to ‘car parking availability’, and the levels were changed from ‘None, 
$2, $4, $6’ to ‘Drop off bay, free parking, $2/day parking, $4/day parking’. Accordingly, the 
prior parameter was changed. The designed result gained a lower value of D-error, A-error, 
B-estimates, and particularly a lower S-estimate which dropped from 596 to 42 (see Table 
2). Consequently the change resulted in higher design efficiency. 
 
Table 2: SAMC model attribute and level adjustment and efficency result 
 Before change After change 

Attribute name Car parking cost Car parking availability 

Attribute levels None, $2, $4, $6 Drop off bay, free parking, $2/day parking, 
$4/day parking 

Prior parameter n (0.25, 0.23) n (0.25, 0.09) 

Efficient criteria D error A error B estimate S estimate D error A error B estimate S estimate 

Fixed 0.121 1.706 35.244 68.928 0.120 1.518 32.252 60.699 

Bayesian mean 0.130 1.781 0.294 595.864 0.126 1.571 0.284 41.865 

 
For all mentioned techniques practiced, the experiment design created choice scenarios 
which are optimised based on the efficient criterion of D-error and S-estimates and other 
statistical properties, e.g. A-error. The stated choice survey questionnaire was constituted of 
12 scenarios of each of the SAMC model and RLC model, see samples of them in Figures 6 
and 7. 
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Figure 6: SAMC choice scenario example 

 

Figure 7: LCM choice scenario example  
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Revealed preference data was collected by asking 24 questions about the respondents’ 
socio-demographic information, travel activities, mode choice, car ownership, family 
structure, residential type and service availability. The full survey form including both 
revealed preference questions and stated preference questions were distributed small 
number of respondents for a pilot test. Comments were collected for obtaining a broad 
aspect of view and improving the designed survey questions to provide a quality database 
for robust modelling. 

5 Discrete choice modelling results 
 
The pilot study was conducted by surveying staff and PhD students at the University of 
South Australia. Over 100 survey forms were handed out to mail boxes or in person. 50 
answered forms were collected, of which three of them were missing one or two answers in 
the choice scenarios and as such were deleted from the data set. The remaining 47 samples 
were sufficient to meet the minimum sample size requirement for S-estimates of 42 for the 
SAMC model and 21 for the LCM model. By analysing the characteristic of respondents, e.g. 
age, gender, income, we found that the variables of daily activities (DAAC) and the number 
of people living in the respondent’s dwelling (NPID) distinguish the sample into groups. 
Figure 1 shows the density of different daily activities, where 1 represents respondents 
whose daily activity is full time work, 5 represents full time study, while 11 represents 
respondents who do full time work and part time study.  Figure 2 shows the number of 
people living in the dwelling. Two people living in one dwelling is the most common category. 
In this pilot modelling study, we focused on DAAC and NPID as distinctive characteristics, in 
particular respondents who are doing full time study and have 2 people living in their 
dwelling. 
 
Figure 8: Daily activity density                         Figure 9: Number of person in dwelling density  

 
5.1 SAMC model 
An SAMC model was designed to study residents’ preference for their mode of accessing 
the train station, providing 12 choice scenarios sets. A MNL, LCM, RPM and ECM models 
have been developed to estimate each attribute in different model structures 

Latent Class model  
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LCM gained a smaller AIC value of 2.260 compared to the MNL model with 2.470. Two 
latent classes were selected as the best fit ahead of using 3 or 4 classes. We found that 
overall people consider their bus stop distance from home, waiting time for a bus, the time of 
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their choice of transport mode. One class consisting of 73 per cent of respondents drove 
their car to the train station due to a bus stop being too far from home or too long a waiting 
time for both the bus and the train. We named this the car access class. The remaining 27 
per cent of respondents shift their mode to access the train station between car, bus, walking 
or cycling depending on various factors including the time of day, the weather, the frequency 
of trains and convenience of each mode, e.g. car parking availability or walking route quality. 
We named this class the multi-mode access class. Within the LCM classes, we further 
create a class probability model with the utility function consisting of a constant (-0.103) and 
variables DAAC (0.002) and NPID (0.459). The results showed that the full time students 
surveyed with two people living in their house have 76 per cent belonging to car access 
class which is 3 per cent higher than the average in the sample. 

Random Parameter model 

The RPM provides rich information on behaviour preference analysis. It is however difficult 
to decide which attributes of alternatives should have random parameters and what random 
parameter should be used. We first tested statistically significant variables in the MNL 
model, using 15 Halton draws to test using a normal distribution. Waiting time for a bus and 
walking distance showed statistically significant t-ratios. Next, a combination of a Normal 
distribution, a lognormal distribution and a triangle distribution were used to compare these 
two variables using 100 Halton draws. The results showed a Normal distribution for waiting 
time for a bus and a triangle distribution for walking distance provided an improved model fit. 
We then used a further 1000 Halton draws to obtain an estimation that is shown in Table 5. 
 
The results for waiting time for a bus showed an estimated mean of 0.399 and an estimated 
standard deviation of 0.840, with 68 percent of the distribution above zero and 32 percent 
below. This implies that shorter waiting time for a bus is a positive inducement for attracting 
about two-third of train users, while the other one-third of train users may choose to take the 
bus to the station regardless of waiting time. The results for walking distance showed over 
four-fifths of train users may choose to walk to the station if the distance is preferable, while 
less than one-fifth might have other reasons to choose not to walk to the train station.  
 
A RPM is able to estimate the interaction effects of each random parameter with other 
attributes to determine whether heterogeneity may exist in the data. In this RPM model, daily 
activity and the number of persons in a dwelling were tested for the preference of 
heterogeneity around the mean of the random parameter. Table 3 shows that the interaction 
between walking distance and the number of persons in a dwelling is statistically significant 
with a t-ratio -2.302. Respondents who have more people living in their home (e.g. children) 
might lack time or find it too difficult to be able to choose walk to the train station. 

Error Component model 

The ECM nests alternatives of Walk and Bike, and provides additional information for the 
preference heterogeneity associated with them which we might not be able to account for by 
random parameterisation (Hensher, Rose & Greene 2005). Table 3 shows a statistically 
significant t-ratio of 4.216 for these two alternatives.  
 
The modelling specifications of the SAMC model also tested the relationship of elasticity 
between the distance from home to the train station and mode choices. The results obtained 
from different models, each demonstrated a similar effect that if the distance to the station is 
changed, there is a significant increase in respondents choosing to walk, but not as much for 
the car, bus and bike modes. Table 4 shows the elasticity for the distance from the house to 
the railway station which shows that for a 1 per cent change in distance, the possibility of 
choosing to access the station by walking changes far greater than for other modes. The 
MNL and LCM models showed a higher elasticity at around 1.8 than the RPM and ECM 
offer. 
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Table 4: Effect of changes in distance from home to the train station in tested models 
 

Change in distance MNL LCM RPM ECM 

Change in choice of car -0.104 -0.117 -0.086 -0.051 

Change in choice of bus -0.081 -0.072 -0.068 -0.043 

Change in choice of walk 1.854 1.829 1.541 1.432 

Change in choice of bike -0.013 -0.145 -0.009 -0.071 

 
Figures 10 and 11 provide the histograms for the waiting time for a bus and walking distance 
to the train station. The graphs were estimated on the sample population as a whole rather 
than on the condition of any individual choice. The frequency of waiting time for a bus is 
roughly asymmetrically distributed either side of the mean, which might indicate that 
respondents consider this variable in a similar way to each other. The walking distance 
histogram is skewed to the right, which could possibly mean that if the walking distance is 
longer than the average acceptable distance, there might be people who still choose to walk. 
These unconditional parameter estimates can help predict results for the extended 
population outside of the sample, if the sample is large enough (Hensher, Rose & Greene 
2005).   
 
 Figure 10: Waiting time for bus histogram       Figure 11: Walk distance histogram  
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Table 3: The results of station access mode choice model of MNL, LCM , RPM and ECM models 
 MNL   LCM-Class1  LCM-Class2  RPM   ECM   

Variable Coef t-ratio Sig. Coef t-ratio Sig. Coef t-ratio Sig. Coef t-ratio Sig. Coef t-ratio Sig. 

          Random parameters in utility functions 

Waiting time for Bus 0.254 5.063 *** 0.184 3.318 ** 0.961 5.383 *** 0.399 3.252 ** 0.424 2.805 ** 

Walk distance 0.316 8.558 *** 0.293 6.058 *** 0.681 7.649 *** 0.466 6.620 *** 0.585 5.454 *** 

          Nonrandom parameters in utility functions 

Bike distance 0.014 0.329  0.023 0.178  0.254 3.553 ** 0.012 0.301  0.071 0.757  

Bike route quality 0.021 0.365  0.355 1.749  0.539 3.379 ** 0.027 0.473  0.060 0.513  

Bus -0.418 -0.764  5.643 2.490 * -5.379 -4.113 *** -0.913 -1.588  -0.346 -0.363  

Bus station distance 0.046 1.375  0.047 1.138  0.047 0.619  0.052 1.506  0.049 1.008  

Car parking type -0.128 -1.250  -0.543 -0.923  -0.466 -3.486 ** -0.131 -1.255  -0.182 -0.893  
Car 0.453 0.730  6.046 2.669 ** 2.307 1.363  0.424 0.660  1.012 0.947  

Car drive distance 0.044 1.471  0.043 1.241  0.224 1.911  0.047 1.534  0.042 0.951  

Daily activity 0.067 1.610  -0.491 -2.931 ** 0.483 5.309 *** 0.071 1.659  0.167 1.804  

Driving license 0.071 1.608  0.101 1.514  0.096 1.129  0.078 1.718  0.129 2.419 * 

Number of people 0.084 1.120  0.095 1.106  0.419 1.850  -0.056 -0.658  -0.039 -0.530  

Station parking availability 0.047 0.938  -0.020 -0.339  1.486 4.530 *** 0.050 0.959  0.072 1.141  

Register vehicle 0.331 2.599 ** 0.301 1.994 * 0.751 2.830 ** 0.353 2.594 ** 0.377 3.181 ** 

Social interaction with others -0.238 -2.084 * -0.256 -1.952  0.066 0.211  -0.243 -2.013 * -0.231 -1.538  

Station design/security -0.019 -0.723  -0.091 -1.004  -0.119 -2.495 * -0.023 -0.862  -0.043 -0.918  

Time of day -0.105 -3.030 ** -0.228 -1.544  -0.387 -5.727 *** -0.106 -3.059 ** -0.119 -2.490 * 

Train frequency -0.081 -1.482  -0.070 -1.125  -0.417 -2.308 * -0.094 -1.652  -0.111 -1.616  

Walk -2.797 -4.775 *** 3.123 1.390  -7.379 -6.278 *** -3.416 -5.499 *** -3.792 -3.936 ** 

Walk way quality 0.107 2.536 * 0.028 0.515  0.556 5.821 *** 0.138 2.754 ** 0.154 2.765 ** 

Weather 0.384 2.546 * 0.208 1.109  4.344 4.929 *** 0.418 2.649 ** 0.461 2.011 * 

    Class assignment  

Constant    -0.103 -0.178     

Daily activity    0.002 0.031     

Number of people in dwelling    0.459 2.085 *     
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Ns Waiting time for bus          0.002 0.014  0.003 0.001  

Ts Walk distance          0.376 4.599 *** 0.440 3.823 ** 

          Heterogeneity in mean, Parameter: Variable 

Waiting time for bus: daily activity     0.003 0.243  0.004 0.240  

Waiting time for bus: number of person in dwelling      -0.056 -1.514  -0.061 -1.368  

Walk distance: daily activity       -0.001 -0.114  -0.013 -1.149  

Walk distance: number of person in dwelling       -0.061 -3.013 ** -0.058 -2.302 * 

                

SigmaE01 on Walk and Bike             2.282 4.216 ** 

                

Log likelihood function -675.5   -592.2      -661.6   -625.4  

Info. Criterion: AIC  2.470   2.260      2.4419   2.317  

Finite Sample: AIC  2.473   2.274      2.4469   2.322  

Info. Criterion: BIC  2.631   2.606      2.6494   2.532  

Info. Criterion: HQIC  2.533   2.395      2.5229   2.401  

Restricted log likelihood    -781.9      -781.9   -781.8  

McFadden Pseudo R-squared     0.243      0.154   0.200  

Chi squared -675.5 [18]  379.3 [45]     240.54 [27]  312.9 [21] 

Prob [ChiSqd > value]  0.000   0.000      0.000   0.000  

At start values   -675.4896     0.123      0.021   0.074  

Notes: 
• * significant p value =0 

 
• ** significant p value<0.01 

 
• *** significant p value <0.05 

 
• Parentheses indicates degree of freedom  for Chi squared estimate 
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5.2 RLC modelling 
 
The residential location model in this study was based on the answers to 12 hypothetic 
house location scenarios. MNL, LCM, RMP and MMNL models were derived from data 
obtained.   

Latent Class model 

The results (see Table 5) showed that the LCM has a better Critical AIC value of 1.894 than 
the 2.096 scored by the MNL model making it more statistically significant. We also 
determined that three-classes of LCM model provided a better estimation than the outputs of 
2, 4 or 5 classes for this data. House affordability is an important attributor to house choice 
to all three classes in the model. The first class which consisted of 31 per cent of the whole 
sample, was made up of respondents who consider the convenience of their house location 
for their daily activities when choosing their desired house as well as the house type. This 
class can be named the activity class. The second class which represented 27 per cent of 
the whole sample, consisted of respondents who consider whether their house location is 
close to train or bus stops, and whether they or their family have easy access to shops, 
schools and parks. This can be named the transit class. The final class consisting of the 
remaining 43 per cent, strongly consider house type and whether their potential work place 
or a preferred school is close to their house when choosing their home. We named this class 
the working class. Using the same procedure as conducted previously for SAMC model, 
daily activity and the number of people in a dwelling parameter have been estimated for the 
RLC model. The parameters are -0.344 (constant), -0.083 (DAAC) and 0.107 (NPID). Using 
this data we can calculate that the full time students surveyed with 2 people living in their 
home are represented by 28 per cent in the activity class, 37 per cent in the transit class and 
49 per cent in the working class. 

Random Parameters model 

The RPM provided a better model fit (see Table 5) with a log likelihood of -577.1 compared 
with -561.1 for the MNL model. The same process as was done for the RPM of SAMC model 
was followed to determine the most statistically significant parameters for the RLC model.  
The results showed that a normal distribution for housing affordability and a lognormal 
distribution for distance to train station produced the best fit. With 1000 Halton draws, they 
offered more statistically significant results with a t-ratio of 4.131 and -4.129. The estimation 
of house type gives a mean of 0.242 and estimated standard deviation of 0.402, such that 73 
percent of the distribution is above zero and 27 percent below. This implies that the price of 
a house being affordable is a positive inducement for nearly three quarters of respondents, 
while just over a quarter of respondents do not consider house affordability to be as 
important. The results for the distance from house to a train station shows that less than 
one-third of respondents would consider the distance to train station as an important factor in 
making their house choice, while more than two-thirds would not consider whether their 
house will be located close to a train station. 
 
Figure 12 shows housing affordability with a normal distribution is asymmetrically distributed 
on both sides of the mean, which indicates that residents share a common judgement on the 
price of their house. Figure 13 shows the distance to train station histogram with a lognormal 
distribution. It has a very short right-hand tail, which shows that a very small proportion of 
unreasonable values contribute to the distance to train station distribution. 
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 Figure 12: Housing affordability histogram       Figure 13: Distance to train station histogram  

6 Discussions and conclusions 
 
From the Stated and Revealed Preference data collected in the pilot study, different models 
were derived to gain an understanding of station access mode choice and residential 
location choice. Although the data only comes from a small sample of university staff and 
PhD students, the modelling results demonstrate the possibility of obtaining meaningful 
explanations from designed hypothetic choices. The distance from a residential house to 
train station was a significant contributor to both station access mode choice and residential 
location choice. The majority of participants preferred car access to the station which is 
consistent with the local car dominant habit. The 27 per cent of participants in the multi-
mode class who shift their choice of modes might be the group of residents that government 
development policy should focus on first to meet their requirements for walking, cycling or 
public transport. The transit class which includes 27 per cent of the participants would like to 
live close to public transport regardless of the house type provided. This suggests that there 
may be a possibility to create a TOD using semi-detached houses or apartments/units 
around a train station with easy access to shops, schools and parks that could satisfy the 
needs of this class. In the case study area, the University of South Australia’s Mawson 
Lakes Campus is in the core of Mawson Lake region. Further study on the travel behaviour 
of university staff and students will be one of most interesting outputs for local region 
development. We expect more valuable results deriving from real survey data. These results 
proved that the designed hypothetical scenarios are able to capture useful information, the 
Bayesian prior parameters are properly estimated and the models derived from the 
scenarios could indicate variable significance and weight.    
 
From this experiment design, it can be concluded that establishing a research objective and 
understanding the study site in a realistic situation is the most important step to start for the 
design. With regard to transport and land use development, once a clear research question 
is defined, local data such as census data, train station observations and focus groups 
provide valuable fundamental information to help to define a minimised number of 
presentable choice alternatives, attributes and levels. A less biased assessment of attribute 
levels and the shares of each level are the core steps to estimating prior parameters. 
Experiment design efficiency relies on attributes and levels and prior parameters from where 
to achieve optimised efficient criteria, D-error, S-estimates and A-error. Efficiency criteria can 
also be sensitive to the selection of computing algorithms, in which Gaussian draws 
outperform other draws in efficiency. The A-error can also be reduced by changing the level 
coding and error components standard deviation.  
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Table 5: The results of residential location choice model of MNL, LCM , and RPM models 
 
 MNL   LCM-Class1  LCM-Class2  LCM-Class3  MMNL-RPM   

Variable Coef t-ratio Sig. Coef t-ratio Sig. Coef t-ratio Sig. Coef t-ratio Sig. Coef t-ratio Sig.  

             Random parameters  

House affordability 0.207 10.609 *** 0.605 3.710 ** 2.214 3.560 ** 0.075 3.446 ** 0.242 4.131 ***  

Distance to train station 0.079 3.956 ** -0.019 -0.214  0.966 3.787 ** 0.004 0.172  -3.448 -4.129 ***  

             Nonrandom parameters 

Choice A 0.185 1.366  -2.051 -1.964 * -3.518 -2.294 * 0.656 4.352 *** 0.262 1.718   

Choice B 0.255 1.853  -0.363 -0.398  -2.165 -1.696  0.460 2.913 ** 0.315 1.830   

Daily activity 0.033 0.644  -0.700 -3.045 ** -0.246 -0.891  0.031 0.327  -0.027 -0.211   

Distance to bus station 0.004 0.199  0.267 1.768  0.320 2.012 * 0.011 0.579  0.016 0.695   

House type -0.357 -7.478 *** -2.803 -4.859 *** 0.604 1.835  -0.229 -5.672 *** -0.359 -7.527 ***  

Income 0.000 -0.002  0.094 0.547  0.188 0.560  0.019 0.216  0.015 0.179   

Choice None 1.532 1.754  -8.373 -1.775  53.149 3.195 ** -1.784 -1.612  1.691 1.481   

Number of people in 
dwelling 

-0.088 -0.679  -0.602 -1.703  -2.247 -2.279 * 0.237 1.001  -0.152 -0.561   

Park distance 0.044 2.298 * -0.328 -1.895  1.219 3.474 ** -0.056 -2.424 * 0.059 2.929 **  

School 0.047 2.256 * 0.027 0.237  1.518 3.173 ** -0.089 -3.757 ** 0.059 2.687 **  

Shops 0.052 2.723 ** -0.013 -0.126  1.637 3.073 ** -0.015 -0.770  0.064 2.912 **  

Work place 0.085 2.019 * -0.208 -0.658  0.319 1.871  0.106 2.663 ** 0.127 2.668 **  

    Class assignment     

Constant    -0.344 -0.503        

Daily activity    -0.083 -1.074        

Number of people in 
dwelling 

   
0.107 0.507 

       

             Standard deviations of 
parameter distributions 

Ns House affordability             0.107 4.137 ***  

Ls Distance to train 
station 

            1.140 2.673 **  

             Heterogeneity in mean 
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House affordability: Daily activity            0.005 0.706   

House affordability: Number of person in dwelling         -0.006 -0.330   

Distance to train station: Daily activity           0.039 0.525   

Distance to train station: Number of person in dwelling         0.148 0.768   

                 

Log likelihood function -577.1   -486.2         -561.1   

Info. Criterion: AIC  2.096   1.894         2.061   

Finite Sample: AIC  2.097   1.911         2.063   

Info. Criterion: BIC  2.204   2.263         2.214   

Info. Criterion: HQIC  2.138   2.038         2.121   

Restricted log likelihood    -781.9         -781.9   

McFadden Pseudo R-squared   0.378         0.282   

Chi squared 285.5 [11]  591.3 [48]        441.5 [44]  

Prob [ChiSqd > value]  0.000   0.000         0.000   

At start values  -577.0860   0.157         0.028 *  

 
Notes: 

• * significant p value =0 
 

• ** significant p value<0.01 
 

• *** significant p value <0.05 
 

• Parentheses indicates degree of freedom  for Chi squared estimate
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An additional output of the pilot study was that more than 30 respondents out of the 50 
answered survey forms provided additional comments. The majority of these comments 
were made to improve the survey questions clearer and easier to understand. There were 
two comments that suggested the choice scenarios were too long and made them feel 
fatigued. However many other respondents commented that ‘when I finished the first 
scenario, the later ones were pretty easy to answer’. This agrees with the conclusion of a 
fatigue effects study by Hess, Hensher and Daly (2012), that there is no conclusive evidence 
relating to respondent fatigue, but more that respondents undergo a learning process.  
 
This design results in collecting valuable answers and building an explainable model output, 
but there are some limitations. A minimum attribute level overlap design still results in an 
approximate level balance. It might be possible for future experimental designs to compare 
the efficiency of designs between an unbalanced attribute level design with a lower number 
of choice sets and a balanced attribute level design with a higher number of choice sets. In 
relation to transport and land development studies, a panel model might be useful to observe 
the generation of a sample of respondents over several time periods (Train 2003; Baltagi 
2009), to investigate the development of a TOD over time. 
 
Further study will invite residents in the Adelaide northern rail corridor to answer the survey 
form both in paper form and online. A similar process will be followed to what was used in 
the pilot study, but with a wider range of variables and deeper analysis and statistical testing. 
The behavioural patterns observed could be extended from the sample to the whole 
population to provide policy suggestions for local transport and land planning. Some of the 
results such as the variable’s histograms could be valuable for a same location study in 
further transport research.  
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