
Australasian Transport Research Forum 2011 Proceedings
28 - 30 September 2011, Adelaide, Australia

Publication website: http://www.patrec.org/atrf.aspx

1

OpenTraffic - An Open Source Platform for Traffic
Simulation

Marc Miska1, Edgar Santos2, Edward Chung1, Helmut Prendinger2

1Smart Transport Research Centre, Faculty of Build Environment and Engineering, Queensland
University of Technology, 2 George St GPO Box 2434, Brisbane QLD 4001, Australia

2National Institute of Informatics, The Graduate University for Advanced Studies, 2-1-2 Hitosubashi,
Chiyoda-ku, Tokyo 101-8430, Japan

marc.miska@qut.edu.au

Abstract
Traffic models are used to support traffic engineers with the optimisation task by predicting
the effects of ITS measures before applying them to the real network. Simulation of traffic
networks require a whole suite of applications, from data gathering, cleaning and fusion, over
origin/destination (OD) estimation and prediction, to the simulation itself, including route
choice, driving behaviour and travel behaviour. Thus, simulation is based on several
methods and models developed in several disciplines like system control, mathematics,
human behaviour, and vehicle dynamics. To improve existing methods or to develop new
methods for traffic management, it is essential to be able to test algorithms in a stable
environment that allows access to necessary input (e.g. road network description, traffic
measurements, incident reports…), and provides tools for assessment and evaluation. This
paper introduces OpenTraffic, an open source platform for traffic simulation allowing for tailor
made simulation applications that allows researchers to develop new algorithms in such a
stable environment.

1. Introduction
The mobility demand of our society increased rapidly in the last decades. To ensure
accessibility the traffic infrastructure needs to be used more efficiently. One way to achieve
this is the introduction of dynamic traffic management (DTM). DTM monitors the traffic
situation and tries to optimize it by applying different control measures like variable speed
limits (VSL), route guidance, lane closure, ramp metering, intersection control or others to the
traffic network. In its ideal form it is a continuous cycle that gets evaluated by checking the
effects of the taken measures to the traffic situation, although in practice the measures are
often predefined and not tuned to the detailed actual traffic situation. Traffic models are used
to support traffic engineers with the optimisation task by predicting the effect of different
measures before applying them to the real network. Online simulations of traffic networks
require a whole suite of applications, from data gathering, cleaning and fusion, over
origin/destination (OD) estimation and prediction, to the simulation itself, including route
choice, driving behaviour and travel behaviour. Thus, online simulation is based on several
methods and models developed in several disciplines like control, mathematics, human
behaviour, and vehicle dynamics. To improve existing methods or to develop new methods
for traffic management, it is essential to be able to test algorithms in a stable environment
that allows access to necessary input (e.g. road network description, traffic measurements,
incident reports…), and provides tools for assessment and evaluation. Further, with traffic
operations becoming more and more complex, improvements are rather in details than in the
overall picture. Therefore, it would be desirable for research to be able to focus on improving

ATRF 2011 Proceedings

2

specific parts, and to be able to pair those with State of the Art tools to run performance
tests. At present however, research and practise are missing standards for network coding
and traffic measurement provision, which results in high costs and workload for any project to
start with. The differences in simulation platforms prohibit sharing of calibrated and validated
models, which makes modelling not a sustainable task. Further, it remains difficult to
enhance simulation packages with new developments for testing and evaluation. In sum,
these elements slow down research and deployment of cutting edge technology to ensure
mobility of our cities.

This paper introduces OpenTraffic, an open source platform for traffic simulation allowing for
tailor made simulation applications that allows researchers to develop new algorithms in a
stable simulation environment without the need to reinvent the wheel. In the following we
introduce the architecture of OpenTraffic and before showing a prototype application of a
OpenTraffic simulation application, highlighting its benefits.

2. OpenTraffic System Architecture
2.1 Overall Architecture

To avoid the drawbacks of current practice, our approach was to create a common
simulation platform that uses toolboxes to perform a traffic simulation. The toolboxes are
independently developed, implementing the corresponding OpenTraffic interface, and they
communicate with each other by messaging. The OpenTraffic data channel controls the
messaging and reports to the simulation application (see Figure 1).

Figure 1: Architectural Diagram of an OpenTraffic Simulation

Additional data storage can be used to store the simulation results for off-line post
processing. One should note that users could exchange toolboxes to create a tailor made
simulation application, without the need of specific knowledge of the remaining toolboxes.

OpenTraffic - An Open Source Platform for Traffic Simulation

3

This is the most powerful aspect of OpenTraffic, it allows users to focus on their area of
expertise while taking full advantage of State of the Art modules from others. In the following
we will describe the components of OpenTraffic in more detail.

2.2 Middleware

To support a modular structure for the platform we have chosen a middleware to coordinate
the workflow of a simulation. The middleware supports two types of modules: a logical and a
functional.

Figure 2: Messaging between the logical modules of OpenTraffic

The workflow for a simulation application (see Figure 2) starts with the road network
processing, which results in a network description that is understood by the simulator. This
network description is passed to the traffic simulation to perform the demand generation and
vehicle movements. Once all vehicle are moved, and their movements have been registered
with the placed sensors, the traffic control and traffic evaluation are triggered to update traffic
control states and to evaluate traffic states. Feedback loops are placed between the traffic
control and simulation, as well as between the traffic evaluation and traffic control. The first
feedback loop represents adaptive or intelligent control measures, while the latter on
represents high-level decisions made on a policy level.

2.3 Logical Modules

Logical modules, or toolboxes (e.g. traffic simulation), need to implement the
IOpenTrafficLogicalModule interface to receive messages through the middleware. The
interface consists of the following functions:

public bool Load(IOpenTrafficLogicApi api); //called when
module is loaded, argument is the Api the module can call

public bool Unload(); //called when module is being destroyed

public bool Initialize(); //called when simulation logic is
asked to be initialized

ATRF 2011 Proceedings

4

public bool HandleMessage(MessageType type, IMessageData
data); //called when there is a message for this module

public string GetModuleName(); //called when the middleware
needs to know the name of the module

The Load(…) and Unload() functions are used for memory management, so to ensure that
the application has no memory leaks and does not require more resources than necessary.
At the begin of each workflow, or simulation the Initialize() function is called, which allows the
developers to instantiate the needed objects for the tasks ahead. Main part is the
HandleMessage(…) function, that allows developers to react on messages from other
modules. Finally, the GetModuleName() function is used to identify the module. In the
following we will describe the main functions for the logical modules in more detail.

2.3.1. Network processing

The network preparation module handles the translation of a coded transport network into a
form that is understood by the used simulator. Necessary for the implementation of the
module is the definition of the network by the simulator. With this information, the module can
generate the needed information and convert it in the right format. The Smart Transport
Research Centre is promoting a model free network-coding standard for this purpose, to
maximise portability of not only networks, but also simulation modules, using them.

Existing efforts of standardisation are based on exchange formats for transport related
application, such as:

• EuroRoadS (http://www.euroroads.org/)
• RoadXML (http://www.road-xml.org/)
• OpenDrive (http://www.opendrive.org/)
• LandXML (http://www.landxml.org/)
• Abstratct Network Model (ANM)
• OpenMicroSim (http://openmicrosim.org/)

This being a step in the right direction, the problem remains, that all those formats are
designed to serve existing models, and do not take into account advances in traffic
modelling. The solution is to separate the network description from the model. This means
that the network coding shifts from defining the parameters for a model to describing the real
world and its physical objects, such as roads, traffic lights, intersections, and so on. The
definition is done in three levels:

• Geometry and Terrain modelling
• Physical Network Object description
• Process description

In the geometry and terrain definition, the network is described positions, centrelines,
polygons and markers that indicate the position of objects, such as roads, intersections,
buildings, train stations and so on. Figure 3 shows an example of an intersection model in
the terrain and geometry stage.

OpenTraffic - An Open Source Platform for Traffic Simulation

5

Figure 3: Example network representation of an intersection in the model free network
standard promoted by the Smart Transport Research Centre

Now that the positions of objects are defined, a further description is needed to utilise them.
In the context of this paper, we just illustrate the description of links, while further information
can be obtained from the STRC network-coding manual. Links, described by their centreline
already are described by their cross-section. The cross-section includes not only the
carriageways, but also the whole traffic area, as shown in Figure 4.

Figure 4: Generalised cross-section of a roadway

The benefit, of such a detailed description is that it contains enough information for various
evaluations. The cross-section can change over time to allow for hard shoulder usage, or to
integrate parking regulations into the simulation. Further, with more advances in driving
psychology, this description contains sufficient information to feed perception modules of
driver models. Next to the physical objects, abstracts, such as travel demand are described
as well.

Last, but not least is the integration of traffic control equipment to the network description. Since
OpenTraffic separates the tasks of vehicle movements, traffic control and evaluation, it is the ideal
platform to integrate external traffic control software (e.g., VriGen/Trafcod) as shown in Figure 5.

ATRF 2011 Proceedings

6

Figure 5: Example of an external traffic controller that handles vehicle actuated signal
installations

Additionally, it allows for testing new traffic control schemes or even new detection
technology. Detectors can be freely defined and hence allow the creation and testing of new
technology before prototyping. Using this three level framework for network coding,
OpenTraffic contains a filter to import such networks and to make them available to the
simulation components through a simple API, which is included in the online help of
OpenTraffic.

2.3.2. Traffic Simulation

After the initial step of the network processing, the traffic simulation module starts the
simulation process. Key of this module is the Frame object, which stores all dynamic
information of the simulation, such as vehicle positions, vehicle dynamics, and detector and
control states. While this object, as the network, can be redefined to the user’s needs, the
Smart Transport Research Centre is working towards a common definition that suits various
applications from different fields. In the current version the Frame object contains:

• Vehicle
o Position
o Velocity
o Acceleration
o Vehicle Id
o Link
o Section
o Lane
o Emission
o Lead Vehicle Id
o Following Vehicle Id
o Head Light Status
o Break Light Status

• Traffic Light

OpenTraffic - An Open Source Platform for Traffic Simulation

7

o Position
o Status
o Link/ Node
o Section
o Lane

• Display
o Position
o Message
o Link
o Section
o Lane

• Sensor
o Position
o Collection info
o Current Reading
o Link/Node
o Section
o Lane

• Emission Cloud
o Position
o Connected sensors
o Current Reading

This information will be passed between the modules and together with the network
information is the sole basis for visualisation.

During the initialisation of the traffic simulation, the Frame object is created and memory is
allocated. Then the simulation can be triggered by the application through a StartSimulation
message. Once the message has been received, the traffic simulation follows in its initial
version the simulation steps of:

• Demand generation
• Vehicle update
• Sensor update

During the demand generation, the module determines how many vehicles are to be
generated during the time step, calculates the route choice, and places the vehicles in the
frame. Then the vehicle movement takes place, on a vehicle by vehicle basis, followed by a
sensor update, during which each sensor updates its reading for the predefined measures.
The workflow of the simulation is not fixed, and can be freely edited, as long as the Frame
object is updated, which is the one common interface between the modules. After those
steps have been performed, the Frame gets send to the Traffic Control module.

2.3.3. Traffic Control

Once the Traffic Control module receives a TrafficSimulationUpdate message, it will read all
sensor information, feed it to the traffic control logic or external controllers, and determines
the state of displays in the network. Those can be traffic signs, routing panels, park guidance
system, ramp metering, and others. One should keep in mind that the traffic control is fully
independent from the simulation. Hence, the traffic control can be implemented without
knowledge of how the car movement is done. The input extracted from the Frame is the
detector information, such as in real-world applications.

Recognising that traffic control in today’s complex environment is not always so
straightforward, additional messages can be send to the traffic control module (i.e., from the

ATRF 2011 Proceedings

8

traffic evaluation). This allows more flexibility and a wider decision base for intelligent traffic
control systems.

2.3.4. Traffic Evaluation

Once the simulation module has created a new Frame, the traffic evaluation module gets
notified. This module aims to serve decision-making processes on a network level, rather
than local level as simple traffic control. One can either use this module for assessment
studies, or as an additional feedback loop to the traffic control module to implement high-
level policies. In our example, we use the evaluation to limit vehicle access to the city,
depending on the level of CO2 in the area. If CO2 levels reach a threshold, the traffic
controllers of the traffic lights in the vicinity reduce the throughput of cars into the area.

One should keep in mind that this is just an example application for demonstration purposes,
and not meant as an attempt to lower CO2 emissions inside a city, by just moving it to
another area.

Once the evaluation has been done, messages are sent to the traffic control module for
updating the logic of the traffic controllers, and the workflow starts again. Having all modules
separated, also allows running the modules in different time steps. One could chose to run
the traffic control updates on a second by second basis, while vehicle movements are
updated every 1/10s.

2.4 Functional Modules

Functional modules (e.g. simulation application) need to implement the
IOpenTrafficFunctionalModule interface to receive messages through the middleware. A
module that implements this interface will receive every generated frame object through:

public void NewFrame(Frame frame);

This frame is the result of the workflow, described in Section 2.2 and allows the application to
access all information of the ongoing simulation, to be used for visualisation. The basic
OpenTraffic Simulation Suite consists of a network editor in the Smart Transport Centre
network-coding standard, and a visualisation of the simulated network. For users to create
their own tailor made simulation application it is only necessary to create customised
versions of the simulation, control, and evaluation module. Components of these modules,
such as various car following model implementations can be downloaded from our website.

Additional modules are in development, such as a 3D environment (Miska, 2010), that
creates a virtual world based on the network description, and allows for human driving in it
(Jiang, 2010). For this, an interface is created to capture input from a driving gear connected
to the computer and to feed the information into a virtual world based on Unity. This feature
allows for virtual driving experiments (Prendinger, 2011), such as performed with driving
simulators, but with the advantage of much lower costs and the possibility of multi-user
driving (Nakasone,2011).

3. Prototype Implementation
As a demonstration for this paper, we have implemented a prototype that includes the main
features of OpenTraffic. Goal is to limit the CO2 emission of traffic in front of QUT’s Gardens
Point campus in Brisbane. If the value rises above 150 units, the traffic lights in the area will

OpenTraffic - An Open Source Platform for Traffic Simulation

9

reduce the throughput of vehicles into the area. Once the level of CO2 is lowered below 80
units, the controllers allow again more traffic into the area.

3.1 Area

The area of interest is in Brisbane’s CBD. The campus lies on Alice St., a one-way road
feeding the motorway and is connected to a grid network of downtown Brisbane.

Figure 6: Intersection at QUT’s Gardens Point Campus and surrounding street network

Figure 6 shows the area on a map and in Google Street view. Due to the high number of
one-way streets in downtown Brisbane, the simulated area has been chosen a bit bigger, to
allow a more effective control of vehicle access to the area. The network coding is described
in the following.

3.2. Network coding

The network coding is done with the OpenTraffic network-coding tool that is included in the
base application (see Figure 7).

Figure 7: Network modelling tool of OpenTraffic for network representation in the Smart
Transport Research Centre network-coding standard

ATRF 2011 Proceedings

10

On a map background, we have generated the network based on 136 nodes, 181 links and
21 traffic areas. Traffic lights have been placed at the intersections, connected to a fixed-
time controller for simplicity. Further, CO2 detector has been placed at the intersection in
front of Gardens Point Campus.

3.3. Simulation

For the simulation prototype we have coded a microscopic simulation module based on the
Intelligent Driver Model for car following and the MOBIL lane changing model. The CO2
emission is analysed in a coded evaluation module, based on a statistical model developed
at MIT and the control module is implemented as a standard fixed time traffic controller in
which we can adjust the cycle time and green split. During the simulation, the emission cloud
is visualised on top of the simulated traffic as shown in Figure 8. We have run the simulation
with and without the traffic evaluation module to check the difference.

Figure 8: Screenshot of the simulation, showing the network, traffic and emission cloud

As the simulation shows (Figure 9), the feedback loop from the evaluation module manages
to limit the CO2 units measured at Gardens Point Campus below the required 120.

OpenTraffic - An Open Source Platform for Traffic Simulation

11

Figure 9: CO2 units measured at the intersection with and without applied evaluation feedback

Again, the importance of the result is not the reduction in CO2 emissions, but that four
independent modules are performing a traffic simulation.

4. Conclusion
In this paper we have presented OpenTraffic, an Open Source traffic simulation Suite, that
allows to develop the tasks of simulation, traffic control, traffic evaluation independently. This
concept allows researchers to focus on the field of their expertise without deeper knowledge
of the other modules. Traffic control algorithms can be tested in a stable and fixed
environment that reliably reproduces the same conditions, and without the limitation from
APIs to commercial simulation packages. For practitioners, this opens the world to tailor
made simulation models that can be adjusted for a specific purpose, and allows utilising
cutting edge technology, without the waiting time until it is incorporated into a commercial
package.

Future work will focus on further standardisation of the Frame as central component of the
simulation, and to promote the usage of OpenTraffic as a framework. This would lead to a
community effort that could generate better traffic models faster and offers timely solutions
for policy makers to ensure mobility and liveability of our cities.

References
Nakasone, A., Prendinger, H., Miska, M., Lindner, M., Horiguchi, R., Ibarra, J. C.,
Gajananan, K. Mendes, R. Madruga, M. and Kuwahara, M., OpenEnergySim: A 3D Internet
based experimental framework for integrating traffic simulation and multi-user immersive
driving. Proc 4th Int'l Conference on Simulation Tools and Techniques (SIMUTools'11),
Industry Track, Barcelona, Spain, 2011.3.

Prendinger, H., Nakasone, A., Miska, M. and Kuwahara, M.. OpenEnergySim: Conducting
behavioral studies in virtual worlds for sustainable transportation. Proc IEEE Forum on
Integrated and Sustainable Transportation System (FISTS'11), Vienna, Austria, 2011.6.

Miska, M., Prendinger, H., Nakasone, A. and Kuwahara, M., Driving and traveller behavior
studies using 3D Internet. Proc 13th Intl IEEE Conf on Intelligent Transportation Systems
(ITSC'10), Madeira Island, Portugal, 2010.9.

Jiang, T., Miska, M., Kuwahara, M. Nakasone, A. and Prendinger, H., Microscopic simulation
for virtual worlds with self-driving avatars. Proc 13th Intl IEEE Conf on Intelligent
Transportation Systems (ITSC'10), Madeira Island, Portugal, 2010.9.

ATRF 2011 Proceedings

12

Wikström, L., EuroRoadS Deliverable D6.3, Road Network Information Model,
http://www.euroroads.org/, 2006

Ducloux, P., RoadXML Specification 2.2, http://www.road-xml.org/, 2009

Dupuis, M., et.al., OpenDRIVE Format Specification, Rev. 1.3, http://www.opendrive.org/,
2010

http://www.landxml.org/schema/LandXML-1.2/documentation/LandXML-1.2Doc.html

http://openmicrosim.org/

