DEVELOPING TOUR-BASED DATA FROM MULTI-DAY GPS DATA Yun Zhang¹, Peter Stopher¹, Qingjian Jiang² ¹Institute of Transport and Logistics Studies, ²The University of Sydney, and, Parsons Brinckerhoff, Australia ### **ABSTRACT** The purpose of the research reported in this paper is to understand travel patterns by applying tour-based analysis and using sociodemographic variables to characterise travel patterns to explore new opportunities of developing activity-based and tour-based models. The data used in this research is from an Australian panel where 200 households provided GPS data for a period of 7 days with a small sub-sample (43 households) for 28 days, with a total of 388 persons. This paper presents the results of tour analyses of the above data, which include the distribution of tours per day and the trips per tour, the distribution of tour duration and the starting times, followed by a summary of important considerations when dealing with tour-based data. We further introduce an extended tour classification, using twelve tour types based on a hierarchy of trip purposes of work, education, shopping, and other. With the application of the new tour classification, we present findings concerning the composition of the tours (simple or complex tours) and sociodemographic characteristics, such as employment or education status and the stages in the family life cycle. ### **BACKGROUND** Over the past several years, the Institute of Transport and Logistics Studies (ITLS) has collected a considerable amount of data using Global Positioning System (GPS) devices. The devices are capable of collecting data on a second-by-second basis as people travel and are easily portable, so can be carried by people whether they are walking, riding a bicycle, riding a public transport vehicle, or riding in or driving a car. The devices used to collect most of the data are illustrated in Figures 1 and 2, with Figure 2 being the latest version of the devices, called the GPS-PPAL. Figure 1: First GPS Device (Neve) Figure 2: The GPS-PPAL There are four major data collection activities that ITLS has pursued. First, a panel of households was set up in 2005, comprising nominally 200 households. In these households, each member of the household over the age of 14 was asked to carry the first GPS device (Figure 1) with them wherever they went for 7 days. The same households were asked to repeat this in 2006 and 2007. A somewhat larger sample was used in 2006 for reasons that are explained elsewhere (Stopher et al., 2009). Second, a panel of 50 households was recruited in 2006. In these households, each person over the age of 14 was asked to carry the first GPS device with them for 28 days. These households repeated this exercise six months later. Following that, they were combined with the first panel, but asked to carry the first devices with them for 15 days rather than 28 in the third wave in 2007, with a subgroup of households using the GPS-PPAL. Third, a panel of 120 households, drawn from several states in Australia, was recruited in 2007. This panel is using the GPS-PPAL and has been asked to carry the devices for 15 days each year. This survey is continuing until 2012, with three years of data collected so far (2007, 2008, and 2009). Some of these 120 panel members include panel members from the other two panels. Finally, a sample of over 3,000 households is being asked to carry GPS-PPAL devices as part of a GPS-only household travel survey in Ohio, USA (Giaimo et al., 2010; Stopher and Wargelin, 2010). In this survey, all members of each sampled household over the age of 12 are asked to carry the GPS-PPAL (Figure 2) with them for 3 days. A subsample of respondents is then asked to complete a prompted recall survey that provides additional data on the travel and also allows verification of the results of GPS data processing (Stopher et al., 2010). In addition to collecting the GPS data, the panels and the HTS sample in Ohio have been asked to complete sociodemographic data forms for each person and household, and also to provide data on the vehicles available for use by household members. The sociodemographic data includes address data on the workplaces of each person in the household, the educational establishments attended by members of the household, and the two most frequently used grocery stores for each household. Further, data have been assembled in a GIS of the street system for each locality where respondents live, work, and travel, the public bus routes and bus stops, and, for the first two panels, the land use of each parcel in the urban areas where respondents reside. ITLS has also developed software over the past several years to process these GPS data (Stopher et al., 2008), called G-TO-MAP. G-TO-MAP initially uses several heuristics to split the second-by-second traces into what are assumed to be identifiable trips. The rules include procedures that usually separate trip legs that use different modes, such as a walk to the bus stop, followed by a ride on the bus, followed by a walk to the destination. This is done by looking at the sustained speeds of movement, as well as identifying the bus portion of the travel by its coincidence with a GIS of bus routes and a beginning and ending point that coincide with a GIS of bus stop locations. Following the initial identification of trips, the procedure requires a visual check of the results to make sure that, as far as possible, the trips look sensible and to pick up any possible stops that may have been missed in the automated process. Following the visual checking procedure and any edits to the trip file, the next step is to identify the mode used on each identified trip. G-TO-MAP then uses the 85th percentile speed, rates of acceleration and deceleration, and location of the path relative to roads, bus routes, and rail lines on a GIS to identify the mode. The software classifies each trip segment to walk, bicycle, car, bus, or rail. At the moment, there is no procedure available to identify if the car user is a driver or passenger, but work is proceeding on a way of classifying the number of household members travelling together, which will produce an estimate of occupancy for privately-owned vehicles. Finally, G-TO-MAP identifies trip purpose. This is done partly from the collection of several addresses that is part of the data collection process. The addresses collected are those of the home, the workplaces of each person in the household who works, the educational establishments attended by any members of the family, and the two most frequently used grocery stores. In addition, if a GIS of parcel land use is available, this is used. The other information that is used to classify purpose is the frequency of visits over the period of days for which GPS data are collected and the duration of those visits. While none of these software procedures are completely accurate, tests to date suggest that the accuracy level is very high. It must be kept in mind that standard self-report data do not provide complete accuracy on any of these attributes of travel, because people typically give incorrect responses on some trips and also often provide only partial or even wrong addresses for the places they visit. Information on addresses visited, purpose of trips, mode of travel, etc. are also sometimes missing from diary records. Identification of trips is done well, with about 98 percent accuracy (Stopher et al., 2010). Mode is currently somewhat less accurate but still correct about 86 percent of the time or better, while purpose is where the most work still needs to be done to introduce the land-use data and other attributes. G-TO-MAP is currently found to identify activity correctly less than 50 percent of the time (Stopher et al., 2010). #### STANDARD MODELLING APPROACHES In general, modelling of human travel behaviour has been based almost entirely on a one-day snapshot of each household's travel, gained from a self-report travel survey, such as a diary. In standard approaches, data may be used at either the household or the person level. Assumptions are made that the data, which may be collected over a period as long as a year (even three years in the case of some continuous travel surveys) can be combined and treated as though all travel days are representative of an average travel day throughout the year. Further, it is then an assumption of the modelling that the data may be pooled from all sampled households and persons to provide the estimation data for determining the parameters of some set of travel-demand, activity, or tour-based models. In most models, socio-demographic characteristics of the travellers may appear as additional variables in the model, although some models assume that the coefficients of travel-related attributes are themselves a function of the sociodemographic characteristics of the traveller and the models are segmented by these characteristics. A consequence of this type of data for model estimation is that the models must usually be of a form where each model produces a probabilistic estimate of an aspect of travel behaviour, while being based on the observations of what decisions were actually made on a particular day by a particular individual or household. In other words, the modelling paradigm is to take binary data that indicates either that a certain behaviour out of some choice set occurs, or that it does not occur, and convert those binary data into probabilistic models. In addition, these data also provide only static information to input to the travel models – there is no information pertaining to the dynamics of effects on travel behaviour. # ADVANTAGES OF THE ITLS GPS DATA Considering the background data on how models of travel behaviour have been built in the past, the first and most obvious advantage that is offered by GPS data pertains to the fact that GPS data are typically collected for a number of days from each respondent. Moreover, such multi-day data are not subject to the fatigue effects usually encountered with more conventional data collection procedures. Typically, if diaries are used for multiple days, the level of reporting completeness and accuracy tends to drop as the period of time lengthens. This is a result of the tedium of the self-reporting survey, especially when it comes to reporting travel that may seem to the respondent to be quite repetitive of previous days that have already been reported. Indeed, one might expect two things to happen with multi-day reporting through a conventional self-report survey. First, one would expect that the respondent would tend to omit reporting more of the short trips and other travel that the respondent considers not interesting, as time goes by. Even in a two-day diary, Stopher et al. (2006) found that there was a marked fall off in reporting completeness on the second day of the diary and this has been reported by others in two-day and longer surveys (Pas, 1986; Hanson and Huff, 1988; Axhausen, et al., 2002; Axhausen et al., 2007; inter alia). Second, one would expect that repetitive trips, such as travel to and from work, would be reported identically from day to day, even when there were in fact variations in the travel, because copying the same data from one day to the next would reduce the amount of effort and thinking required in a multi-day diary. In other words, missing out some trips and repeating the details of other trips without reporting accurately on real variations would both be mechanisms for reducing respondent burden on a multi-day dairy. Neither of these effects is present in a GPS multi-day survey. Each day of the survey, the respondent simply has to carry the GPS device with him or her and remember, at the end of each day, to keep it charged. There is no relationship between burden (which is very slight anyway, compared to a multi-day diary) and the amount of travel data reported in a given day. Hence, fatique effects will not be present in multi-day GPS data. The fact that multiple days of data can be collected rather readily with GPS devices opens up a new possibility. With multiple days of data, it would be possible to construct probabilities of particular travel events occurring on any given day. For example, the GPS multi-day survey may provide data that shows that a particular person went grocery shopping on two days out of seven. This could then be converted into a daily probability of shopping of 0.286, and estimation of model parameters can be done using simpler modelling structures, because there is now an observation of a probability and also measurement of appropriate and relevant characteristics of the person, the household, and the shopping travel. Moreover, if a particular person is found to travel to work by car on three days a week, to work from home on one day and to use public transport on one day, all of which are weekdays, then one could assign mode probabilities to the days of work, as well as an overall probability of making a trip to work. In the data collected by ITLS, most of the GPS data provides at least seven days of daily travel data, while some of the data provide 15 and even 28 days of data. Full household and person demographics were collected. Thus, along with the travel characteristics that can be deduced from the GPS records, and the demographic data, there are considerable potentials for developing models of travel behaviour from the GPS data. Another advantage of the data that ITLS has collected is the fact that these data are mainly from panels. A panel is defined here as repeat measurement of the same individuals and households on two or more occasions. The panels actually provide data annually, with some panel members now having provided data for up to five years. This provides the possibility to examine the dynamics of travel behaviour, and especially to see how both external events and changes within the household affect travel behaviour. This is information that has rarely been available previously, because only few panels have ever been established in transport and this is the first panel with multi-day data of the magnitude of 7 or more days per person and household. Thus, the GPS data provide very accurate information about the times, duration, and locations of travel, along with very detailed route information, and provide this for multiple days and for multiple years. To illustrate the nature of the data that are available, a few statistics are useful. These are provided in the next section of this paper. # A 7-DAY PANEL WAVE Using one wave of data from the panel of 200 households, the following statistics provide a brief idea of the available data. In the panel, there were 164 households that provided good data, comprising 309 respondents who carried GPS devices for part or all of the 7-day period. Theoretically, that would provide 2,163 days of data, but there were 2,156 days of travel data including both verifiable and non-verifiable no-travel days. From those 2,156 person days of travel data, there are 2,471 tours, averaging approximately 8.0 tours per respondent. There are also 542 person days recorded on which no travel took place. In this research, a tour is defined as all of the travel and activities that take place from when a person leaves home until that person returns to home. In some definitions of tours, there are sub-tours defined, especially based on workplaces. However, in this work, the concept of a sub-tour is not used. Thus, in the statistics reported above and throughout the rest of this paper, a tour is all of the travel and activities from home back to home again. A person will make a second tour if he or she leaves home a second time in the day and performs another sequence of travel and activities, returning back to home again. It is also important to keep in mind in reviewing the following statistics that measurement includes weekend days as well as weekdays and that the average 7-day period of measurement will include 2 weekend days. In the 7-day data under study, almost 50 percent of person days consisted of only one tour. The average number of tours performed per day was 1.15. The mean duration of a tour was 5 hours, 20 minutes, and 21 seconds. The median was 4 hours, 48 minutes, and 10 seconds). It was found that 25.6 percent of the tours comprised just two trips, while the mean number of trips per tour was 2.68 and the median was 2. There were also 544 one-trip tours, most of which would be activities like walking the dog, or jogging in the neighbourhood, and all were, as expected, home back to home trips. Figure 3 shows the distribution of the number of tours per day, while Figure 4 shows the distribution of the number of trips per tour for these data. As might be expected, Figure 3 shows that few people made more than four tours per day, with the vast majority making only one or two tours per day and the maximum being 6 tours in a day. Figure 3: Distribution of Tours per Day Figure 4: Distribution of Trips per Tour Figure 4 shows the dominance of 1, 2 and 3 trip tours, but also shows that a small fraction of tours involved as many as 8, 9, and 10 trips, with the maximum number of trips on a tour being 33. The zero trip tours are a count of the days on which a person did not leave home. The number of such days is almost the same as the number of one-trip tours. (It is important to include days with no travel, because otherwise modelling the number of tours per day, for example, would overestimate the actual number of tours.) The distribution of tour travel time durations is shown in Figure 5. This distribution shows a peak in travel time durations of about 10 to 30 minutes, but with a very long tail that extends to well beyond 6 hours in duration. Figure 5: Distribution of Tour Durations in 10 Minute Intervals Figure 6 shows the distribution of dwell times within tours, i.e., the amount of time spent in activities away from home during a tour. There is a preponderance of zero values for the 25 percent of tours that were one-trip tours and therefore had no dwell time in the tour which is not shown in Figure 6. However, the dwell times show a decreasing number with increasing values, but there are a number of dwell times above category 600 which represents 10 hours. Figure 6: Distribution of Dwell Times within Tours in 10 Minute Intervals Figure 7 shows the distribution of the overall duration of the tour. The distribution peaks initially in category 2 which is 20-29 minutes, and then falls, slowly at first and then rapidly. There is a small peak at around category 500, which corresponds to 8 hours and 10 minutes to 8 hours and 20 minutes and would encompass the working day for most people that work. There are rather few full-time workers in this data set, or the peak would be more pronounced in this area of the graph. The slight upturn at the end of the graph is due to designating the highest category as being in excess of 12 hours and 30 minutes. If the categories were continued to higher values, a continual decline in the graph would be found. Figure 7: Distribution of Total Duration of Tour in 10 Minute Intervals The distribution of start times of tours is quite interesting and somewhat different from the start time of trips as shown in Figure 8. The distribution of tour start times shows that the majority of tours start in the morning and there is a steady decline in tour starts as the day progresses, although there is a small peak around 1 p.m. and another in the early evening. Very few tours start after 7 p.m. (19 hours). Figure 8: Distribution of Tour Start Times Figure 9 shows when the tours end, and shows almost the mirror image of Figure 8, as would be expected. In this case, few tours end before 9 a.m., but the peak of tour ends is at about 5 p.m. (17 hours). There is a rapid decline after 6 p.m. (18 hours). Figure 9: Distribution of Tour End Times Many other statistics can be reviewed for the tours and trips from the data set. However, these statistics and distributions serve to indicate the nature of the data available and also show that the travel patterns, at least as revealed from the trip data, are much as one would expect. # SUGGESTED CLASSIFICATION OF TOURS BY PURPOSES AND COMPLEXITY A number of researchers have put forward potential tour definitions and many of these vary quite significantly from one another. There also tends to be some confusion of both definition and treatment of tours and trip chains. The authors of this paper prefer to use the definition of tours and chains put forward by O'Fallon and Sullivan (2005). In their research O'Fallon and Sullivan defined a tour as a sequence of trips and activities that begin from home and return to home. A trip chain, however, is a sequence of trips and activities that begins from a point where a person has spent at least 90 minutes and continues until an activity location where the person next spends at least 90 minutes. Thus, a trip chain could sometimes be the same as a tour, if the only location where the traveller spends at least 90 minutes is home, irrespective of the number of stops along the chain. In other cases, a tour may consist of multiple chains, especially if work or educational purposes are included in the stops within the tour. Using as a starting point the work of O'Fallon and Sullivan (2005, 2009), a set of twelve tour classifications are put forward, based on a hierarchy of trip purposes of work, education, shopping, and other. The mutually exclusive and exhaustive set of possibilities are shown in Table 1 for the twelve classes of tour. This classification would seem to exclude one-trip tours, which are usually walking the dog or jogging around the neighbourhood. However, these tours would generally be classified as tour type 4 – the simple other tour. The dominance of type 4 and type 12 tours in the panel data is largely because of the fact that the identification of trip purpose in the GPS data is still under development, and any trips that are not easily identified as work, education, or shopping, end up classified as "other". We would expect that, as our software for purpose identification is improved, this category will become less dominant. More information on the purpose classification can be found in Stopher et al. (2010). **Table 1: Proposed Tour Type Classifications** | Tour | Tour Description | Sequence | Count of | |--------|-----------------------------------------------------------------------------|--------------------------------------------------------------|----------| | Type | · | | Tours in | | Number | | | Panel | | 1 | Simple work tour | h – w – h | 135 | | 2 | Simple education tour | h – e – h | 49 | | 3 | Simple shopping tour | h – s – h | 167 | | 4 | Simple other tour | h – o – h | 963 | | 5 | Complex work tour (including composite and multipart work tours) | h – [w/o] – (– w/o –) – [w/o]
– h | 189 | | 6 | Complex education tour (including composite and multi-part education tours) | h – [e/o] – (– e/o –) – [e/o] –
h | 40 | | 7 | Complex shopping tour (including composite and multi-part shopping tours) | h – [s/o] – (– s/o –) – [s/o] –
h | 309 | | 8 | Complex work and education tour | h – [w/e/o] – (– w/e/o –) –
[w/e/o] – h | 62 | | 9 | Complex education and shopping tour | h – [e/s/o] – (– e/s/o –) –
[e/s/o] – h | 28 | | 10 | Complex work and shopping tour | h – [w/s/o] – (- w/s/o -) –
[w/s/o] – h | 0 | | 11 | Complex work, education, and shopping tour | h – [w/e/s/o] – [w/e/s/o] – (–
w/e/s/o –) – [w/e/s/o] – h | 0 | | 12 | Multi-part Other Tour | h – [o] – (– o –) – [o] – h | 512 | In Table 1, the letter 'h' stands for home, 'w' for work, 'e' for education, 's' for shopping, and 'o' for other. Also, in Table 1, the square bracketed trip purposes must occur in the sequence, with the bold purposes occurring at least once for each bolded purpose in the sequence. The purposes in round brackets may not occur or may occur multiple times within the sequence. For example, the sequence h - [w/o] - (-w/o -) - [w/o] - h includes h - w - w - h, h - w - o - h, h - o - w - h, h - o - w - o - h, etc. Indeed, this sequence includes all possible permutations of o and w between two hs, does not include any e or s purposes, must include at least three trips, and must begin and end at home. Tour classes 1 through 4 are simple tours, involving two trips and one non-home destination. Tour classes 5 through 7 are complex tours that include at least two stops and three trips, but may include stops for other purposes. Tour classes 8 through 10 include at least two stops and three trips, and must include at least two primary purposes (work, education, or shop) and may also include other purposes. Tour class 11 must include at least three stops and four trips, and must include at least one of each of work, education, and shopping, and may also include other purposes. Tour class 12 must include at least two stops and three trips, and must not include any of work, education or shopping purposes. The order of purposes in the sequences is not important and any order of the trip purposes specified in the sequence is permissible. This is an exhaustive and mutually exclusive classification of tours, using the hierarchical ordering of trip purposes of work, education, shopping, and other. To test the definitions, they were applied to the panel data described in the previous section with the results shown in the last column of Table 1. The lack of tour types 10 and 11 is also likely to be due to the lack of workers in the sample. However, it would be expected that these tour types would occur much more frequently in a sample that had a better representation of workers. Overall, the authors feel that this classification of tours is useful and workable. It is being used in further explorations of the data towards a new tour-based modelling approach. # ANALYSIS OF TOUR MAKING To indicate the approach that can be taken with the tour data available from the GPS measurement, this section describes some preliminary work that has been done using the method of Classification and Regression Trees (Brieman et al., 1984). Decision tree analyses were undertaken for weekday travel in the Wave 2 Add-on dataset. CART® (by Salford Systems) software was used for analyses on the target variables of: - Number of Tours per Day (NumToursPD), - Number of Trips per Tour (NumTripsPT), and - Tour Duration (TourLength). The predictor variables that were tested include: - Family Life Cycle (FLC), - Household Size (HHSize), - Vehicle Ownership (NumVeh), - Driver Licence (Licence), - Employment status (isEmployed), - Study status (isStudy), and - Gender. The Family Life Cycle (FLC) is a composite variable that takes into account the family structure, adult partner, children and children's age. Table 2**Table** shows the coding and description of the FLC variable. **Table 2: Family Life Cycle Variable Code and Descriptions** | FLC | Description | |-----|---| | 1 | Single person | | 2 | Couple only | | 3 | Couple, youngest child aged under 18 years | | 4 | Couple, youngest child aged 18 years or over | | 5 | Single parent family, youngest children aged under 18 years | | 6 | Single parent family, youngest children aged 18 years or over | | 0 | Other | The analyses were undertaken for each day of the week, and the following results are reported for each of the weekdays, separately. Work is still proceeding on weekend days and all weekdays combined. #### RESULTS OF THE DECISION TREE ANALYSES #### Analysis of Number of Tours per Day Table 3 shows the relative importance of the different variables tested as a result of the classification trees for the number of tour per day. The top three most important variables are number of vehicles in the household, family life cycle and household size. These variables are also the primary splitters (i.e. the root node) of the five trees. Table 4 shows the variables used in the top three levels of the trees. Gender appears as an important variable in the trees for Thursday and Monday. It is one of the splitters at the second level of the trees. It shows that males make more tours than females on these two days. Figures 10 and 11 show the sub-trees of the two trees for the gender split. Thursday is the late shopping day of the week in Adelaide. This may indicate that males undertake shopping activities more often than females on these days. There is market research that shows that is actually the case (Soriano, 2004). Table 3: Variable Importance of Number of Tours per Day Trees | Variable | Monday | Tuesday | Wednesday | Thursday | Friday | Average | Rank | |-------------------------------|--------|---------|-----------|----------|--------|---------|------| | Family Life Cycle | 51.2 | 62.8 | 100.0 | 81.7 | 88.4 | 76.8 | 2 | | Household Size | 100.0 | 30.9 | 77.5 | 35.0 | 70.6 | 62.8 | 3 | | Number of Vehicles | 88.7 | 100.0 | 75.8 | 95.5 | 100.0 | 92.0 | 1 | | Drivers License
Possession | 50.2 | 43.4 | 48.3 | 42.2 | 92.6 | 55.3 | 4 | | Worker | 33.1 | 24.4 | 29.2 | 34.3 | 24.8 | 29.2 | 6 | | Student | 10.2 | 7.6 | 24.4 | 12.6 | 47.2 | 20.4 | 7 | | Gender | 80.1 | 33.2 | 21.4 | 100.0 | 34.8 | 53.9 | 5 | Table 4: Splitters of the Top Three Levels of Tours per Day Trees | · | 1 | | | | | |-----------|-------------|--|--|--|--| | Weekday | Variables | | | | | | Monday | Household | Size, Gender, Worker | | | | | Tuesday | Num Vehicl | Num Vehicle, Family Life Cycle, Gender | | | | | Wednesday | Household | Household Size, Worker, Gender, Family Life Cycle, License | | | | | Thursday | Family Life | Family Life Cycle, Gender, Worker, Number of Vehicles, License | | | | | Friday | Family Life | Cycle, Household Size, Gender, Licence, Number of Vehicles | | | | Figure 10: Sub-tree of the Monday tree, Second level to the right branch of the first level Figure 11: Sub-tree of the Thursday tree, Second level to the left branch of the first level #### Trips per Tour Tables 5 and 6 show the results of the classification trees for number of trips per tour. Similar to the analysis of number of tours per day, the three most important variables for tree splitting are the same as the three for number of tours per day, although household size becomes the top ranking variable with number of vehicles taking the third ranking and family life cycle unchanged in the second ranking. However, student status, worker status, number of vehicles and drivers license possession are among the splitters used in the top three levels of the trees (Table 6). This indicates that the worker or student would tend to make complex tours. Household size is the primary splitter for two of the trees, which is in line with the common view that the larger the household, the more activities and corresponding travel, which would make travel tours more complex. Table 5: Variable Importance for Trips per Tour Trees | Variable | Monday | Tuesday | Wednesday | Thursday | Friday | Average | Rank | |-------------------------------|--------|---------|-----------|----------|--------|---------|------| | Family Life Cycle | 90.8 | 94.8 | 84.3 | 100.0 | 81.4 | 90.3 | 2 | | Household Size | 100.0 | 94.1 | 100.0 | 97.9 | 100.0 | 98.4 | 1 | | Number of Vehicles | 65.6 | 100.0 | 94.8 | 95.1 | 93.6 | 89.8 | 3 | | Drivers License
Possession | 28.7 | 66.1 | 63.9 | 94.1 | 68.4 | 64.2 | 4 | | Worker | 54.1 | 25.0 | 21.4 | 59.0 | 6.3 | 33.2 | 6 | | Student | 4.6 | 6.4 | 26.0 | 40.1 | 31.2 | 21.7 | 7 | | Gender | 33.7 | 43.4 | 15.2 | 76.7 | 43.2 | 42.4 | 5 | Table 6: Splitters of the Top Three Levels of Trips per Tour Trees | Weekday | Variables | |-----------|--| | Monday | Student, Number of Vehicles, License, Family Life Cycle | | Tuesday | Student, Household Size, Worker, License, Family Life Cycle | | Wednesday | License, Number of Vehicles, Family Life Cycle | | Thursday | Household Size, Worker, Number of Vehicles, Student, Family Life Cycle | | Friday | Household Size, Worker, License, Family Life Cycle, Number of Vehicles | #### **Tour Duration** The regression trees of tour duration (in minutes) are distinctly different from the classification trees in the previous analyses. Worker status becomes the first ranking variable in its importance and it is the primary splitters of all the regression trees. It is a strong indicator that longer tours are made mainly by employed people. Student status, family life cycle, and household size are the variables used in the highest levels of the trees after worker status. These results are shown in Table 7. **Table 7: Variable Importance for Tour Duration Trees** | Table 11 Tarrable Imperialise 19. 19a. Baratien 11999 | | | | | | | | |---|--------|---------|-----------|----------|--------|---------|------| | Variable | Monday | Tuesday | Wednesday | Thursday | Friday | Average | Rank | | Family Life Cycle | 100.0 | 100.0 | 38.8 | 100.0 | 63.0 | 80.4 | 2 | | Household Size | 73.1 | 69.1 | 74.8 | 54.3 | 50.6 | 64.4 | 3 | | Number of Vehicles | 24.0 | 55.2 | 31.9 | 52.7 | 7.9 | 34.3 | 4 | | Drivers License | | | | | | | | | Possession | 7.3 | 15.3 | 8.8 | 22.8 | 18.4 | 14.5 | 6 | | Worker | 52.3 | 52.6 | 100.0 | 98.8 | 100.0 | 80.8 | 1 | | Student | 46.4 | 24.5 | 14.8 | 14.9 | 4.5 | 21.0 | 5 | | Gender | 13.3 | 3.2 | 0.0 | 5.2 | 0.0 | 4.3 | 7 | Table 1 Splitters of the Top Three Levels of Tour Duration Trees | Weekday | Variables | |-----------|---| | Monday | Worker, Student, Gender, Family Life Cycle, Household Size | | Tuesday | Worker, Family Life Cycle, Household Size | | Wednesday | Worker, Household Size, Family Life Cycle | | Thursday | Worker, Family Life Cycle, Household Size, Number of Vehicles | | Friday | Worker, Family Life Cycle | The results show that the top three important variables are Family Life Cycle, Household Size, and Number of Vehicles except in the tour duration tree where Number of Vehicles is replaced by Employment. #### CONCLUSIONS First, the research reported in this paper has demonstrated quite clearly the wealth of data available on tours from GPS data. It has shown that it is entirely feasible to develop estimates of tour-making behaviour from GPS data collected over multiple days from a rather small group of individuals. Second, a tour classification scheme has been proposed that clearly differentiates between simple and complex tours, and that also embodies aspects of trip purposes within the tour definitions. It was found that the different tour classes were quite well represented. Using these tour classifications in the data has also proved to be a useful starting point for future modelling exercises that are expected to be the next stage of this research. Finally, the classification and regression trees analysis of the GPS tour data has shown some interesting results, with the strongest result being that the number of trips in a tour, the number of tours undertaken in a day, and even the total duration of a tour are most strongly related to a small group of variables that include household size, number of vehicles, worker or student status, and family life cycle. This indicates that these are likely to be found to be important modelling variables for models of the numbers of tours per day, the numbers of trips in a tour, and the tour duration. The fact that it was necessary to stratify the data by weekday for the CART analysis may have some important implications for modelling, since it would indicate rather strongly that there are significant differences from day to day, which is also borne out in other work of the authors (Zhang and Stopher, 2010). However, it is premature to draw too strong a conclusion from this yet. The use of GPS data as a basis for improved modelling of travel behaviour appears very promising from this research. Using the tour classification scheme proposed in this paper may also provide a useful method for modelling, compared to many of the current approaches that attempt to model a large number of different patterns of tour making. #### REFERENCES Axhausen, K.W., A. Zimmermann, S. Schonfelder, G. Rindsfuser, T. Haupt (2002). Observing the rhythms of daily life: A six-week travel diary. Transportation 29, 95-124. Axhausen, K. W., M. Löchl, R. Schlich, T. Buhl and P. Widmer (2007). Fatigue in long duration travel diaries, Transportation, Vol. 34, No. 2, pp. 143-160. Brieman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. (1984). Classification and Regression Trees, Chapman and Hall. Giaimo, G.; Anderson, R.; Wargelin, L.; Stopher, P. (2010). Will It Work? Pilot Results from the First Large-Scale GPS-Based Household Travel Survey in the United States. Paper presented to the Annual Meeting of the Transportation Research Board, January. Hanson, S. and J. Huff (1988) Systematic variability in repetitious travel. Transportation 15, 111-135. O'Fallon, C., & Sullivan, C. (2005). Trip chaining: understanding how New Zealanders link their travel. Wellington: Transfund New Zealand. O'Fallon, C.; Sullivan, C. (2009). Trends in Trip Chaining and Tours: Analysing Changes in New Zealanders' Travel Patterns Using the Ongoing NZ Household Travel Survey. Wellington, Pinnacle Research & Policy Ltd, Wellington. Pas, E.I. (1986) Multiday Samples, Parameter Estimation Precision and Data Collection Costs for Least Squares Regression Trip-Generation Models. Environment and Planning A, 18, 73-87. Soriano, V.V. (2004). 2003 Mall Shopping Patterns, ICSC Research Quarterly, vol. 11, No. http://www.icsc.org/srch/about/impactofshoppingcenters/Mall_Shop_Patterns.pdf Accessed on 1/06/2010. Stopher, P., N. Swann, and T. Bertoia (2006). Trip Rates, Non-Mobility, and Response Rate: Measures to Evaluate the Quality of a Travel Survey, paper presented to the 29th Annual Meeting of the Australasian Transport Research Forum, Brisbane, September. Stopher, P.R.; Clifford, E.; Zhang, J.; FitzGerald, C. (2008). Deducing Mode and Purpose from GPS Data. Paper presented to the 87th Annual Meeting of the Transportation Research Board, Washington, D.C., January. Stopher, P.; Wargelin, L. (2010). Conducting a Household Travel Survey with GPS: Reports on a Pilot Study. Paper presented to the WCTR Conference, Lisbon, July. Stopher, P.R.; Zhang, Y., Zhang, J.; Halling, B. (2009). Results of a TravelSmart Evaluation in South Australia. Paper presented to the 30th ATRF Meeting, Auckland, New Zealand, September. Stopher, P.R.; Prasad, C.; Zhang, J. (2010). Comparing GPS and Prompted Recall Data Records. Paper presented to the WCTR Conference, Lisbon, July. USDOT (2008). National Household Travel Survey. http://nhts.ornl.gov/index.shtml Accessed 6/01/2010. Zhang, Y. and P. Stopher (2010). Habitual and Repetitive Patterns of Travel Behaviour, paper presented to the WCTR Conference, Lisbon, July.