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Abstract 

Fuel or energy savings of 10% or more can be achieved by providing train drivers with 
information on energy-efficient driving strategies. The Energymiser system uses optimal 
control theory to calculate a control strategy which minimises the mechanical work done by 
the traction system to move a train from its current location and speed to the next scheduled 
stop. The calculation takes into account the required arrival time at the next stop as well as 
train performance parameters and track gradients, curves and speed limits. The optimal 
speed and control profile is displayed to the driver in the cab. 

When a train is delayed, it is more efficient, where possible, to recover the delay gradually 
over the entire remainder of the journey than to recover quickly. However, the delayed train 
will often interact with other trains, causing further delays to propagate through the system 
and thereby impacting on the energy-efficiency of many trains. When the delays are 
sufficiently small, the interaction locations and sequence of interactions do not change. 

We demonstrate a numerical optimisation algorithm to find a set of interaction times that 
allows each affected train to finish on time wherever possible and that minimises total energy 
consumption for the whole set of trains. The new interaction times can be transmitted to 
Energymiser units on each of the trains, which will then calculate new optimal driving 
strategies to meet these times. 

1. Introduction 
Energymiser is an in-cab system that displays driving advice to help train drivers improve 
timekeeping and reduce energy consumption. The system is based on research by Howlett 
et al (1994, 2009) and similar work by Asnis et al (1985) and Khmelnitsky (2000). It uses 
optimal control theory to calculate a control strategy which minimises the mechanical work 
done by the traction system to move a train from its current location and speed to the next 
scheduled stop. The calculation takes into account the required arrival time at the stop as 
well as train performance parameters and track gradients, curves and speed limits. Driving 
advice is displayed to the driver on a graphical display. Fuel or energy savings of 10-20% 
have been demonstrated. 
 
The system requires target arrival times to be specified at key locations along a journey. For 
a suburban passenger train, these target times include timetabled arrival times at stops and 
intermediate timing points at junctions. For trains on single-line rail corridors, such as those 
which make up most of the Australian interstate rail network, the targets are often short 
sections of track, called crossing loops, that allow opposing trains to pass. 
 
When designing the schedule for an individual train, Energymiser can be used to determine 
energy-minimising arrival times at locations between the key locations on the route (Pudney 
et al, 2009). Similarly, when a train is delayed, Energymiser can recalculate efficient arrival 
times for intermediate locations. However, trains often interact. For example: 

• For opposing trains to cross on a single-line corridor, one train must arrive at the 
crossing location and pull off the main line and stop to allow the other train to pass. It 
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is important that the stopping train arrives a few minutes before the opposing train, so 
that the opposing train is not delayed. However, the stopping train should not arrive 
too early, otherwise it will have wasted energy by travelling too fast. 

• Passenger trains often connect with other trains at stations, allowing passengers to 
transfer between trains. 

• At busy junctions, trains must pass through the junction at the correct times to ensure 
a smooth flow of trains through the junction. 
 

In each of these cases, a delay to one train can cause follow-on delays to other trains. In this 
paper we extend our previous work by showing how we can calculate (or recalculate) train 
interaction times so the total energy used by all of the interacting trains is minimised. We will 
assume that the delays are small enough that the interaction locations and the sequence of 
interactions do not change. Other delay costs will not be considered but can easily be 
incorporated. 

2. Cost curves 
Figure 1 shows speed profiles obtained from Energymiser for three different optimal 
journeys, corresponding to three different journey times. The data in all examples is from a 
high-speed passenger railway in the UK. In this case, the train travels from station A to 
station E with stops at intermediate stations B, C and D. The orange curve shows the track 
speed limit. The colours of each speed profile indicate driving mode: green is power, grey is 
coast and red is brake. 
 
Figure 1: Speed profiles for three optimal journeys from A to E with different journey times. 

 
The differences between the speed profiles can be seen most clearly on sections B-C and D-
E. The higher speed profiles give shorter trip durations. The duration (in seconds) and 
energy (in gigajoules) for each of the journey segments on each of the speed profiles are 
below. 

 A-B B-C C-D D-E Total 
high-speed duration (s) 525 681 512 902 2620 
high-speed energy (GJ) 0.268 0.299 0.229 0.597 1.393 
mid-speed duration (s) 525 684 514 916 2639 
mid-speed energy (GJ) 0.267 0.291 0.226 0.561 1.345 
low-speed duration (s) 532 689 514 937 2672 
low-speed energy (GJ) 0.255 0.280 0.225 0.518 1.278 



Energy-efficient recovery of delays in a passenger rail network 

 

3 

In general, the cost of an optimal journey increases as the duration decreases because the 
work done against aerodynamic drag increases with the square of speed. 
 
The left diagram in Figure 2 shows the nominal path of a train as it moves from station A to 
station E, and then from station E to station H.  The horizontal axis is time, and the vertical 
axis is location. Suppose the departure time from station A is fixed, but we can vary the 
arrival time at station E. As we increase the scheduled arrival time at E, the A-E duration 
increases and the cost of the optimal A-E journey decreases, as shown in the lower curve on 
the right of Figure 2. 
 
Suppose the arrival time at station H is also fixed. As we increase the arrival time at station 
E, the available duration for the E-H trip decreases and the cost of the optimal E-H journey 
increases; this is shown in the middle curve on the right of Figure 2. The upper curve shows 
the sum of the A-E cost and the E-H cost for various arrival times at station E. The overall 
cost is minimised when the arrival time at station E is about 5800 seconds. 
 
Figure 2: Train graph (left) and section costs (right) for one train. 

 

3. Two-train interactions 
Now consider what happens when two trains must interact at some location, as shown in 
Figure 3. 

Figure 3: Notation for two interacting trains. 
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Times 

€ 

Ti,0  and 

€ 

Ti,1 for each train 

€ 

i  are fixed. We wish to find the time 

€ 

τ  that minimises the 
total cost 

€ 

c = c1,1 τ −T1,0( ) + c1,2 T1,1 −τ( ) + c2,1 τ −T2,0( ) + c2,2 T2,1 −τ( )  
  

where 

€ 

ci, j  is the cost function for segment 

€ 

j  of train 

€ 

i . 
 
Figure 4 shows a train graph for two trains. The planned train paths are shown in pale 
colours. The bolder colours indicate how the interaction time at station E should change 
when the green train is delayed by 500 seconds. The ‘before’ and ‘after’ cost curves are 
shown below the train graph: 

• the thin green lines are the cost curves for the ascending train on each of its two 
journey sections (before and after the interaction) 

• the thick green line is the total cost for the ascending train 
• the thin blue lines are the cost curves for the descending train on each of its two 

sections 
• the thick blue line is the total cost for the ascending train 
• the red line is the sum of the costs for the two trains. 

The delay to the first ascending train reduces the range of possible interaction times, and 
increases the overall energy cost. 
 
Figure 4: Train graph and section costs (‘before’ on left and ‘after’ on right) for a two-train 
interaction. 
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4. Many-train interactions 
Figure 5 shows an example of a larger problem, with six trains and seven interactions. The 
desired start and finish times, indicated by black dots, are fixed. The interaction times at 
intermediate stops, indicated by red dots, are to be determined. In this particular example, 
none of these intermediate times are fixed.  
 
Figure 5: Train graph for a six-train interaction. 

 
 
The problem of determining interaction times should be solved when the timetable is initially 
designed and also when any train is delayed. We can solve such problems as follows: 
 

• Let 

€ 

τ  be the vector of times to be determined. 
• Let 

€ 

ci, j (t)  be the optimal journey cost on section 

€ 

j  of train journey 

€ 

i  for section 
duration 

€ 

t . In our implementation, we represent the cost of each section curve as a 
pre-calculated piecewise linear function of section duration, from which we 
interpolate. 

• Construct the total cost function. For the example problem, it is 

  

€ 

c(τ) = c1,1 τ0 −T1,0( ) + c1,2 τ1 −τ0( ) + c1,3 T1,1 −τ1( ) +…. 

We must also include constraints to ensure that the travel duration on each segment is 
greater than the minimum required travel time. 
  
We can now find 

€ 

τ which minimises 

€ 

c(τ) by using a numerical optimisation procedure. 
Because we represent costs as piecewise linear functions of duration, we are restricted to 
methods that do not require derivatives to be specified. However, each of the cost functions 
is convex, and so the total cost is also convex. 
 
We used several local search numerical methods to find an optimal solution, including: 

• COBYLA (Constrained Optimisation BY Linear Approximation) (Powell, 1994, 1998) 
• BOBYQA (Bound Optimisation BY Quadratic Approximation) (Powell, 2009) 
• Nelder-Mead (Nelder and Mead, 1965) 
• Sbplex, based on Subplex (Rowan, 1990). 
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Minimum section duration constraints were incorporated into the optimisation using 
augmented Lagrangian methods (Conn et al, 1991; Birgin and Martínez, 2008). We used the 
NLopt library (Johnson, nd) to implement the code. COBYLA was the fastest method on all 
test cases; the time required to solve the six-train problem was less than ten seconds. 
 
In practice, trains may be delayed so that remaining fixed times on their journey are no 
longer feasible. In this case, we must also adjust the fixed times to make the problem 
feasible. 

In our examples, each interaction requires the two interacting trains to arrive at the same 
time. Incorporating interactions where one train must arrive a fixed time before the other is 
straightforward. 

5. Conclusions 
We have demonstrated methods for formulating and solving the problem of finding 
interaction times that minimise the sum of the energy costs for a set of interacting trains. 
Other delay costs could also be incorporated. These methods can be used to calculate, in 
real time, energy-efficient recovery plans when trains are delayed. 
 
In this problem, the locations of the interactions and the sequence of interactions for each 
train is fixed. Further work is required to extend these methods to situations where interaction 
locations and sequences may change. 
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