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Abstract 

In forecasting travel demand it is quite common to base future-year forecasts on an 
accurately known pattern of base-year observed flows. The “accurate” base-year flows 
generally do not come directly from strategic travel models. By focussing the modelling effort 
on predicting changes it is possible to make significant reductions in the expected forecast 
error. Following Manheim (1979), the process of taking a fixed base point and making 
forecasts relative to that is called pivoting. 

In much travel demand modelling practice, the key issue is to derive forecast matrices of 
trips, between origin zones and destination zones, which can then be assigned to highway or 
public transport networks. In this context, the role of pivoting is to exploit observed matrices 
to improve the accuracy of forecast matrices. 

The methods used for pivoting are diverse, sometimes giving substantially different results 
for the same inputs and little has been published to help analysts choose an appropriate 
method for their particular study. An important insight of recent work is that pivot methods 
need to be adapted to the context in which they are used. In particular, the nature of the 
information available about the base and its relationship to the structure of the forecasting 
model can lead to choices of different pivoting methods.  

This paper reviews the limited literature that exists on pivoting, and assesses the strengths 
and weaknesses of different approaches. We will set out the basic ‘8 case’ method and apply 
it to several different forecasting situations. We will also set out criteria by which different 
pivoting methods can be judged and recommend improvements which may be useful in 
different contexts. 

 

1. Introduction 

In forecasting travel demand it is quite common to base future-year forecasts on an 
accurately known pattern of base-year observed flows; this approach is even required 
practice in the UK. By focussing the modelling effort on predicting changes it is possible to 
make significant reductions in the expected forecast error. Following Manheim (1979), the 
process of taking a fixed base point and making forecasts relative to that is called pivoting. 

In much travel demand modelling practice, the key issue is to derive forecast matrices of 
trips, between origin zones and destination zones, which can then be assigned to highway or 
public transport networks. In this context, the role of pivoting is to exploit observed matrices 
to improve the accuracy of forecast matrices. 

The methods used for pivoting are diverse, sometimes giving substantially different results 
for the same inputs and little has been published to help analysts choose an appropriate 
method for their particular study. The Daly et al. paper (2005), largely by the present authors, 
gave a review of some of the literature and set out the methods we recommended at that 
time. However, further literature has come to our attention and our own methods have 
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improved through recent experience. In the following section of the paper we review the 
literature of which we are aware, though it has to be said that not all of the relevant material 
is in the public domain. 

An important insight of recent work is that pivot methods need to be adapted to the context in 
which they are used. In particular, the nature of the information available about the base and 
its relationship to the structure of the forecasting model can lead to choices of different 
pivoting methods. In Section 3 of the paper, therefore, we set out the basic ‘8 case’ method 
that we employ and the flexibility that is available within the general specification of that 
method to deal with different forecasting situations. 

Section 4 sets out a set of criteria by which different pivoting methods can be judged. These 
criteria build on our experience with the 8-case method, but are intended to be relevant to 
other pivoting techniques that may be employed.  

Finally, Section 5 presents a summary and provides some recommendations for studies that 
use the 8-case pivoting method. Again while the recommendations are based on experience 
to the 8-case method, they may be relevant for other pivoting approaches. 

2 Literature review 

The general pivoting principle set out by Manheim (1979) is clear, but practical applications 
of the concept were slow in starting.  

Bates et al. (1987) set out a nested incremental logit model, referencing earlier work by 
Kumar (1980), and show mathematically how this model can be applied to forecast changes 
in mode choice. The model is developed as a ‘marginal’ model that predicts changes relative 
to the base situation as a function of increments in utility (or generalised cost). The paper 
also demonstrates how the nested incremental approach can be extended to deal with a new 
mode. A procedure is described for inferring the mode constant of new modes by rating the 
mode on a series of attributes which can be compared against existing models and their 
attributes. 

Abraham et al. (1992) described the development of an incremental four-stage model for 
London to evaluate major rail schemes. The model was developed from the existing LTS 
model, a conventional four stage model applied in an absolute fashion. It was important that 
the model produced results consistent with the LTS model, while at the same time producing 
results more rapidly than LTS, which had large run times. The incremental formulation allows 
the development task to be broken into individual stages, although in this case there is no 
incremental trip generation model, rather forecasts are taken directly from LTS.  

Williams and Beardwood (1993) set out a ‘residual disutility’ approach to incremental 
transport models. They start by setting out why we would want to pivot, namely that there will 
be local aspects that influence travel choices for specific zones pairs that will not be fully 
represented in the variables in the mode split mode, and these will lead to differences 
between modelled and observed mode split. Rather than ignore these differences 
completely, it would be better to carry their influence through as a constant element through 
the modelling process. 

In the residual disutility approach, constraint to match the base matrix in base conditions is 
achieved by adding a value, the residual disutility adjustment, to the base travel disutility. 
Once calculated for the base year application, matrices of residual disutility can be carried 
forward to apply in future years. Williams and Beardwood suggest that the advantages of this 
approach relative to the incremental approach are that it may be easier to introduce to 
existing transport modelling packages, it is more efficient with data storage, as only one 
matrix of residual disutilities is required rather than base trips and base disutilities, and that 
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the residual disutilities can be analysed for relationships with other potential explanatory 
variables as a means for further model development. The paper demonstrates how the 
residual disutility approach can be applied to mode choice, to both singly and doubly 
constrained trip distribution models, as well as to a more complex application for the APRIL 
strategic transport model for London where an iterative residual disutility approach was 
required. 

Ortúzar and Willumsen (2011) discuss incremental modelling in a chapter on simplified 
demand models in their widely used Modelling Transport text, giving the following formula, 
which can also be found in Manheim (1979): 
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      where: p′k is the proportion of trips using alternative k; 

  p0
k is the original proportion of trips by alternative k; and 

  (Vk – V0
k) is the change in utility of using mode k. 

Ortúzar and Willumsen claim that such incremental forms are not difficult to develop or 
implement, and have the advantage of preserving the base matrices in application. For 
simple logit models, this approach is equivalent to the approach set out in Bates et al., and 
adopted by Abraham et al., above. 

Ortúzar and Willumsen also discuss absolute models applied incrementally, an approach 
they (incorrectly) state to be less rigorous than incremental modelling. For absolute models 
applied incrementally they present both factor and additive forms (the meaning of these two 
terms is discussed further below) and note that the factor form is equivalent to a matrix of K-
factors. They note some of the issues with the approach, such as base-year zeros, and the 
potential for additive forms to forecast negative trips. 

Daly et al. (2005) presented a brief summary of current UK pivoting practice at that time. The 
approaches used for pivoting in a number of the UK multi-modal studies undertaken around 
the turn of the century were summarised, as was the UK Department for Transport’s Variable 
Demand Modelling Advice (VaDMA).  

UK transport planning advice is now best described by the UK Department for Transport’s 
web-based guidance, WebTAG. WebTAG discusses pivoting in Section 1.5 of Unit 3.10.3, 
Variable Demand Modelling – Key Processes, which distinguishes three methods of applying 
models: 

1. absolute models, which directly estimate numbers of trips in each category; 

2. absolute models applied incrementally, which use absolute model estimates to 
apply changes to a base matrix; and 

3. pivot-point models, which use cost changes to estimate the changes in the 
numbers of trips from a base matrix, often described as incremental or marginal, 
such as the model described in Bates et al. (1987) and Ortúzar and Willumsen 
(2011) above. 

Both Methods 2 and 3 are forms of pivoting in that they use the demand models to predict 
changes to the base matrices, which are taken as the best estimate of base year travel 
patterns. 

WebTAG Unit 3.10.2 strongly recommends that demand models are developed on a 
Production-Attraction (PA) rather than Origin-Destination (OD) basis. To apply an 
incremental pivot-point model (Method 3), the base matrix also needs to be defined on a PA 
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basis, which can be seen as a restriction of this approach as base matrices may only be 
available at an OD level. However, when applying an absolute model incrementally 
(Method 2), the demand model can be developed on a PA basis, and the changes can be 
applied to base matrices defined on either PA or OD bases by introducing a transposition 
step to convert from PA to OD format immediately prior to pivoting. An important further 
advantage of Method 2 is that the model may be more detailed, for example in terms of the 
travel purpose and person type segmentations, than the base matrix. Aggregation over the 
model categories can be made prior to pivoting and it is shown in the Appendix that this 
yields ‘natural’ forecasts. A final advantage of Method 2 is that ‘synthetic’ model forecasts are 
produced, which can be examined to see whether they are reasonable in key respects, e.g. 
mean trip lengths. 

WebTAG Unit 3.10.3 notes that that pivot-point models may face difficulties where too many, 
or key, cells of the base matrix are zero, but does not give any guidance as to how to 
address these issues. The Unit also notes that the differences can be applied by using the 
demand models to define either growth factors to apply to the base matrices (factor pivoting) 
or differences in trips to apply to the base matrices (additive pivoting). In fact, pivoting 
techniques may use a combination of these two approaches to make best-estimate forecasts 
of growth. It may seem that an additive approach avoids problems with zero cells, but there 
is a compensating new problem that negative cell values may be predicted which require 
correction; simply setting these to zero may introduce other inconsistencies. 

A zero value can arise in the observed matrix either because such trips are impossible (a 
‘structural’ zero), perhaps because no connection exists by the relevant mode, or because 
trips were possible but not observed, perhaps because of the observation method employed, 
e.g. sampling. A straightforward application of an incremental method would never give any 
trips for a base-zero cell, even if there are substantial developments, e.g. on a ‘green field’ 
site. Zero values can arise in modelled matrices, either in the base or in the future or both, for 
example when the relevant network does not offer a path, and these can occur in the 
presence of an observed zero or of observed trips. Again a straightforward application of an 
incremental method can be problematic. 

Section 3 details how a combination of factor and additive pivoting is used in the 8-case 
method used by RAND Europe for applying absolute models incrementally.  This approach is 
specifically designed to deal with the issue of zero cell values. 

 

3. The 8-case approach 

The context in which we developed this method, described in our 2005 paper, was one of 
making incremental applications of an absolute model. The method set out from the start to 
deal with matrices that might contain zeros. 

 
3.1 The Basic Method 

The 8-case approach is based on RAND Europe’s experience with a number of pivot-point 
models used in their transport demand forecasting systems. Some of these models have 
special procedures to adjust the calculation when the growth in a specific cell is considered 
to be ‘extreme’ (some of the models identify ‘extreme’ cells automatically, while some others 
rely on manual selection). Extreme growth situations can often be identified with the 
development of greenfield sites. Our preferred approach involves automatic selection of the 
‘extreme’ cases and is therefore reflected in the method set out in this section. 

The 8-case method implements factor pivoting as the default, termed ‘normal growth’, but 
uses additive pivoting for ‘extreme growth’ cases and cases where the model gives zero trips 
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in the base case. The method is carried out at matrix cell level. That is, for a specific origin, 
destination, mode, time of day and purpose, adjustments are made relative to the 
corresponding cell in a base matrix.  

For normal growth cases, the approach is to apply the ratio of model outputs for base and 
forecast situations as a growth factor to the base matrix, i.e. in a given cell the predicted 
number of trips P is given by 

b

f

S

S
BP ⋅=         (3.1) 

          where: Sf  gives the modelled, i.e. ‘synthetic’ trips for a future year; 
Sb gives the synthetic trips for the base year; 
B is the observed (base) matrix. 

However, two considerations mean that it is not always possible to apply this calculation as 
simply as stated. 

First, any combination of the three components on the right hand side of this equation may 
be zero (or very small) making the calculation impossible or meaningless. Eight possible 
cases arise (combinations of zero values) and these are dealt with separately. 

Second, particularly when there is a land-use change affecting a currently undeveloped 
zone, the change may be quite extreme and strict application of the formula above can lead 
to an ‘explosion’ in the number of trips. In these cases it is better to pivot by applying the 
difference method, i.e. adding (Sf – Sb) to the base matrix, rather than using a factor as 
shown above. 

The eight possible cases and the recommended treatments taken from Daly et al. (2005) are 
set out in Table 1. 

Table 1: The 8 Cases 

Base 
Synthetic 

Base 
Synthetic 

Future 

Predicted 

(P) 

Cell Type 

(B) (Sb) (Sf) 

0 0 0 0 1 

0 0 >0 Sf 2 

0 >0 0 0 3 

0 >0 >0 

Normal 
growth 

0 

4 
Extreme 
growth 

Sf – X1 

>0 0 0 B 5 

>0 0 >0 B + Sf 6 

>0 >0 0 0 7 

>0 >0 >0 

Normal 
growth 

B. Sf / Sb 
8 

Extreme 
growth 

B.X2 / Sb + (Sf – X2) 

 

In cases (4) and (8) the standard (factor) function is used initially, for values of Sf up to the 
limit when Sf is X1 (case 4) or X2 (case 8), and from that point an absolute growth is applied. 
In case (4) the starting point for absolute growth is 0, in case (8) it is B . X2 / Sb. 
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To complete the specification of the calculation it is necessary to specify the X variables and 
to define when a cell is considered to be zero (our experience has led us to use a test value 
of 10–3). 

The definitions for X1 and X2 defined by parameters k1 and k2 were given by Daly et al. 
(2005) as: 

X1 = k2.Sb        (3.2) 
X2 = k1.Sb + k2.Sb.max(Sb /B, k1/k2)     (3.3) 

Common values for the parameters k1 and k2 are k1=0.5, k2=5. Note that the specification 

given here corrects that paper in clarifying the intention that X2 → ∞ as B → 0 but X1 does not 
depend on B. 

As is described below, the specification we currently recommend is as above but simplifying 
(3.3) to give X2 = X1 as in (3.2). 

A variant of the 8-case method is used in The Netherlands by NEA (NEA, 2004a, 2004b) in 
applications for freight matrices. In this work, the switching points between normal and 
extreme growth formulae are determined by the distribution of growth factors over cells for 
each specific policy; cells with growth factors in the ‘tails’ of the distribution (both high and 
low) are assigned to additive pivots. Moreover, base matrices are ‘seeded’ with small values 
to avoid the problems of zeros. The use of the policy-specific distribution seems unwelcome 
and we have not adopted it for our own work, nor have we adopted the seeding approach 
which runs the risk of arbitrariness, as the results depend on the seed value used; also the 
use of additive pivoting for small growth is unnecessary and reduces accuracy. However, the 
different context of freight applications may affect the appropriate choice of method.  It is also 
claimed that this approach avoids the arbitrariness of fixing X1 and X2, and identifies 
‘extreme’ cells more reasonably, though defining the tails is also arbitrary. 

Another pivoting technique that has been applied in the UK by URS Scott Wilson is a GEH 
approach. GEH is widely used in transport planning to measure differences between traffic 
flows. However, it can also be used for pivoting. In the GEH method, a GEH measure is 
calculated in the base for each OD pair: 
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Note that the matrices should be scaled in this and the following formulae to match the 
number of actual observations on which B is based.  The GEH formula is useful in itself in 
indicating a degree of match between the matrices. 

Then for pivoting, the value of the predicted matrix P is obtained by varying P in order to 
achieve the same GEH measure. Thus for each OD pair: 
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It can be seen that the GEH method also applies a combination of factor and difference 
pivoting, because 
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The first term in the GEH calculation can be seen as deriving from a difference pivot, while 
the second is a relative pivot, so that the GEH represents a geometric mean of the two. 

In a study recently undertaken on behalf of the UK Department for Transport to develop a 
model of demand for long-distance travel (Rohr et al., 2010), both the 8-case and GEH 
measures were tested. The predictions from the two approaches were compared for two 
simple test examples. The conclusion from these tests was that the 8-case method 
performed better, in particular lower and more plausible growth was predicted in a test case 
where the observed base matrix was significantly smaller in magnitude than the base 
prediction of the demand model. Based on the judgment of the study team the 8-case 
method was adopted as the pivoting approach for that study. This finding, however, may 
depend on specific features of the long-distance study. 

An analysis of potential error suggests that difference pivoting should be used when errors in 
the model are independent of the number of trips, while factor pivoting should be used when 
the errors are proportional to the number of trips. In these cases the positive correlation of Sb 
and Sf brought about by errors in the model itself work to reduce the error in the pivoted 
result. In general, errors in the logit-type models used for forecasting travel demand will be 
proportional to the numbers of trips, giving a general preference for factor pivoting. The 8-
case method therefore uses factor pivoting wherever possible, switching to difference pivots 
only when that is necessary. 

 
3.2 Experience with the 8-Case Method 
 
Since the 8-case method was set out in Daly et al. (2005), RAND Europe have gained further 
experience on the workings of the method from three studies: 

• the PRISM model for the West Midlands region of the UK; 

• a model of long-distance demand for the UK Department of Transport; 

• a model for the Greater Sydney region in Australia. 

In the PRISM model, around 900 zones are used and the base matrices, derived from 
expanded sample surveys, were considerably sparser than the synthetic matrices, which 
caused a number of issues for the pivoting process, in particular for public transport modes. 
The sparsity issue and the corresponding large expansion factors meant that when both B 
and Sb are non-zero, B was larger on average than Sb because a significant volume of Sb 
occurs in cells where B is zero. This feature is problematic, because if Sb/B < k1/k2 (= 0.1 for 
PRISM) the switch point X2 for extreme growth is equivalent to testing whether Sf > Sb, so 
that all positive growth is classified as extreme. Following analysis of the matrices, a simple 
modification to the extreme growth formula was made to specify X2 as: 

 
X2 = k2.Sb        (3.7) 

  

Note from Equation (3.2) that this means X1=X2. This formulation overcame some of the 
issues with pivoting for the PRISM case, and means that the trigger point for extreme growth 
is no longer dependent on the value for the base matrix B. This makes the formulation better 
able to deal with sparse base matrices, as the switch point for extreme growth is no longer 
dependent on the ratio Sb/B. Base matrix sparsity typically varies between modes, for 
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example matrices for car are often less sparse than those for public transport modes. Using 
a formulation for X2 that is independent of sparsity ensures the approach works reliably for all 
modes. 

Further advantages of the formula (3.7) is that it is considerably simpler than (3.3) and that 
the equality with (3.2) eliminates possible anomalies for small values of B, when the case (4) 
pivot could be very different from the case (8) pivot when one or both were classed as 
extreme. 

In both the PRISM and UK long-distance models some form of normalisation has been 
applied. Equation (3.2) ensures that at a cell level, synthetic growth in trips is reflected in the 
pivoted number, but because demand is distributed across cells differently between B and Sb 
there is no guarantee that growth will match when summed across a mode, or across all 
modes.  

In the PRISM model, a row normalisation has been applied so that growth in trips from a 
given origin zone predicted by the generation models is exactly matched after pivoting. Daly 
et al. (2005) show that, for a simple logit model, this approach is equivalent (for case (8) 
cells) to incremental modelling. In the UK long-distance model, a ‘double normalisation’ was 
applied, which ensured growth in trips predicted by the frequency component of the demand 
models was exactly matched after pivoting, and that the growth in trips by mode was 
predicted closely after pivoting. The situation with nested logit models, as in the long-
distance model, is considerably more complicated. 

RAND Europe have been investigating the performance of the pivoting process for the 
Sydney Strategic Travel Model (STM, see Fox et al., 2011), which is also a nested logit 
model, in detail, as part of work to estimate and implement updated and extended demand 
models for the STM. A number of performance criteria have been specified to assess the 
performance of the pivoting process, and these are summarised here. 

 

4 Pivoting Criteria 

Building on our experience with the 8-case method, this section sets out criteria by which 
different pivoting methods can be assessed. Based on these criteria, we can then make 
concrete recommendations for improved pivoting methods. 

4.1 Comparison of synthetic and predicted growth 

It is useful to compare the proportional growth predicted by the demand model, the synthetic 
growth, to the growth predicted after pivoting, termed the predicted growth: 

Synthetic growth:  
b

bf

S

SS )( −
    (4.1) 

Predicted growth:  
B

BP )( −
    (4.2) 

Growth can be compared across all modes, for specific modes, or for particular groups of 
zones. Often users of model outputs will look at growth in trips by mode, and so this is a 
useful level of analysis. 

Synthetic and predicted growth should be compared at different levels. In particular, a given 
pivoting method might ensure that they match exactly for a given cell in a matrix, but that is 
no guarantee that they match when demand is summed over matrices, such as total demand 
for a given mode. 
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A particular issue that can arise when comparing synthetic and predicted growth is that of 
sign change, where synthetic growth and predicted growth have different signs, a result that 
is difficult to explain to users of model outputs. The simple example in Table 2 for a single 
mode with two destination zones D1 and D2 illustrates how sign change can occur.   

 
Table 2: Sign Change Example 

 
D1 D2 Total 

Sb 10 10 20 
Sf 9 12 21 

(Sf - Sb)/  Sb -10% +20% +5% 
B 15 5 20 
P 13.5 6 19.5 

(P - B) / B -10% +20% -2.5% 
 

The difference between synthetic and predicted growth can be reduced by using a 
normalisation so that synthetic and predicted growth match exactly at the aggregate level of 
interest. Normalisation can be defined at different levels, for example growth in total demand 
for a mode, growth in demand for a mode and origin combination, growth in total demand for 
a given origin, and so on. In general, normalisation should always be applied when pivoting. 

However, simple normalisations are not totally effective in nested models, in that 
normalisation at one level can adversely affect the normalisation at a higher or lower level in 
the model. In the Appendix, it is shown that a top-down normalisation can be defined that 
gives a model that ensures matches between synthetic and predicted outputs at all levels in 
the model. Moreover, this model is consistent with utility theory, as shown in the Appendix, 
so that it can be guaranteed that sign changes (as in Table 2) and other drastic divergences 
between synthetic and predicted forecasts cannot occur. The issue is that top-down 
normalisation can be difficult to implement in some model implementations. 

 
4.2 Sparsity 

As discussed for the PRISM example, matrix sparsity can cause issues for pivoting as it 
results in different distributions of demand over cells between the base matrix B and the 
synthetic base Sb. A sparsity measure can be specified as: 

 

]0[  

]0[  

>

>
=

Bcellsofnumber

Scellsofnumber
ndexSparsity I b     (4.3) 

 

An index close to one indicates a similar distribution of positive values of Sb and B over cells, 
a situation where the pivoting procedure would be expected to work well. High indices 
indicate B to be sparser than Sb. Often the base matrix is derived by expanding count data, 
and so when the number of zones is large, and/or the sampling rate is low, high sparsity 
indices are expected, because Sb is derived by considering the probability of travelling to 
each available destination and therefore widely distributed over cells, whereas B is only non-
zero for those OD pairs where a trip is observed. 

To give an idea of how sparsity can affect the correlation of synthetic and forecast results, 
Table 3 presents test results from the commute model in the Sydney STM for each of the five 
modes included in the pivoting process, presenting for each mode the sparsity index and the 
ratio between predicted and synthetic growth. These comparisons are presented for two 



ATRF 2012 Proceedings 

10 

different base matrices with different levels of sparsity: the first, Journey to Work (JTW) data 
which is effectively fully observed, being derived from the 2006 census; the second, 
expanded Household Travel Survey (HTS) data where the mean expansion factor is 
approximately 180. 

 
Table 3: Matrix Sparsity and Growth Comparison 

Mode 
Synthetic 
Growth 

JTW Base Matrices HTS Base Matrices 

Predicted / 
synthetic 
growth 

Sparsity 
Index 

Predicted / 
synthetic 
growth 

Sparsity 
Index 

Car Driver 40.5 % 0.70 19.1 0.26 949.3 
Car Pass. 12.6 % 0.52 77.4 0.22 3770.6 

Rail 86.0 % 0.48 42.5 0.34 2373.5 
Ferry 9.4 % 0.26 9.0 0.49 371.4 
Bus 74.3 % 0.31 42.2 0.20 1848.9 

 

It can be seen from Table 3 that predicted growth is systematically lower than synthetic 
growth, and that these differences generally increase as the base matrix sparsity increases. 
A particular feature of these tests is the large number of model zones, 2690, which means 
that even the fully observed JTW base matrices are much sparser than the probability-based 
synthetic matrices. 

Aggregating the zones on which matrices are defined, so that the majority of cells would be 
expected to have non-zero values for both the base matrix and the synthetic base matrix, 
would reduce sparsity. Tests with the Sydney matrices have demonstrated that this approach 
improves the performance of the pivoting process by giving a better correspondence 
between synthetic and pivoted growth. Table 4 illustrates how the correspondence between 
predicted and synthetic growth improves for the two sets of Sydney matrices illustrated in 
Table 3. The cells values are the ratios of predicted to synthetic growth. The aggregate pivot 
is performed using an 80-zone system. 

 
Table 4: Impact of Zonal Aggregation on Predicted/Synthetic Growth 

Mode 

JTW Base Matrices HTS Base Matrices 

Original 
pivot (2690 

zones) 

Aggregate 
pivot (80 
zones) 

Original 
pivot (2690 

zones) 

Aggregate 
pivot (80 
zones) 

Car Driver 0.70 0.98 0.26 0.95 
Car Pass. 0.52 0.87 0.22 0.79 

Rail 0.48 0.85 0.34 0.58 
Ferry 0.26 -0.38 0.49 -1.21 
Bus 0.31 0.60 0.20 0.37 

 

The advantage of aggregation may perhaps be better understood if we rewrite equation (3.1) 

b

f

b

f

S

B
S

S

S
BP ⋅=⋅=        (4.4) 

The fraction B/Sb  is calculated at zonal level in the disaggregated pivoting approach. In the 
aggregated approach, this fraction is calculated over aggregate zones, which obviously gives 
a more reliable estimate. Effectively, the model output Sf is used to distribute demand over 
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the detailed zones. The loss of accuracy given by aggregating B is set against the gain in 
reliability. In choosing aggregate zones, account needs to be taken of the likely model error 
and the likely sampling error in B. It is not possible to determine objectively an optimal 
aggregation level, because of the need to maintain consistency across the study area, travel 
purposes and modes, but an informed judgement on the level can be made. 

With the exception of the ferry mode, which is affected by the assignment procedure rather 
than the choice model, the correspondence between synthetic and pivoted growth is 
significantly improved by zonal aggregation. Further improvements are obtained when 
normalisation is applied, but it is desirable to obtain the best possible results before 
normalisation and that is the objective of the aggregation. 

 
4.3 Distribution of demand over cases 

A useful technique for assessing the performance of a pivoting method is to examine the 
distribution of demand over the different cases used for the possible combinations of zero 
and non-zero cells in each of B, Sb and Sf. Examination of aggregate results summed over all 
cases may hide anomalies with how the pivot process is working for particular cases. One 
issue that may arise is that a high fraction of synthetic demand occurs in cases 2, 3 and 4 
normal, where the predicted growth is zero, and so growth in synthetic demand has no 
impact on the model predictions. Another issue is that too high a fraction of growth may be 
classified as ‘extreme’ in case 8 (for example the PRISM experience cited above), and this 
can result in predicted growth falling significantly below synthetic growth for a particular 
mode. 

The following Sydney example illustrates the distribution of demand over cases for car driver 
using the HTS base matrices. The sparsity index for these matrices is 949.3, as in Table 3. 

 
Table 5: Example Distribution over 8 Cases, 2690 zones  

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 0.3 % 0.4 % 

3 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 95.8 % 84.5 % 0.0 % 

4e 0 > 0 > 0 0.0 % 1.2 % 12.4 % 10.8 % 

5 > 0 0 0 0.1 % 0.0 % 0.0 % 0.1 % 

6 > 0 0 > 0 0.1 % 0.0 % 0.0 % 0.1 % 

7 > 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 28.4 % 1.6 % 1.3 % 23.1 % 

8e > 0 > 0 > 0 71.4 % 1.5 % 1.5 % 65.7 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

 

Table 5 demonstrates that a high fraction of synthetic demand is occurring in case 4 normal, 
where the predicted demand is zero. 

Table 6 shows how the distribution of demand over the 8 cases changes when the matrices 
are aggregated from the original 2690 model zones to the 80 zones used for the aggregate 
pivot. Here the sparsity index is reduced to 4.06. 



ATRF 2012 Proceedings 

12 

 
Table 6: Example Distribution over 8 Cases, 80 zones  

Case B Sb Sf B > 0 Sb > 0 Sf > 0 P > 0 

1 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

2 0 0 > 0 0.0 % 0.0 % 0.0 % 0.0 % 

3 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

4n 0 > 0 > 0 0.0 % 15.0 % 14.9 % 0.0 % 

4e 0 > 0 > 0 0.0 % 0.1 % 0.3 % 0.1 % 

5 > 0 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

6 > 0 0 > 0 0.0 % 0.0 % 0.0 % 0.0 % 

7 > 0 > 0 0 0.0 % 0.0 % 0.0 % 0.0 % 

8n > 0 > 0 > 0 94.5 % 83.7 % 81.4 % 91.8 % 

8e > 0 > 0 > 0 5.5 % 1.3 % 3.4 % 8.1 % 

  Total 100.0 % 100.0 % 100.0 % 100.0 % 

 

Zonal aggregation has significantly reduced the percentage of synthetic demand that occurs 
in case 4 normal, and shifted that demand to case 8 normal. Moreover, the percentage of 
base demand in case 8 extreme has also been significantly reduced.  As a result the 
percentage of predicted demand P that occurs in the standard case 8 normal, where the 
best-quality pivoting is likely to occur, has increased from 23% to 92%. 

These issues relate to base matrix sparsity, as with sparse base matrices a high fraction of 
cells will be classified into the cases where base matrix demand is zero where different 
pivoting rules are used; base matrix sparsity can also impact on the rules used to transition 
between normal and extreme growth. The redefinition of the transition points between normal 
and extreme growth may also help in maximising the amount of demand that is forecast 
using more reliable factor pivoting. 

 
4.4 Consideration of zero cells and continuity 

A final issue to be considered is that of continuity. Different rules may be defined for different 
combinations of matrices with zero values, but what happens if a given matrix increases in 
value slightly so that it moves from one pivoting rule to the next?  Are the outputs from the 
pivoting process consistent at the transition points between cases, or can sudden jumps in 
trips occur which could lead to strange results when comparing different policies? 

Detailed examination of the 8 cases of Table 1 shows the following. 

1. No discontinuities arise for changes in Sf, either between the even and odd-numbered 
cases or between normal and extreme growth in cases 4 and 8. This is a key feature 
of the system, as it means that small differences between policies will not lead to 
large differences in forecasts. 

2. When B changes, there are no discontinuities, providing X1 = X2. 

3. When Sb changes, there is potential for discontinuities between some cases with Sb = 
0 and small positive values of Sb. This of course relates to the presence of Sb in the 
denominator of the pivot formula. 

It does not seem possible to eliminate the discontinuities relating to Sb. However, once the 
base synthetic forecasts are fixed, they would not normally be changed and these 
discontinuities will not affect the comparison of policy. 
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4.5 Conclusion for Sydney application 

The Sydney analysis concluded with three recommendations to improve the performance of 
the pivoting process.  

The first was that pivoting should be undertaken at a more aggregate zonal level, which will 
reduce the sparsity of the base matrices, and has been shown to lead to a better 
correspondence between synthetic and predicted growth.  

The second recommendation was that some form of normalisation should be applied, as in 
the UK models discussed above, for example to ensure that synthetic and predicted growth 
match exactly for each mode. The Appendix indicates that a top-down normalisation can be 
applied that would match exactly at all levels, but this is not necessarily straightforward to 
implement in specific software environments. 

The third recommendation was to revise the definition of the switch-point for extreme growth 
to use the simplified form given in Equation (3.7), which tests show is better able to work with 
sparse base matrices. This change also improves the continuity properties of the pivoting 
process and the consistency of the model with utility theory, improving its performance as 
indicated in the Appendix. 

These recommendations have been implemented for the Sydney STM. 
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5 Summary and recommendations 

Pivoting can improve the accuracy of forecasting in transport demand models as the model is 
used only to predict changes from a base that is known with better accuracy than is given by 
the model. 

A number of different methods can be used for pivoting. The different methods can be 
classified into two types. The first are absolute models applied incrementally to estimate 
changes to a base matrix, such as the 8-case method discussed in Section 3, or the GEH 
method. The second are models that use cost changes to estimate changes in the number of 
trips from a base matrix, and are often described as incremental or marginal models. We 
prefer the absolute method, because 

• it allows base matrices to be specified at a lower aggregation level, of purpose, 
person type or spatially, than the model; 

• it allows base matrices specified on an OD basis to be used with a model specified on 
a PA basis; 

• it allows procedures to be developed, such as the 8-case method, to deal with zero 
values; and 

• it produces ‘synthetic’ matrices which can be examined to see that they are 
reasonable, e.g. with respect to trip length. 

Levels of aggregation, e.g. by purpose can be specified flexibly to determine the best 
approach in each data context. 

Our specific experience is with the 8-case method and our recommendations here are based 
on experience with that approach. However, they may be useful to consider when testing 
other pivoting techniques used to apply absolute models incrementally. 

An important insight from our experience with the 8-case method is that any pivoting method 
needs to be adapted to the context in which it is used, and in particular the similarity or 
otherwise between the base matrices and the synthetic matrices from the demand model. 
For a given study, analysis of the operation of any pivoting technique is important to check 
that the method is giving reasonable forecasts. Section 4 provided four criteria that can be 
used to provide a framework for assessment. Our experience is that pivoting can often go 
wrong and so using any one approach directly without checking the results carefully is 
dangerous! 

Failure of pivoting is often associated with a lack of match between the base matrix and the 
synthetic base forecast. Of course, if these were the same, no pivot would be needed, but a 
large difference between the matrices is likely to be a sign of potential problems. Objective 
measures of correspondence between these matrices can and should be developed; the 
GEH measure defined in (3.4) could be the basis for a measure. 

For the 8-case approach, our recommendation for models that use detailed zone systems is 
to pivot at a more aggregate zonal level, and then disaggregate the pivoted demand back 
down to the detailed zone level. Pivoting at an aggregate level reduces the impact of base 
matrix sparsity, and gives an improved correspondence between synthetic and predicted 
growth. 

To specify the switch point for normal growth X2, set out in Equation (3.3), our 
recommendation based on experience from two recent studies is to use the simplified 
version for the switch point given in Equation (3.7). This simplified formulation has been 
found to be more robust for working with sparse base matrices, where demand is 
concentrated in a much smaller number of cells than in the synthetic model forecasts. 
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Finally, normalisation should always be applied, so that at the aggregate level of interest the 
synthetic growth predicted by the demand models is matched exactly after pivoting. 
Normalisation can be applied at different levels in nested models, such as growth in total 
demand for a mode, growth in demand for a mode and origin combination, and growth in 
total demand for a given origin. A judgement needs to be made for a particular study as to 
the appropriate level to normalise. The Appendix shows that an overall normalisation can be 
applied in nested models, consistent with utility theory if applied ‘top-down’. This may 
however be complicated to apply in particular circumstances. 

An area for research is the combination of pivoting with matrix estimation in which 
information such as traffic counts is used to improve the estimate of B. 
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Appendix 

This Appendix shows that it is possible to: 

• amend a tree-nested logit model, defined using the RUM1 convention, by the addition 
of constants to the utility functions, so that the model remains consistent with utility 
theory; 

• because the model remains consistent with utility theory, it is guaranteed to give 
intuitive results; 

• the amended model is entirely equivalent to a model that is pivoted at each level from 
the top downwards, with normalisation at each stage; 

• natural extensions can be made to cover multiple segments, applications of PA 
models to OD matrices and to cover all 8 cases. 

 
Calculations within a utility maximisation approach 

Following Daly (1987) we define a tree logit model using the RUM1 (“non-normalised”) 
specification, which is used, for example, in the STM model.  The specification depends on a 
tree function that gives the ancestor node �� for each node � in the model.   

A tree logit model (RUM1) is defined recursively by the following 

 log ��|
� = 
� − log ∑ exp 
�
��
�      (A1) 

where 
 gives the measured utility for each alternative. 

For composite alternatives, i.e. those that are the ancestor of some other node, utility is 
transmitted through the ‘logsum’ 

 
� = �� log ∑ exp 
�
���       (A2) 

where 0 < �� ≤ 1. 

The intention is to set up a pivoted model, with the same form as the original model but with 
utility functions amended.  Terms in this model are indicated in the equations by a 
superscript, i.e. �∗ and 
∗, so we get   

 log ��|
�
∗ = 
�

∗ − log ∑ exp 
�
∗
��
�      (A3) 

 
�
∗ = �� log ∑ exp 
�

∗
���       (A4) 

The amendment to the utility function is required to serve two functions 

• it must be consistent with the utility transmission (A4) and 

• it must give the pivoting that is required at each level of the tree. 

It turns out that the amendment that is needed is: 

 
�
∗ = 
� + �� + �
�       (A5) 

where �� = log  !�
"�

#; 

$� is the observed fraction of total trips choosing alternative  (note that this is the 

marginal fraction, not conditional on , in parallel to the marginal forecast probability 

); 

; 
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 is the set of ancestor nodes of : ; note that this includes 

the node itself but excludes the root  of the tree.  

The effect of the fraction in  is to divide by the  parameters for all nodes in the ancestor 

set from  to  inclusive. 

We prove the two requirements for the amendment, consistency and pivoting, in that 
order. 

Because of the way it is defined,  in (A5) involves only  and higher nodes, so when we 

calculate the conditional probability for  that term disappears and the probabilities (using 

equations A3 and A5) are determined by  only 

    (A6) 

Similarly, when we apply the recursive formula (A4) to get the utility for composite alternative 

,  is constant and can be taken outside the logsum as a constant to obtain 

  

  

     (A7) 

Moreover, we can calculate the first term in (A7) further, cancelling out the factor   

   

           

               (A8) 

The second term in (A7) can also be calculated: 

   (A9) 

Now if , we can use (A1) and (A2) to calculate 

     (A10) 

so we can substitute in (A9) to obtain 

  

           

            (A11) 
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because . 

Given the results (A8) and (A11) we are now in a position to simplify equation (A7) 

        (A12) 

Equation (A12) is a repeat of (A5) at the next higher level, indicating that the change to the 
model is carried through to the next level and hence to all levels. That is, we satisfy the 
first requirement of consistency in the amended model. 

In equation (A6) we noted that the marginal probabilities at each level in the tree are 

determined by  only.  We can then obtain the ratio of probabilities for two alternatives 

in the same nest 

      (A13) 

That is, the formulation of  ensures we obtain the observed proportions at each level in the 

model.  Provided the total number of trips is correct, this implies that we obtain the correct 
number for each alternative.  The utility correction (A5) thus satisfies both the 
requirements to obtain a pivoted model. 

Extending to multiple segments 

The above formulae apply for any single segment.  For pivoting we require to aggregate over 
segments (person types, purposes) and to apply the correction factors to the aggregate trips.  

In this case we obtain a more general version of equation (A13) for segment  

        (A14) 

where , which is the base matrix multiplied by the fraction of flow indicated by 

the model. 

The fraction  appears to be the best indication we can get of the fraction of base flow that 

is due to segment .  Moreover, adding up over the segments gets back to the total base 

matrix, as required. 

Dealing with all 8 cases 

The formulae above are possible to calculate only for cases 8n and 7 because these are the 

only places we can calculate K=log(B/Sb),  in the notation of the Appendix.  Suppose 

for cases 1-6 we set K=0.  Then we will get the right answer for cases 1-3, 7 and 8n, as can 
be seen by detailed consideration of the pivot formulae in Table 1.  For the other cases: 

• 5 and 6 are forecast consistently with utility because they just add B to Sf and this is 
like assuming there is some fixed demand – captive, perhaps; 

• 8e is forecast consistently with utility if B>Sb, because we are then just taking a 
positive demand X2*(B/Sb–1) as being fixed. The recommendation to simplify the 
formula for X2 = X1 implies that B<Sb does not occur. 
 

Case 4n, which is just set to zero, is also consistent with utility theory but the problem here is 
that the switch point between 4n and 4e depends on Sf and may therefore differ between 
forecast scenarios.  In this case there is no correct formula, because there is no utility 
function that will give the results we need, which are linear in Sf but with a negative offset.  
For this reason there can be no complete guarantee that we get utility-consistent results. 
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So a proposal would be to make a two-step pivot.  First, do the utility-based pivot, as set out 
above, with K=0 for cases 1-6.  This will give us Sf* which is utility-consistent for cases 1-3 
and 5-8.  For case 4, we then do a second-stage pivot, using Sf* in place of Sf, to get the final 
result.  For 5, 6 and 8e we just have to add the constant as above. 

Dealing with OD matrices 

Some base matrices are defined on an OD basis, rather than on a PA or tour basis.  The 
problem with these matrices is that it is difficult to apply the notion of utility maximisation, 
because we do not know whether the traveller is choosing the origin or the destination.1  

The most obvious approach, which seems to be consistent with other procedures discussed 
here, is to allocate OD matrices to PA in the proportions indicated by the model.  This may 
seem quite onerous.  But if we calculate a matrix split in this way, the ‘observed’ number of 
tours in one direction would be given by 

  

with the superscripts indicating the direction of the tours and B being the base trip matrix, 
which is assumed to be symmetric.  If we then make a case 8n pivot, for tours in both 
directions, we would obtain: 

  

which is exactly what we would obtain if we followed a conventional procedure of calculating 
the synthetic trips, then making the pivot.   

This approach is therefore recommended for the pivoting of OD matrices using a model that 
represents PA behaviour. 

Practical procedures 

Two alternative procedures seem to be available. 

1. Using the utility formula (A5) directly 

To apply these formulae directly we would calculate a matrix of K+L, setting K=0 for cases 1-
6, then apply the corrections. Some thought is needed to do this efficiently. 

2. Factoring with normalisation 

What is shown above is that it is possible to set up a model that matches the base 
observations exactly and that is consistent with utility. This can be achieved equivalently by 
factoring or by adding utility. For factoring, we have to work top-down to ensure we have 
achieved consistency. 

If we consider what happens when we change the utilities for forecasting, based on equation 
(A13) 

     (A15) 

where  is the forecast proportion choosing  and 

  is the change in utility of alternative . 

                                                

1
 There may also be a problem when dealing with detours (non-home-based) because again we 

do not necessarily know which trip end is chosen. 
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which is exactly the formulation used in incremental models, e.g. in the WebTAG advice 
(2009). 

This approach is likely to be easier to implement and understand than procedure 1. 

 

 


