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Abstract 

An understanding of the potential welfare effects of changes in the function of road 
infrastructure is central to strategic decisions relating to transport policy. This research 
applies a discrete mixture approach to identify values of travel time savings and reliability 
gains for freight transport providers and their customers under a hypothetical road user 
charging system in the Sydney Metropolitan Area. The policy implications from latent class 
models are compared with those from mixed logit models, highlighting the relative merit of 
both approaches in transport policy analysis.  

This paper confirms the value of taking an alternative approach in representing preference 
heterogeneity, through the use of the latent class model. By segmenting the sample 
probabilistically with respect to contextual effects, the latent class model avoids the use of 
distributional assumptions present in mixed logit models within a more tractable estimation 
framework. A further empirical development in this research is the use of attribute 
processing strategies to condition class membership and preference estimates. 

 

1. Introduction 

An effective travel demand management instrument offers a stimulus that is designed to 
influence traveller behaviour in some meaningful way. Under a given set of preferences, 
travellers will respond to a change in the state of the world in a manner that is (hopefully) 
consistent with those preferences. Hence, with a reliable knowledge of those preferences, 
policy makers can feasibly construct tools that lead to a desired change in traveller 
behaviour. This relationship gains complexity as the structure of traveller preferences 
becomes more complex; a population with multiple subsets of decision makers, each of 
which has a distinct set of preferences, is more difficult to influence effectively than a 
population with homogenous preferences. 

Researchers have utilised tools to represent some measure of preference heterogeneity, 
ranging from basic interaction terms involving socio-demographic characteristics and other 
contextual effects, to relatively complex econometric models such as the mixed multinomial 
logit (MMNL) and latent class (LC) models. The primary distinction between these two model 
types is the nature of the specification of preference heterogeneity. In the MMNL model, the 
analyst assumes a distribution over which the ensuing individual-specific or choice-set-
specific preference estimates are found. In the LC model, the analyst searches for the most 
representative number of groups, within which decision makers are assumed to hold 
identical preferences; the probabilistic assignment of respondents to latent classes is aided 
by the search for the most effective indicators (i.e., contextual effects) of class membership. 
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This research focuses on the application of the LC model to a study of the preferences of 
interdependent freight transport stakeholders in the Sydney Metropolitan Area. Although the 
LC model has been applied in recent travel behaviour research (see Section 2), we know of 
no existing studies into the merits of the LC model in representing preference heterogeneity 
in urban goods movement. Rather, the data analysed within this study, which are unique in 
scope by capturing preferences relating to cost/level-of-service (LOS) trade-offs under 
variable road user charging, have to this point only been analysed within an MMNL 
framework. 

This paper applies the LC model to a stated preference (SP) experiment of interdependent 
road freight stakeholders in the Sydney Metropolitan Area, in an effort to gauge the potential 
to capture preference heterogeneity in urban freight without the distributional assumptions 
present in the MMNL model, and hence to evaluate the merit of the LC model as an 
alternative to the MMNL model in urban freight studies. The SP data centre on shippers’ and 
road freight carriers’ cost/LOS trade-offs under a hypothetical distance-based road user 
charging system. The discrete choice models within the analysis identify heterogeneity in 
key policy outputs, including the value of travel time savings (VTTS) for free-flow and 
slowed-down travel conditions, and the value of reliability gains. These policy outputs are 
central to an analysis of the net benefits of changes in the LOS provided under a road 
pricing system, and offer additional insight to the impacts of changes in the LOS, in general, 
whether resulting from public policy or changes in service offerings by carriers. 

This research takes an additional step within the LC framework, by utilising respondents’ 
stated APSs as inputs in the class membership function, as proposed by Hess and Rose 
(2007). Respondents in the study were asked to indicate attributes that they ignored or 
aggregated for each alternative in each choice set presented. The choice to ignore an 
attribute implies a lack of behavioural significance to the respondent within the context of the 
particular choice setting. The behavioural link between the choice to ignore an attribute and 
the underlying sensitivities of the respondent to the attribute level mixes within the choice set 
is not necessarily directly tangible, and hence is of interest as part of a latent construct 
identifying preference heterogeneity.  

That is, respondents that ignore a particular attribute may not have a total lack of sensitivity 
to the attribute, but rather the choice to ignore the attribute could be representative of some 
general set of preferences (e.g., those who ignored slowed-down time within the experiment 
are more likely to be part of a subgroup that places high importance on on-time reliability). 
Similarly, the choice to aggregate attributes that share a common metric (e.g., time 
measures) does not necessarily represent equivalent preferences for each attribute within 
the aggregation. Rather, the choice to aggregate a particular set of measures may be 
representative of a propensity to belong to a subgroup with a given set of preferences (e.g., 
those who combined fuel cost and distance-based charges into one measure are more likely 
to be time-sensitive). 

We present a discussion of the LC model in the following section, clarifying the components 
of the model and how class membership is determined. Section 3 offers a description of the 
SP study and the resulting data analysed herein. In Section 4 we present our empirical 
analysis, in which we compare willingness-to-pay measures from LC models to MMNL 
models with and without APS information, culminating in an evaluation of policy implications 
across these competing model structures. The discussion concludes with comments on the 
merit of LC models and the value of capturing APS information in transport studies. 
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2. Modelling approaches to freight travel demand 

Powerful strides have been made in representing heterogeneous preferences within 
econometric models. A predominant research tool within the area of discrete choice is the 
use of the mixed multinomial logit (MMNL) model (also referred to as the random parameter 
logit model, or simply the mixed logit model), which estimates distributions of preference 
parameters across a given sample (see Train (2003) for a detailed description of the model). 
These estimated distributions can be calibrated with respect to the unobserved components 
of estimated utility functions (i.e., error terms) alone, or by representing preference 
heterogeneity as a function of contextual effects (e.g., socio-demographic characteristics).  

The MMNL model is an important empirical tool in the search for a useful representation of 
preference heterogeneity, but it is limited by two related shortcomings. Firstly, the 
distributions of preferences that one obtains from the MMNL model are essentially analytical 
artifices that are specified by the researcher, in an effort to obtain the best (or most 
favourable, depending upon one’s objectives) model fit. There may be no a priori restriction 
as to the set of reasonable distributional assumptions the researcher could apply to the 
model, but the choice of distribution can have a marked influence on the behavioural 
implications that the model identifies. Not only may there be no reason to suspect that the 
portion of unobserved effects within a model is best reflected through, say, a normal 
distribution versus a lognormal, uniform or triangular distribution, but there may also be no 
clear reason why any given constraint on the chosen distributional form (i.e., the relationship 
between the mean and standard deviation or spread) is a better representation of the 
underlying preference heterogeneity than another restriction (or none at all). 

Secondly, there is no closed-form solution for the MMNL model, due to the intractability of 
the multi-dimensional integrals present within the modelling structure. This requires the use 
of simulation methods involving a series of random draws to obtain a solution. The issue 
here is that the choice of simulation technique and its underlying parameters can influence 
the resulting model estimates. For example, the analyst could choose to use simple random 
draws or intelligent draws (e.g., a standard or shuffled Halton sequence) to estimate the 
distribution of preference estimates. Along with the choice of type of draw, the analyst must 
specify the number of draws to take, weighing the computational burden of a relatively large 
number of draws against the relative reliability in the model outputs that would be gained 
under a larger number of draws. Even the choice of value with which to seed the draw 
generation process impacts the model outputs under a reasonable number of draws (i.e., 
seeding the algorithm with “12345” will likely yield different results to seeding the algorithm 
with “67890”). 

Ultimately, there are many influences that the researcher imposes directly within the MMNL 
estimation process that are not linked to the behaviour driving the data being modelled, yet 
these influences can have fundamental impacts on the resulting behavioural implications of 
the final model. All else equal, it would be preferable to have the ability to identify meaningful 
information about preference heterogeneity without imposing such influences in the 
estimation process. That is, it would be ideal to limit the researcher’s impact on the 
modelling process to the specification of behaviourally meaningful effects to include within 
the model when representing preference heterogeneity. 

One approach that has gained some traction is the use of the LC model, which represents 
preference heterogeneity by identifying distinct classes of decision makers. Within each 
class, decision makers’ preferences are represented uniformly. This is an important 
distinction; whilst preference heterogeneity is represented in the MMNL model through the 
simulation of a continuous mixing function relating to unobserved preferences (i.e., 
estimating a continuous distribution within the unobserved effects), the LC model represents 
preference heterogeneity through a discrete mixture (i.e., estimating a discrete set of 
subgroups with homogeneous preferences). The analyst observes the assignment of each 
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respondent to a particular class only up to a probability (hence the latent nature of the 
classes), with class membership determined by an analyst-specified model that is calibrated 
with respect to contextual effects. 

The LC model offers a powerful alternative to the MMNL model for two key reasons. Firstly, 
the identification of latent classes through contextual effects enables the analyst to represent 
preference heterogeneity in an intuitive, behaviourally meaningful way. That is, converse to 
the search for a best-fitting distribution of a component of unobserved effects (e.g., testing 
an unconstrained normal distribution versus a triangular distribution constrained to have a 
spread equal to twice the mean), the LC model centres on an explicit interaction between 
preferences and contextual effects (e.g., simultaneously estimating the degree to which 
preferences for transport level-of-service (LOS) vary across subgroups and the likelihood 
that respondents with particular characteristics belong to a given subgroup). Secondly, the 
LC model has a closed-form solution, and hence is not subject to the precision concerns 
associated with the analyst-specified parameters relating to the random draws within the 
MMNL model. 

These advantages make the LC model an important empirical alternative in the search for 
useful representations of preference heterogeneity. This is of particular relevance in urban 
freight, where the heterogeneous preferences of interdependent decision makers (e.g., 
shippers and freight transport providers) can lead to a wide range of sensitivities to travel 
demand management policies across individual freight movements and broader freight 
distribution strategies. That is, efforts to influence travel behaviour, in general, or freight 
travel behaviour specifically, could lead to divergent changes in freight travel activity due to 
the heterogeneous preferences underlying freight travel behaviour. Hence, to satisfy policy 
objectives relating to urban freight travel behaviour, it is critical to capture the nature of 
preference heterogeneity in urban freight with as much precision as the available data allow. 
As such, urban freight studies could benefit from utilising an expanded empirical toolkit 
involving stronger behaviour-based representations of preference heterogeneity. 

Some recent transport studies have turned to the LC model for behavioural analysis. 
Beckman and Goulias (2008) applied a complex LC model to identify preference 
heterogeneity relating to commuting behaviour. Calibrating their LC model with respect to 
spatial and socio-economic characteristics were enabled Beckman and Goulias to identify 
population segments with distinct sensitivities in mode choice, route choice and departure 
time choice systematically. Wen and Lai (2010) offer an appealing application of the LC 
model as an alternative to the MMNL model in the identification of behavioural segments in 
the air travel market. A LC model including socio-demographic characteristics with intuitive 
links to preference heterogeneity such as age, income, and trip purpose identified two 
distinct classes of air travellers with different preferences for individual airlines and some 
level-of-service attributes. Shen (2009) offers direct evidence for the power of LC models in 
transport studies relative to the MMNL model, by comparing the implications of model results 
from LC and MMNL models of two stated preference surveys of public transport patronage. 
Shen found that the LC model offered a significantly better model fit than the MMNL model 
for both datasets. Whilst the policy outputs (i.e., willingness-to-pay and choice elasticities) 
from the two models gave similar mean implications, the LC models identified segments with 
preferences that are highly divergent from those identified in the estimated distributions in 
the MMNL models. 

Most closely related to the research presented in this paper, Hensher and Greene 
(forthcoming) utilise an inferred attribute processing strategy (APS) approach in a LC model 
of car drivers in Sydney. In their model, latent classes are specified in terms of a priori APS 
behaviour, with distinct utility expressions in each class constrained to match the assumed 
APS profile. Despite the lack of observed APS data, this model resulted in an improved fit 
relative to the MMNL model. Supplementary questions about APS behaviour were included 
at the end of the survey to gauge the relationship between inferred and respondent-stated 
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APS behaviour; there was not a strong mapping between inferred and stated APS 
behaviour, but a major limitation of the technique may have been the absence of any.choice-
set-specific APS questions. The analysis presented in Section 4 is calibrated on stated APS 
information captured for each alternative in each choice set, offering an important distinction 
from both the inferred and stated behaviour in Hensher and Greene (forthcoming). 

The LC model is a semi-parametric extension of the MMNL model, which does not require 
the researcher to make specific assumptions about the distribution of random parameters 
across respondents. Rather, preference heterogeneity across respondents is modelled with 
a discrete distribution. The LC model approximates the unknown distribution of random 
coefficients by a finite number of mass points; therefore, simulation is not needed in the 
estimation process (Meijer and Rouwendal, 2006). Respondents are implicitly divided into a 
number of classes Q, although it is not known which class contains a particular firm. Within 
this application, shippers’ and carriers’ behaviour is governed by observable attributes and 
on latent heterogeneity that varies with factors that are unobserved (Greene and Hensher, 
2003).  

In the LC model, preference estimates are class specific such that choice observations 
assigned to a particular class q share the same estimated preference parameters βq 
corresponding to a vector of independent variables z presented in each alternative in the 
choice set. 

The probability that respondent i in class q chooses alternative j is given as:  
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Within each class, the choice probabilities are generated by the multinomial logit (MNL) 
model.  

Class membership, however, is not observed; rather, class probabilities are also specified by 
the MNL form. The probability of respondent i belonging to class q can be expressed as:  
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where hi denotes a set of observed respondent characteristics (e.g., years spent working in 
their current role, whether costs were aggregated in the choice set). The LC model estimates 
the probabilities of a respondent belonging to each class, and respondent is assigned to one 
of the classes on the basis of the largest probability. Due to identification issues, the Qth 
parameter vector is normalised to zero; as a result, all other coefficients are interpreted 
relatively to the normalised class.  

Combining the conditional choice equation (1) and membership classification equation (2), 
the joint probability that respondent i belongs to class q and chooses alternative j can be 
written:  
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The parameter vectors βq and θq are simultaneously estimated by the maximum likelihood 
method, and the log likelihood (LL) for the sample is defined as:  
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The log likelihood is maximised with respect to the Q structural parameter vectors, βq, and 
the Q-1 latent class parameter vectors, θq. The issue in the estimation process is the choice 
of the number of classes, Q, as the comparison of the log likelihoods of models with a 
different number of classes is not appropriate. While increasing the number of classes 
increases the fit of the model, it may lead to some coefficients having very large standard 
errors.  

The trade-off between the goodness of fit and the precision of the parameter estimates can 
be found with the help of information criteria summarised by Shen and Saijo (2007), which 
could help determine the optimal number of classes, Q. Candidate criteria include the Akaike 

Information Criterion, Akaike’s 2, the Bozdogan Akaike Information Criterion and the 
Bayesian Information Criterion. A comparison of these or similar metrics was not a dominant 
concern in this application, however; models with two latent classes were clearly dominant to 
models with larger numbers of classes, leading to a strong preference for a two-class 
modelling structure. 

 

3. Data description 

A 2004 study of road freight stakeholders in Sydney, Australia centred on capturing 
information about independent and interdependent preferences of carriers and shippers in 
the presence of a (hypothetical) distance-based road pricing system. Consistent with other 
freight studies, the predominant empirical constraints in the study were: (a) a small 
population from which to draw; (b) a limited research budget; and (c) difficulties in gaining 
the cooperation of freight stakeholders. A limited number of agents to sample (i.e., freight 
firms and their clients under contracts involving urban goods movement) requires 
optimisation on two counts: (1) recruiting a sufficient proportion of the population for the 
sample and (2) obtaining a sufficient number of choice observations for each respondent. A 
minimum information group inference (MIGI) experiment was chosen to allow for a relatively 
larger sample than a stated choice experiment involving direct interaction between sampled 
group members due to the relative ease of recruiting participants; that is, no temporal 
coordination of respondents was required (see Hensher and Puckett, 2008 for details of 
MIGI experiments). 

The empirical procedure began by administering the experiment to representatives of freight 
firms. Centred on a computer-aided personal interview (CAPI) survey with a d-optimal 
experimental design (discussed in Puckett et al., 2007), the MIGI experiment involved three 
distinct procedures: (1) non-stated-choice questions intended to capture the relevant 
deliberation attributes and other contextual effects; (2) choice menus corresponding to an 
interactive (i.e., freight-contract-based) setting; and (3) questions on the attribute processing 
strategies enacted by respondents within each choice set. After a sampled respondent from 
a freight firm completed the survey, a client of a freight firm matching the classification 
offered by the respondent was recruited and given a survey involving the identical series of 
choice sets faced by the corresponding freight firm.  

The data offer a powerful means of gaining behavioural insight under the aforementioned 
empirical constraints. The use of a CAPI survey allowed the analysis to be centred on real-
market data, including revealed preference trip information, and respondent-, firm- and inter-
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firm relationship-specific information. The revealed preference trip information served as an 
anchor for the attribute levels in corresponding stated preference alternatives. Furthermore, 
the socio-demographic information not only allowed respondents to refer to a rich 
representation of the context of the choice task, but also allowed the analysis to evaluate the 
degree to which preferences change along with contextual effects.  

Fundamentally, the choice data gathered from freight transport providers and their 
customers within Sydney enabled the direct analysis of sensitivities of Sydney freight 
transport stakeholders to changes in cost/LOS trade-offs under road user charging, which 
could not be conducted with extant freight travel behaviour data (e.g., regional-level data on 
vehicle movements by class, in the absence of road user charging). The use of a d-efficient 
experimental design supplemented the power of the choice data by reducing the sample size 
required to make meaningful inference with respect to trade-offs across the attributes within 
the choice sets in the questionnaire. 

The levels and ranges of the attributes were chosen to reflect a range of coping strategies 
under a hypothetical distance-based road user charging regime. The reference alternative 
within each choice set for respondents from freight firms is created using the details 
specified by the respondent for the recent freight trip. In all cases except for the variable 
charges, the attribute levels for each of the SC alternatives are pivoted from the levels of the 
reference alternative, as detailed below. The levels are expressed as deviations from the 
reference level, which is the exact value specified in the corresponding non-SC questions, 
unless noted:  

Free-flow time: -50%, -25%, 0, +25%, +50%  

Slowed-down time: -50%, -25%, 0, +25%, +50%  

Waiting time at destination: -50%, -25%, 0, +25%, +50%  

Probability of on-time arrival: -50%, -25%, 0, +25%, +50%, with the resulting value 
rounded to the nearest 5% (e.g., a reference value of 75% reduced by 50% would 
yield a raw figure of 37.5%, which would be rounded to 40%). 

Fuel cost: -50%, -25%, 0, +25%, +50% (representing changes in fuel taxes of -100%, 
-50%, 0, +50%, +100%)  

Distance-based charges: -50%, -25%, 0, +25%, +50% around a base of 50 percent 
of the fuel cost (i.e., 100 percent of fuel taxes). 

Respondents were asked to assume that, for each of the choice sets given, the same goods 
need to be carried for the same client, subject to the same constraints faced when the 
reference trip was undertaken. The specific choice task on the initial screen is, 'If your 
organization and the client had to reach agreement on which alternative to choose, what 
would be your order of preference among alternatives?' Respondents are asked to provide a 
choice for every alternative. The available options for each alternative are: (Name of the 
alternative) is: My 1st choice; My 2nd choice; My 3rd choice; Not acceptable. At least one of 
the alternatives must be indicated as a first choice, which was not found to be restrictive, 
given that the reference alternative represents the status quo, which was clearly acceptable 
in the market. 

The resulting estimation sample, after controlling for outliers and problematic respondent 
data, includes 136 transporters and 129 shippers. The transporters response rate was 45% 
whilst the response rate of shippers was 72%. 
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4. Empirical results 

We now turn to latent class analysis of the data, in which we evaluate the preferences of 
transporters and shippers under a hypothetical variable, distance-based road user charging 
system in the Sydney Metropolitan Area. The analysis centres on the joint estimation of 
utility functions based upon the attribute level mixes presented within the empirical survey 
and the membership of respondents within a set of classes of unique preferences. That is, 
the LC models presented in this section focus on the identification of unique classes of 
preferences with respect to free-flow-, slowed-down- and waiting time in transit, the 
probability of on-time arrival, fuel cost, distance-based charges and the freight rate charged 
to the shipper. 

Two candidate sets of LC models were estimated for transporters and shippers: standard 
models that assume that all respondents pay full attention to all information presented to 
them, and models conditioned on the attribute processing strategies (APSs) indicated by 
respondents. In the empirical survey analysed here, respondents indicated whether they: (1) 
ignored a given attribute within an alternative in a choice set; and (2) added up attributes 
along a common dimension within an alternative a choice set. In the APS-conditioned 
models presented here, respondents’ APS behaviour was represented at the choice-set 
level, through contextual effects representing the number of times a particular APS was 
invoked in a given choice set. This enables the APS data to be used as a contextual effect 
(i.e., external to the content within the alternatives) to condition the preference estimates 
across the alternatives considered in a choice set. One effect of this level of detail is that 
respondents can be assigned to multiple latent classes across choice observations, due to 
APS variation throughout the survey (i.e., one may ignore a given attribute within one choice 
set, yet pay attention to it in another). 

4.1. Transporter models 

Table 1 presents the model results for transporters, comparing the results for a basic 
multinomial logit (MNL) model, our preferred LC model without APS information, and our 
preferred APS-conditioned LC model: 
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Table 1: Transporter model results 

 MNL Latent Class Latent Class-APS 

  Class 1 Class 2 Class 1 Class 2 

Avg. Class Probability -- .726 .274 .716 .284 

Utility Function Attributes: 

 Coefficient t-
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Reference Alternative 1.043* 7.63 2.120* 5.90 -0.646 -0.93 2.299* 6.72 -0.615 -0.99 

Free-Flow Time -0.005* -3.14 0.003 0.78 -0.127^ -2.21 0.001 0.39 -0.095* -2.58 

Slowed-Down Time -0.013* -3.29 -0.013# -1.83 -0.099# -1.83 -0.014^ -2.09 -0.084* -2.59 

Waiting Time 0.001 0.37 0.018* 2.80 -0.043^ -2.14 0.019* 2.91 -0.036* -2.71 

Prob. of On-Time 
Arrival 

0.023* 3.81 0.055* 3.88 -0.032 -1.25 0.065* 4.74 -0.039 -1.42 

Distance-Based 
Charges 

-0.002 -1.33 0.005# 1.72 -0.094# -1.86 0.005^ 1.85 -0.071* -2.89 

Fuel Cost -0.007* -4.29 -0.013* -3.88 -0.004 -0.41 -0.012* -3.98 -0.004 -0.60 

Freight Rate 0.003# 1.82 0.000 0.08 0.050 1.56 0.001 0.28 0.034* 2.40 

Class Membership Attributes: 

   Coefficient t- 
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Constant   0.520 1.19   1.988* 3.35   

Years in a Similar 
Role 

  0.057* 3.13   0.064* 3.61   

Scheduling by 
Transporter 

  0.813* 2.58       

Scheduling by 
Receiver of Goods 

  -1.069* -2.46   -1.215* -2.80   

Litres of Fuel Used 
on RP Trip 

  0.001# 1.72   0.001* 2.67   

Number of Years of 
Partnership 

  -0.031* -2.60   -0.041* -3.26   

Sender of the Goods 
Paid for Shipment 

  -0.599# 1.80       

Routing by Sender of 
Goods 

  -- --   -1.022^ -2.10   

Combined All Cost 
Measures 

      -0.796* -3.06   
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Table 1 (Continued): Transporter model results 

 MNL Latent Class Latent Class-APS 

Model Fit: 

Log-Likelihood -499.99 -457.78 -454.65 

Akaike Information 
Criterion 

1.868 1.768 1.756 

Bayesian Information 
Criterion 

1.931 1.949 1.938 

Number of Observations 544 544 544 

*-Denotes coefficient is statistically significantly different to zero at the 99 percent confidence level. 
^-Denotes coefficient is statistically significantly different to zero at the 95 percent confidence level. 
#-Denotes coefficient is statistically significantly different to zero at the 90 percent confidence level. 

 

The MNL model reveals a range of sensible implications relating to the behaviour of 
transporters. What is missing from the model, however, is information relating to any 
preference heterogeneity in the sample. We now offer the results from LC models with and 
without APS information, to highlight the nature of the preference heterogeneity identified 
through this approach. 

Both versions of the LC model presented in Table 1 offer improved data fits relative to the 
MNL model when evaluated with respect to the log-likelihood ratio or Akaike Information 
Criterion (AIC). Neither LC model offers a sufficient improvement relative to the increased 
complexity of the model when using the Bayesian Information Criterion, which carries a 
relatively strong penalty for increases in model complexity. However, given the clear 
improvement in terms of both the log-likelihood ratio and AIC, we are confident that both LC 
models offer improved behavioural implications through modelling preference heterogeneity.  

For both LC models, the best model fit was found through a two-class representation; 
indeed, for many specifications tested, the model would not converge with a larger number 
of classes. Across the two models in Table 1, the general behavioural implications are the 
same. A large proportion of the sample (around 73 percent to 27 percent in the non-APS 
model versus 72 percent to 28 percent in the APS model) appears to hold preferences 
consistent with the mean effects given in Class 1, in which transporters: hold a very strong 
preference for the reference alternative; are particularly sensitive to slowed-down travel time 
and on-time reliability; receive positive utility from waiting time; when faced with alternatives 
involving distance-based charges, recognise a benefit from the charge (in contrast to the 
strong resistance to alternatives that include the charge); are relatively sensitive to fuel cost; 
and are not sensitive to changes in the freight rate.  

Conversely, a minority of the sample appears to hold preferences consistent with the mean 
effects given in Class 2, in which transporters: hold a significant preference for alternatives 
involving distance-based charges; do not appear sensitive to slowed-down time relative to 
free-flow time; find waiting time to be a source of disutility; are not highly responsive to 
changes in on-time reliability; when faced with alternatives involving distance-based 
charges, identify disutility with the specific level of the charge (in contrast to general support 
for alternatives that include the charge); are not strongly sensitive to fuel cost; and are 
sensitive to changes in the freight rate.  

The discrepancy in behaviour across these classes is substantial. Around three-fourths of 
the sample is highly sensitive to the level-of-service of the network, responding to changes in 
slowed-down travel time, on-time reliability and fuel expenditure for a trip. The general lack 
of sensitivity Class 1 to changes in the freight rate, along with the positive mean influence of 



Freight stakeholders’ sensitivities under road user charging: a latent class approach 

11 

distance-based charges, may indicate a tendency for members of Class 1 to pass along 
these charges to their customers (i.e., changes in distance-based charges translate to 
changes in the freight rate). Lastly, the positive utility associated with waiting time within 
Class 1 implies that many transporters are suitably compensated for time spent waiting at 
the destination (either directly through financial means or through a positive value of that 
time being used for purposes such as rest). Overall, whilst members of Class 1 prefer their 
revealed preference trip, on average, their estimated sensitivities identify a potential 
opportunity to provide sufficient changes in levels-of-service through distance-based charges 
to influence the spatial and temporal profile of freight distribution activity. 

The behaviour identified in Class 2 suggests that approximately one-fourth of transporters 
are sensitive to travel time and cost components at an aggregate level. That is, cost/level-of-
service trade-offs still matter within Class 2, but it appears to be overall trade-offs between 
the sum of travel time components and the sum of fuel costs and distance-based charges 
(offset by changes in the freight rate) that are of paramount concern. These trade-offs 
appear to have dwarfed the benefits of increased reliability in some alternatives, which is a 
distinct outcome to the sample-level behaviour identified in the base MNL model (and in 
Class 1). Members of Class 2 revealed a class-level preference for alternatives involving 
distance-based charges, and hence this behaviour isolates an important proportion of the 
sample that may be particularly responsive to a distance-based charging system. The strong 
sensitivity to the specific level of the charges implies that, whilst around one-fourth of 
transporters’ behaviour in the sample involved a general preference for alternatives involving 
distance-based charges, the level of the charge could influence these transporters’ 
behaviour more strongly than other transporters. 

Differences in the sensitivity of respondents to specific components of cost and time across 
classes are supported by the inclusion of APS information in the model. In alternative 
specifications of the APS-conditioned model, improved model fits over the non-APS model 
were found through the inclusion of an indicator whether the respondent added up time 
measures or cost measures. The behaviour involved in the choice to aggregate times and 
costs was similar enough across the two APS choices (i.e., whether to aggregate times and 
whether to aggregate costs) that the model was not improved by including both APS 
measures. Rather, the indicator of whether costs were aggregated was included in the APS-
conditioned LC model. 

The power of including the APS variable in the class membership function was sufficient to 
offer improved overall model fit whilst removing the explanatory power of two variables in the 
class membership function of the non-APS model (whether the transporter had influence 
over the scheduling of the trip, and whether the sender of the goods paid for the shipment). 
This effect was consistent with the behaviour identified in the model: those who aggregated 
costs whilst making their choice were more likely to be allocated to Class 2. Once this effect 
was accounted for, the remaining implications of the class membership function were found 
to be similar across the two models. That is, respondents were more likely to be allocated to 
Class 1: the more time they had spent working in a similar professional role; if the receiver of 
the goods had no influence over the scheduling of the trip; the more fuel was used in the 
revealed preference trip; the shorter the length of the business relationship between the 
transporter and the shipper; and if the sender of the goods did not have influence over the 
route choice for the trip. 

The major distinguishing characteristics between the non-APS and APS-conditioned models 
are the relative sensitivities of members of Class 2 to free-flow and slowed-down time (with 
the sensitivities approaching parity in the APS model, which is consistent with a tendency to 
aggregate time measures), and the relative sensitivities of members of Class 2 to monetary 
attributes; the implications for members of Class 1 are consistent across the two models. 
Hence, accounting for respondents’ stated tendencies to aggregate cost measures appears 
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to strengthen the model’s capability both to assign respondents to the appropriate class and 
to identify the sensitivities of respondents within those classes. 

With these differences in mind, we turn to a comparison of willingness-to-pay measures 
across the models, including values of travel time savings (VTTS) under free-flow and 
slowed-down conditions, and the value of reliability gains (VRG), with the corresponding 
values from MMNL models from Puckett and Hensher (2008): 

Table 2: Transporter willingness-to-pay 

 MNL Latent Class Latent Class-
APS 

Mixed Logit Mixed Logit-
APS 

VTTS ($/hr, Free-Flow) $50.84 Class 2: $81.06 Class 2: $80.28 Mean: $42.48 

Std. Dev.: 
$22.95 

Mean: $42.20 

Range: 

$-55.63-
274.53 

VTTS 

($/hr, Slowed-Down) 

$132.17 Class 1: $60.00 

Class 2: $63.19 

Class 1: $70.00 

Class 2: $70.99 

Mean: $83.77 

Std. Dev.: 
$8.88 

Mean: $51.00 

Range: 

$-55.63-
360.48 

VRG ($/Percentage 
Point of Prob. of On-
Time Arrival) 

$3.90 Class 1: $4.23 Class 1: $5.42 Mean: $3.54 

Std. Dev.: 
$0.46 

Mean: $4.35 

Range: 

$3.79-16.08 

 

Each of the willingness-to-pay values in Table 2 were found by taking the ratio of estimated 
marginal utility parameters of interest (i.e., free-flow time, slowed-down time, probability of 
on-time arrival) to an appropriate cost measure. This yields a measure of dollars per unit of 
measurement. Hourly VTTS measures were obtained by multiplying the appropriate ratios, 
which give dollars per minute of travel time savings, by 60.  Transporters’ WTP values from 
the MNL model were found by establishing the cost-based denominator of the ratio as the 
weighted average of the estimated parameters for fuel cost and distance-based charges, 
based upon the proportion of average values for each attribute in the choice sets faced by 
transporters. For all transporter WTP measures in the LC models, only one cost measure 
was a statistically-significant source of disutility for any class with a significant sensitivity to 
the attribute of interest, and hence no weighted average was necessary. 

The MNL model suggests a strong discrepancy in the VTTS for free-flow time versus 
slowed-down time. This is only partially confirmed by the LC models, which show a 
significant VTTS for slowed-down time for members of Class 1 (who do not show a 
corresponding sensitivity to free-flow time). Consistent with the implications of the distinction 
between the two latent classes, those in Class 2 do not demonstrate any increase in disutility 
in slowed-down travel time relative to free-flow time. Hence, by accounting for preference 
heterogeneity through the identification of latent classes, not only do the overall estimated 
sensitivities of transporters to travel time savings appear to be lower than under the MNL 
model, but the relative premium transporters may be willing to pay to avoid slowed-down 
time appears to be lower, as well. 

Mean sensitivities to reliability are estimated to be roughly equivalent across the MNL and 
MMNL models. The LC models, however, identify significant sensitivities to on-time reliability 
for Class 1 alone (over 70 percent of the sample). In the non-APS LC model, the estimated 
mean sensitivity within Class 1 is within the range of mean values in the MNL and MMNL 
models. When APS information is accounted for, the estimated mean sensitivity in Class 1 is 
over one dollar per percentage point increase in reliability higher than in any of the other 



Freight stakeholders’ sensitivities under road user charging: a latent class approach 

13 

models; when multiplying this value by the proportion of the sample in Class 1, the value is 
within the range of mean values in the MNL and MMNL models, confirming sample-level 
consistency in mean estimates across the model structures. 

The impacts of utilising APS information in the estimation process are also distinct between 
the LC model and the MMNL model when considering travel time savings. The use of APS 
information to allocate respondents to classes increases the WTP estimates for all 
measures, and brings the VTTS values for free-flow and slowed-down time closer to one 
another for Class 2, in which respondents are more likely to have stated that they added cost 
measures together. In the MMNL model, which involved directly specifying marginal utility 
parameter estimates to reflect the stated APS information (e.g., a respondent’s marginal 
utility for free-flow time was set to zero if the respondent ignored free-flow time), the 
difference between mean VTTS measures is also reduced considerably. Hence, both 
advanced modelling structures involving APS information indicate a potentially large bias 
when failing to account for both preference heterogeneity and APS behaviour. 

4.2. Shipper models 

Table 3 presents the model results for shippers, comparing the results for a basic MNL 
model, our preferred LC model without APS information, and our preferred APS-conditioned 
LC model: 

Table 3: Shipper model results 

 MNL Latent Class Latent Class-APS 

  Class 1 Class 2 Class 1 Class 2 

Avg. Class 
Probability 

-- .583 .417 .543 .457 

 Coefficient t-
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Utility Function Attributes: 

Reference 
Alternative 

0.902* 9.25 1.409 5.54 0.067 0.21 1.949* 5.85 -0.235 -0.77 

Free-Flow Time -0.008* -7.08 -0.019* 3.77 0.003 0.88 -0.016* -2.87 0.000 0.02 

Slowed-Down 
Time 

-0.019* -6.33 -0.034* -4.29 -0.016* -2.53 -0.034* -3.95 -0.021* -3.35 

Waiting Time -0.006* -2.97 -0.009# -1.91 -0.005 -1.07 -0.010# -1.75 -0.005 -1.17 

Prob. of On-Time 
Arrival 

0.060* 10.86 0.000 -0.03 0.195* 4.56 -0.023 -1.23 0.180* 4.70 

Distance-Based 
Charges 

-0.001 -1.14 -0.007# -1.76 -0.005# -1.83 -0.001 -1.58 -0.005^ -2.05 

Fuel Cost -0.002^ -2.30 -0.018* -2.75 0.007* 2.42 -0.023* -2.68 0.007* 2.65 

Freight Rate -0.005* -5.46 -0.018# -1.66 -0.003 -1.29 -0.009 -0.93 -0.005* -2.42 
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Table 3 (Continued): Shipper model results 

 MNL Latent Class Latent Class-APS 

  Class 1 Class 2 Class 1 Class 2 

Class Membership Attributes: 

  Coefficient t- 
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Coefficient t- 
ratio 

Constant  -0.456 -1.39   -0.117 -0.32   

Subsidiary of Larger 
Firm 

 -0.465^ 2.14   -0.434^ -2.00   

Years in a Similar Role  0.038* 2.65   0.041* 2.96   

Proportion of Business 
for Transporter 

 0.016* 2.93   0.013* 2.40   

Hours Available to 
Meet Delivery 

 0.006^ 2.14       

Number of Delivery 
Locations 

 0.057 1.53       

Combined Time 
Measures 

     -0.270* -2.42   

Combined Cost 
Measures 

     0.404* 2.57   

Ignored All Waiting 
Times 

     -0.860* -2.75   

Ignored All On-Time 
Probabilities 

     1.757* 3.61   

Ignored All Fuel Costs      -1.343^ -1.97   

Ignored All Distance-
Based Charges 

     1.475^ 2.09   

Model Fit: 

Log-Likelihood -841.07 -790.36 -779.89 

Akaike Information 
Criterion 

1.645 1.574 1.560 

Bayesian Information 
Criterion 

1.684 1.680 1.680 

Number of 
Observations 

1032 1032 1032 

*-Denotes coefficient is statistically significantly different to zero at the 99 percent confidence level. 
^-Denotes coefficient is statistically significantly different to zero at the 95 percent confidence level. 
#-Denotes coefficient is statistically significantly different to zero at the 90 percent confidence level. 

 

Extending the modelling approach to identify LC structures offers a clear improvement in 
model fit across all measures presented in Table 3. The greatest improvement comes from 
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the choice to specify a LC structure, but further gains are found through the inclusion of APS 
information (i.e., the log-likelihood function and Akaike Information Criterion improve when 
APS information is included in the model). However, consistent with the transporter models, 
the penalty imposed by the Bayesian Information Criterion on additional model parameters 
indicates that the non-APS model is as suitable a fit as the APS model. Also consistent with 
the transporter model, the specification of two latent classes gave the best (and sometimes 
only) fit during the model search process. 

Both LC models allocated a majority of observations to Class 1 (58 percent to 42 percent in 
the non-APS model and 54 to 46 percent in the APS model). In both models, shippers in 
Class 1 held a strong preference for the reference alternative. With respect to travel 
conditions, members of Class 1 show a tendency to place a premium on free-flow travel 
time, and also maintain a disutility for waiting time. Interestingly, members of Class 1 do not 
appear to find sufficient value in increases in on-time reliability when trading off against other 
attributes. Members of Class 1 are strongly sensitive to fuel cost relative to distance-based 
charges. Whilst the statistical significance of shippers’ mean sensitivity to the freight rate is 
different across the two models, both models assign a greater sensitivity to the freight rate to 
members of Class 1. 

In contrast, shippers in Class 2 do not demonstrate any significant preference for or against 
the reference alternative, and appear to focus their travel time considerations on slowed-
down conditions; however, this sensitivity is lower in magnitude than the corresponding 
mean sensitivity of members of Class 1. Above the focus placed on slowed-down travel time, 
members of Class 2 place a very high premium on on-time reliability, relative to both the 
MNL model and members of Class 1 (who do not demonstrate a significant sensitivity to on-
time reliability). Shippers in Class 2 reveal a confusing sensitivity to fuel cost, in which 
members react positively to increases in fuel cost. A plausible explanation may be that Class 
2 includes shippers who respond positively to a higher ratio of fuel costs to the freight rate 
(i.e., lower profit margins for transporters). Members of Class 2 are also more sensitive to 
distance-based charges relative to other monetary measures than those in Class 1; the 
sensitivity to the charges is accompanied by a lower sensitivity to the freight rate overall, 
relative to Class 1. 

The major distinction between the latent classes rests in the general attitude toward 
alternatives involving distance-based charges, and sensitivities to free-flow travel time, on-
time reliability and cost measures. Whereas Class 1 includes relatively price-sensitive 
respondents with a preference for the reference alternative, Class 2 includes respondents 
who place a high premium on on-time reliability, traded off against slowed-down time and the 
level of the distance-based charges. Hence, a distance-based charging system is likely to 
impact shippers in different ways, should the two-class model be representative of 
preference heterogeneity in the population. Specifically, shippers with preferences consistent 
with Class 1 would likely trade off changes in the freight rate under a distance-based 
charging system against overall changes in travel time. This response would be distinct to 
those with preferences consistent with Class 2, whose response to specific charge levels 
would be weighed against decreases in slowed-down travel time and increases in on-time 
reliability. 

In both the transporter and shipper models, the impacts of including APS information are 
generally isolated to one class. Whilst these effects were isolated to transporters who tended 
to include those who aggregated measures (i.e., Class 2 of the transporter models), these 
effects are more complex in the shipper model; estimated preferences of shippers with 
respect to distance-based charges and the freight rate in Class 1 are distinct once 
accounting for a range of APS information. The addition of APS information in the shipper 
model results in a much lower estimated sensitivity to distance-based charges and the 
freight rate within Class 1. That is, accounting for APS effects results in a strong downward 
adjustment in the estimated sensitivity of shippers represented in Class 1 with respect to 
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both the direct transport costs they face and the distance-based charges that transporters 
could face. 

Just as in the transporter model, the inclusion of APS information not only improves the 
explanatory power of the model, but also crowds out the explanatory power offered by two 
non-APS contextual effects. In this case, hours available to meet delivery requirements and 
the number of delivery locations (both of which increase the probability that an observation is 
assigned to Class 1) are no longer statistically significant after APS information is added to 
the model. The remaining non-APS contextual effects maintain their general impacts on the 
class membership model after including APS information; status as a subsidiary of a larger 
firm decreases the likelihood that an observation is assigned to Class 1, whilst experience 
working in a similar role and a high proportion of the transporter’s activity being devoted to 
the business relationship increase the likelihood of being assigned to Class 1. 

Consistent with the transporter model, combining cost measures influences class 
membership (with a greater likelihood of being assigned to Class 1). However, combining 
time measures has the opposite impact, increasing the likelihood of being assigned to Class 
2. Furthermore, four choices whether to ignore individual attributes influence class 
membership in the shipper model. These indicators are generally consistent with the distinct 
utility functions across the two classes. The choice to combine time measures increases the 
likelihood of being assigned to Class 2, which involves a weaker distinction across time 
measures. Ignoring waiting time also increases the probability of being assigned to Class 2, 
where waiting time is not a significant influence on utility. Similarly, ignoring on-time 
probabilities increases the likelihood of being assigned to Class 1, where on-time reliability is 
not a significant factor. The choice to ignore fuel cost increases the likelihood of being 
assigned to Class 2, in which shippers appear to associate a positive utility with fuel cost. 
The choice to ignore distance-based charges increases the likelihood of being assigned to 
Class 1, in which shippers demonstrate no significant sensitivity to the charges. The odd 
indicator out is the choice to combine cost measures, which increases the probability of 
being assigned to Class 1, in which fuel cost is the dominant cost-related influence on utility. 

Table 4 highlights the range of estimates of shippers’ values of reliability gains (VRG) across 
the models, with the values from the MMNL models in Puckett and Hensher (2008) offered 
for comparison: 

Table 4: Shipper value of reliability gains 

Model VRG ($/Percentage Point of 
Prob. of On-Time Arrival) 

MNL $12.00 

LC (Class 2) $10.83 

LC-APS (Class 2) $36.00 

MMNL (Mean) $10.32 

MMNL (Standard Deviation)  $1.94 

MMNL-APS (Mean) $11.76 

MMNL-APS (Standard Deviation) $3.72 

 

Shippers’ VRG estimates were found by dividing the estimated marginal utilities of on-time 
reliability by the estimated marginal disutilities of the freight rate (i.e., the cost paid by 
shippers), multiplied by -1 (to represent a beneficial change). The MNL model yields an 
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estimated mean VRG of $12 per percentage point increase in the probability of on-time 
arrival, which is roughly consistent with the mean values in both MMNL models. The LC 
models identify a segment of shippers (between approximately 42 and 46 percent of the 
sample) with significant sensitivities to reliability improvements. Consistent with the 
estimated VRG values for transporters, the non-APS LC model yields a mean sensitivity 
within the range of mean estimates in the MNL and MMNL models. Likewise, as with 
transporters, by accounting for APS information yields an estimated mean sensitivity within 
the segment that is higher than in the other models, and which, when weighting the estimate 
by the proportion of the sample within the segment, approaches the mean values in the 
other models. 

For both the LC and MMNL models, accounting for APS information results in an increase in 
the estimated sensitivities of shippers to reliability improvements. However, the magnitude of 
the increase is considerably larger in the LC model. 

 

5. Concluding remarks 

Our empirical results have confirmed the findings in recent transport studies (e.g., Shen, 
2009; Hensher and Greene, forthcoming) that the LC model can offer superior explanatory 
power relative to the MMNL model in the identification of significant preference 
heterogeneity. Whilst considerably more study is required to draw strong conclusions about 
the relative merits of the LC model, the results highlight the potential to observe meaningful 
variation in preferences of transport stakeholders with a reduction of analyst-imposed a priori 
constraints on the nature of preference heterogeneity in a given sample. In this application, 
we have identified important variation in the preferences of buyers and sellers of road freight 
transport services in the Sydney Metropolitan Area, as shown by the existence of two distinct 
classes of behaviour for transporters and shippers, with a corresponding distinction in policy 
outputs (i.e., willingness-to-pay) in each group. For both transporters and shippers, one 
subset of the sample demonstrated a clear sensitivity to gains in the reliability of freight 
transport services as a function of the levels-of-service and costs across alternatives. 
Likewise, the two classes for both transporters and shippers demonstrated divergent 
preferences with respect to distance-based charges and the costs associated with each 
alternative. 

In general, the estimated sample-level sensitivities were consistent between the LC models 
shown here and the MMNL results from Puckett and Hensher (2008). Hence, population-
level estimates of welfare benefits resulting from LC and MMNL models may not be 
significantly different in a given application. The major difference between the two 
approaches in this vein would be the specific distributional implications. Whilst the MMNL 
results for the data analysed herein suggest the presence of some population-level mean 
and mode willingness-to-pay for savings in free-flow and slowed-down travel time and 
increases in reliability, the LC results focus on the contrast in segment-level average 
sensitivities for these attributes.  

These two approaches give two quite separate forms of insight into potential population-level 
sensitivities; the MMNL model can give a clean distribution of preferences, whilst the LC 
model gives point (mean) estimates for discrete segments of the population. What is most 
important to debate is whether the analyst-induced analytical distributional assumptions that 
generate the estimated distributions in the MMNL model offer any meaningful improvement 
over the unknown variation around the estimated segment-level mean sensitivities in the LC 
model. The relative model fits in this study, along with Shen (2009) and Hensher and Greene 
(forthcoming) suggest that the distributional content of the MMNL model may not offer any 
analytical improvement behaviourally. 
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A further encouraging result is the improvement in model fit found when accounting for 
respondents’ stated attribute processing strategies. The inclusion of APS information not 
only improved model fit, but also led to some differences in willingness-to-pay estimates 
relative to the standard model. Furthermore, the inclusion of APS information offered 
sufficient behavioural information to reduce the number of other contextual effects required 
to optimise the estimation of the class membership models. Importantly, the types of 
sensitivities implied by the estimates for each class were generally consistent with the stated 
APS information, supporting the validity of the APS information stated in each choice set. 
This choice-set-specific APS data collection approach is an important level of detail 
distinguishing this analysis from the inferred APS approach in Hensher and Greene 
(forthcoming), which compared the allocation of respondents to pre-designed APS-based 
classes with the global (i.e., not specific to each choice set) stated APS information given by 
respondents at the end of the survey in their study. Given that respondents may 
demonstrate a range of APS behaviour across choice sets with differing trade-offs, capturing 
APS data at the choice-set level is an appealing alternative. 
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