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Abstract 

A city with a transportation system so well designed that failure of any arbitrary waypoint 
triggers no major event, is the major goal for every single urban planning and management 
board. However, city planning comes with inherent design constraints. Research is needed 
to understand the interaction between these constraints and city resilience. This 
understanding is useful for those planning for a new city and more importantly, when 
evaluating and designing cost-effective ways to improve the resilience of existing cities. 

In this paper, we promote a proactive attitude for prevention. We use network analysis to 
estimate the resilience of ground transportation system in Melbourne. Real data extracted 
from GPS navigation maps of Melbourne is used and resilience is computed for train, tram 
and street networks. The interdependency and interaction of these networks is then used to 
risk assess Melbourne’s transportation system. The system-level risk identification process 
paints a risk picture for Melbourne City ground transport system.  

The approach can be generalised to any piece of ground covered by a GPS navigation map, 
being a promising cost-effective, systemic and structured approach to quantify and manage 
risk of virtually any city in the world. 

 

1. Introduction 

Over the last decades, our society tends, it seems, to become more and more dependent on 
complex, large scale transportation systems. As a critical infrastructure, transportation 
stands on its own in a unique category that differentiates it from other critical infrastructures 
such as electricity and water networks. Arguably, the physical domain – be it in the form of 
roads, tracks, cars, trains, trams, aircraft, etc – is melded with the cognitive domain with 
humans playing a central role in the overall operation of the system. While the human 
element is pertinent in every critical infrastructure, it clearly carries a higher weight in 
transportation that necessitates – we argue – a different treatment from other critical 
infrastructures. The human dimension in transportation systems controls the demand, the 
operators, and the perceptual stimulus that steers the system economically, politically and 
socially. 

It is well known nowadays that the entire economy of cities, regions or even nations rely on 
how transportation networks are able to provide both efficient movement of commodities in 
normal conditions and efficient recovery in the event of any disturbance from normal 
operations. Beside this unprecedented dependence, the fast paced changes in cities’ 
infrastructure which appears to be due to economic factors, population migration and natural 
or artificial shifts in the landscape increases the risk level even more. In such a society 
systems need to be designed for change. They must be able to embrace it, to cope with it, 
and to reshape it to their own advantages. In other words, they must be designed for 
resilience. 
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Resilience represents the system’s ability to keep focusing on and meeting key objectives 
when faced with challenges in the surrounding operating environment. Hence – we argue – 
resilience should address the challenge of optimising the system as a whole to deal with 
change, shocks, and interruptions. 

In this paper, we propose a systemic approach for estimating the resilience of ground 
transportation systems of regions which are covered by GPS navigation systems, 
considering as a case study the Melbourne metropolitan area. Real data extracted from GPS 
navigation maps of Melbourne are used for building the networks and resilience is computed 
for rail and street networks. The data extracted from GPS maps is converted into graph 
representations suitable for calculating network measures.  

Resilience is then evaluated using some of the structural measures used in general graph 
theory, in order to validate their usage in transportation networks. These measures are 
calculated with regard to loss of network connectivity and cost of re-establishing the affected 
waypoints and paths in the event of one or more nodes’ failing. The interdependency and 
interaction of these networks and the level of damage are then used to risk assess 
Melbourne’s transportation system from a structural perspective. 

2. Background Materials 

Network resilience has been defined in many ways over the years, but none of the 
definitions was general enough to capture networks in the general case. 

In general graph theory, researchers tried to analyse networks’ resilience by performing 
statistical studies of different topological measures within the graphs’ structure. Albert et al. 
(2000) showed that many of the large scale networked systems share a similar statistical 
characteristic, power law distribution of node degree, which provides them with high 
tolerance to random failures of nodes and very low tolerance to targeted attacks on highly 
connected nodes; they are so called scale-free networks. Callaway et al. (2000) used the 
same idea of node failure and introduced a generalised concept of percolation through which 
resilience is calculated for any type of graph based on the size of the giant component 
(largest connected cluster) after arbitrary failure of a node or set of nodes. Dall’Asta et al. 
(2006) performed an in-depth analysis of resilience of weighted networks, concluding that 
not only structural properties but also distances and traffic properties contribute significantly 
to network resilience, as well as costs of operation associated with them. They introduced 
new measures for resilience based on percolation theory, calculating network robustness 
through the amount of traffic left after failures of a set of nodes. Still, taking into account 
traffic and cost properties is not very suitable for a general approach, due to the differences 
between traffic models in different fields. 

In the field of transportation networks, resilience is mainly thought in terms of reliability. Most 
of the literature in the field acknowledges the fact that resilience can be analysed using two 
main classes of methods, those related to connectivity reliability and those related to travel 
time reliability. Connectivity reliability (Bell and Iida, 1997) is calculated mainly using a binary 
model – functional and non-functional – for nodes or links as part of particular paths defined 
by pairs of source-destination (S-D) nodes. The probability that path S-D is functional, as a 
measure of reliability, is computed according to specific status of the established nodes or 
links. Time travel reliability (Clark and Wattling 2005) is also based on probabilistic study of 
the nodes and links, but more from the perspective of their usage and the effect on the travel 
time associated with the paths they belong to. 

Other classes of methods have been introduced by different researchers. Chen et al. (2002) 
defined capacity reliability as “the probability that the network can accommodate a certain 
traffic demand at a required service level”. According to this definition reliability can be seen 
as a complex interplay between the quantity of flow and the quality of services. Behavioural 
reliability (Yin and Ieda, 2001; Wattling, 2002) takes into account the effect of the drivers’ 
behaviour on the general performance of the network, thus promoting the idea that reliability 
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is the result of a game played by all the participants in the operation of a transportation 
system. Another class of methods attempts to analyse the potential reliability (Berdica, 2002; 
Jenelius et al., 2006). Here, the aim is to assess the risk implied by network operation 
through the identification of weak points, vulnerabilities, planning flaws and their effects at 
system level. These methods emphasize vulnerabilities as key issues in the analysis of 
resilience. 

Another approach for analysing resilience in the field of transportation networks arises from 
the type of the event that generates the need of analysis. All methods discussed above take 
into account events which are small scale and likely to happen in the day-to-day system 
operation (e.g. minor accidents, road maintenance, failures in traffic signalling); some other 
methods tend to take into account large scale disasters (e.g. major earthquakes, floods, 
landslides, volcanic activity) that trigger major damage at system level. Sakakibara et al. 
(2004) examined the resilience of transportation networks in terms of “robustness” against 
catastrophic disasters, taking as a case study a region in Japan, which was subject to major 
damage produced by earthquakes. They introduced the “topological index”, a special 
system-level measure for topological reliability which is appropriate for large scale damage 
characterisation. 

Evans et al. (2007) acknowledge the fact that most of the planning and reliability assessment 
of Australian transportation systems was based on the classical station-based approach, like 
those explained above. They highlight the idea that the Melbourne Integrated Transport 
Model (MITM), Brisbane Strategic Transport Model (BSTM) and the Strategic Transport 
Model of Sydney (STM) are all mainly based on the Four Stage Travel Demand Model 
(FSM) (McNally, 2000; Mathew and Rao, 2007) or variations of it. They agree that using 
such models was and still is inevitable, but they also argue that the increased complexity 
involved by the resultant management systems makes them expensive. They also criticise 
the extremely high specialisation needed for their operation, which makes them accessible 
to a reduced set of highly trained staff/boards/companies. Their doubts about the future of 
these models are somehow confirmed by the authorities and the organisations involved in 
transportation systems’ planning. Victorian authorities (VPPIA, 2008) and other 
organisations (CMTT, 2007) based in Melbourne signal that new challenges regarding fast 
population growth, carbon emissions and increasing people’s demands request more 
efficient and cost effective thinking, that can provide simple and more elastic evaluation 
models for the future. 

In all studies so far, the definition of a network in a transportation network has not been 
challenged. In the traditional view nodes in the network are viewed as stations or 
crossroads, while links are the rails or streets which connect them. Analysing networks 
modelled in this manner can be suitable for some applications, but is certainly questionable 
in terms of resilience. That is due to the fact that most of the incidents tend to take place on 
the way, between stations or crossroads. As such, the tendency to represent stations as 
nodes and lines between stations as links, we argue, can make it difficult for analysing the 
true resilience of a network. 

3. Methodology 

3.1 Network definition and data sets 

As discussed above the traditional station-based representation of transportation networks 
may not be sufficient for studying resilience and sometimes may lead to misperception in 
where the vulnerability really exists. For example, in the case of the train network, the 
majority of the network is tracks exposed outside the stations. From one perspective, a 
failure on a track does not depend on where this failure occurs. From another perspective, it 
does since this track may cross different areas with different population sizes, and a failure 
that occurs in a point that is close to a tram track – for example – would carry different 
impact from one that occurs in a point that is isolated from any other transportation link. 
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Therefore, the GPS data come with an extra feature, that a node in a transportation network 
is defined by a change in the network rather than the traditional definition of being a station, 
or an intersection of several links (e.g. a crossroad). Hence, the graphs that we use for 
analysis are built as follows: any node in the network is a waypoint defined by waypoint ID 
and position (latitude and longitude), while links are undirected pairs of waypoints. Thus, a 
waypoint is not necessarily a station in the case of rail network and not necessarily a 
crossroad in the case of road network, so that the resultant graphs for rail and road networks 
do not follow the layout of the station-based models which are currently used for planning 
and operation (e.g. those posted on the Melbourne’s website of public transportation – 
http://www.metlinkmelbourne.com.au/). We claim that a network defined as in the GPS-
based approach can represent the system in a more comprehensive manner, allowing the 
tools from graph theory to be applied more effectively in the investigation of resilience of 
transportation networks. 

The real data necessary for network analysis is obtained from Open Street Map navigation 
system, by accessing Open Street Map website (http://www.openstreetmap.org/ and 
http://www.osmaustralia.org/) and exporting the area of interest, Melbourne Metropolitan in 
our case, in XML format. We extract from the XML database the rail network divided in train 
and tram networks, and the road network divided in four networks according to the existing 
speed-limits: 60, 70, 80 and 100 km/h. The train network consists of 4675 nodes, the tram 
network has 3632, while the street networks consist of 2448, 1525, 2083, and 4212 for 
streets with speed limit of 60, 70, 80 and 100 km/h respectively. 

3.2 Resilience assessment framework 

Apart from defining the networks in the GPS based approach, as we discussed above, we 
are interested in actually using this approach in a framework for resilience assessment. We 
start building the framework from the idea that a transportation system can be laid out in 
three distinct interweaving layers: physical, service and cognitive. The physical layer 
represents those components that are situated in the physical domain such as road 
infrastructure, equipment, machines, associated communication networks, and also 
conceptual representations of the airways and air routes. The service layer includes 
information flows in the network (e.g. commodities transported to meet a company’s 
demand), the network acting as a mean for people to get to their jobs, schools and homes, 
or as an infrastructure that supports industries such as the mining supply chains. The 
cognitive layer captures the human dimension including people, their perception of the 
system, their information processing, decision making, and problem solving capabilities, their 
actions, reactions, mistakes and objectives, and their cognitive and ergonomic factors that 
affect and are affected by the system. 

The three interwoven layers interact and achieve what we call effects. Each action – be it in 
the physical, cognitive or service domain – generates an effect in the environment. Some of 
these effects affect the environment; some affect one of the three layers; thus affecting the 
transportation system itself; while others affect both – the internal system and external 
environment. A pictorial representation of this description is presented in Figure 1. The 
image constitutes the foundation for investigating the resilience of the Melbourne’s 
transportation system. The guiding principle of the analysis is that the starting point for 
building resilience in a system is to identify the critical points and vulnerabilities of the 
system. The vulnerability analysis magnify the problems that need attention, while remedies 
for these problems then become the strategies that the system needs to adopt to increase its 
level of resilience. 

 

 

 

http://www.metlinkmelbourne.com.au/
http://www.openstreetmap.org/
http://www.osmaustralia.org/
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Figure 1: The Layers of Transportation systems  

 

Thus, the resilience of a transportation system is seen in our approach in terms of the three 
layers discussed above. The following figure depicts the three levels of resilience: 

Figure 2: Resilience – three layer assessment framework  

 

The above diagram represents the generic framework that we use to study resilience in a 
transportation network. It emphasizes the cognitive layer and the role of people in this critical 
infrastructure. It also emphasizes – through the service layer – that the network is part of 
many different supply chains and services; and therefore, for a transportation network to be 
resilient, change and impact need to be measured in all three layers. 

We emphasise though that this study is neither comprehensive nor complete, but it lays out 
the logic of the methodology and supports this logic with a preliminary analysis so that some 
meaningful conclusions can be drawn. Hence, we focus at this stage on the physical layer of 
the framework with the intention to validate the usage of the GPS based network approach. 
Therefore, we wish to demonstrate that the GPS based network approach provides support 
for a systemic assessment of resilience, by allowing the abstract tools used in general graph 
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theory to be easily applied in real transportation tasks. We claim that the power of the GPS 
based network approach is that it can provide meaningful assessment for a Melbourne-scale 
system with extremely low level of processing power and resources. 

3.3 Measures for physical resilience 

The first set of measures captures the network structure itself. We calculate the most 
significant structural measures: degree, betweenness and clustering coefficient (Newman, 
2008). These measures can highlight possible reliability flaws induced by the structural 
properties of a network, without considering operational/flow issues such as traffic and 
failures. 

The average degree in a network is a simple and intuitive local measure that gives an idea 
about the local connectivity of nodes. It is calculated by adding the number of nodes each 
node is connected to and dividing this sum by the total number of nodes. In essence, it 
represents the average number of connections a node has. 

Betweenness also shows the importance of a specific node but takes into account the global 
influence of other nodes. Betweenness of a node i is defined as the fraction of shortest paths 
between other nodes that pass through node i. It emphasises that a node may be involved in 
greater or fewer of the paths between randomly selected nodes in the network. A node with 
betweenness much higher than the average (if exists) could act like a bottleneck, and it is 
likely to be a structural flaw especially if alternative routes are not provided. 

The measure which intrinsically contains the amount of alternative routes available over the 
network is the clustering coefficient, which we also calculate to complete our view on 
structural performance. The clustering coefficient simply indicates how much the transitivity 
relationship holds in a network (i.e. if x is connected to y and y is connected to z, how often 
we find that x is also connected to z). 

The second set of measures is based on the concept of node removal. We primarily used 
two measures here: Topological Integrity and Distance Gap.  

In topological integrity, we count the number of non-overlapping sub-graphs in a network. 
We would normally start with a fully connected graph (one can get from any node to any 
node on the network). After a node is removed, this graph may become disconnected and 
the removal of that node splits the network into two components. In topological integrity, we 
simulate failures for each node of the analysed network and observe the effect of node 
removal on network fragmentation by counting the number of components or sub-graphs 
(Barabasi et al., 1999; Albert et al., 2000). It is likely that some of the nodes fail and leave 
the network unaffected, while others cause the network to break in several stand-alone 
disconnected pieces. We then calculate the probability that removal of a node k breaks the 
network in n pieces and transform the results into a probability density function (PDF) 
representing the topological integrity measure. The cumulative probability distributions of 
these PDFs are used to compare different networks. 

The case in which failure of a node disconnects the network by breaking it into pieces raises 
the question of damage cost associated with the failure. In this case, we calculate the 
distance gap created by the removal of a node. Assume that we have three nodes x, y, and 
z. Assume that y is connected to both x and z. When y is removed, we measure the distance 
between x and z (remember, each of these nodes has a longitude and latitude associated 
with it). This distance is used as a possible proxy to estimate the cost of re-establishing 
network. In order to do that assessment, we consider the distance gap produced by the 
removal of each node and then calculate the probability that a removal of a node k 
generates a distance gap d and visualize the corresponding estimated probability density 
function of the generated distribution. 

We should note again that both the structural measures and the failure related ones are 
usual tools for network analysis. We use them here to demonstrate that they are effective 
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tools when used together with the GPS based networks as part of the three layer 
assessment framework. Of course, they account only for the physical layer, providing 
information about potential structural or operational flaws. 

The third class of measures focuses on the spatial distribution of risk, in an attempt to 
advance from purely structural issues towards the superior levels of our framework. Both 
topological integrity and distance gaps are mapped spatially to their original location in the 
longitude and latitude coordinate. Contours of length 5km are drawn around the city centre 
to represent what we call zones. Topological integrity and distance gaps are visualised and 
calculated on the level of a zone to assess the spatial distribution of potential damage. We 
then group nodes with similar topological integrity and distance gaps in each suburb and the 
population size of that suburb is used as a proxy for the possible impact of an event on local 
population.  

We are aware that despite the measures in the third class provide some amount of 
information about the effect of failures on the population they cannot be seen as tools for 
assessment at the service or cognitive layers. They have been introduced as a novelty 
element that enlarges and completes the structural assessment, offering the starting point 
for further tools that must be found for service and cognitive layers. 

4. Results 

Data displayed in Table 1 show that for all the analysed networks, the structural performance 
is relatively low. The average degree shows that all networks are relatively weakly 
connected and additionally, they contain nodes with betweenness roughly ten times higher 
than the average. This suggests the existence of bottlenecks within their structures, which is 
confirmed by the extremely low values of the clustering coefficient. This places the analysed 
networks in the category of tree-like or even pure tree structures. Taken together, these 
aspects highlight one possible (and very important) structural flaw: lack of alternative routes. 

Yet, we should not neglect to say that the tram network seems to have the highest structural 
performance from the whole set of analysed networks. It can be seen that it has the highest 
average degree and also the highest clustering coefficient. At the same time, though, the 
tram network also exhibits the highest average betweenness among the analysed networks. 
It can be argued that a high average betweenness signals a high probability for the 
existence of bottlenecks, and hence this fact should raise some questions about the 
structural performance of the tram network. 

Still, we argue that the betweenness centrality is based on the shortest paths, so that a high 
betweenness indicates the concentration of a high amount of “shortest” paths through the 
nodes of interest, without excluding the existence of alternate longer paths. That is why we 
used the clustering coefficient as a complementary tool for assessing the existence of 
alternate paths. As shown in Table 1, the clustering coefficient for the tram network is 
significantly higher when compared to the rest of the networks, and hence we could assume 
that more alternate paths for the potential bottlenecks are indeed provided. 

In conclusion, we state that the tram network can be considered as having the highest 
structural performance, but we acknowledge that we only used a set of basic tools which 
provided a preliminary assessment. Still, the proposed tools support our main goal of 
demonstrating the applicability of those measures in our network model and framework. 
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Table 1: Structural measures – degree, betweenness and clustering coefficient 

network 
degree betweenness clustering 

coefficient max average max average 

Train 5 2.0273 0.3873 0.0308 0.0007 

Tram 4 2.0297 0.3043 0.0389 0.0027 

Street 60 5 1.991 0.0579 0.005 0 

Street 70 4 1.9685 0.0206 0.0016 0 

Street 80 4 1.9759 0.1449 0.0121 0.0008 

Street 100 4 1.9829 0.0353 0.0046 0.0011 

 

Figure 3 depicts the probability density function drawn from estimating the topological 
integrity measure. All of the analysed graphs, except the tram network, show fairly similar 
behaviour, with slight differences among them. The probability density function shows a low 
probability that failure of an arbitrary node leaves the network undamaged and high 
probability that failure of an arbitrary node breaks the network in two disconnected sub-
graphs. The probability that removal of a node disconnects the graph in more than two 
separate fragments is very low. In the case of the tram network, the plot shows a much 
higher resilience compared to the rest of the networks. The probability that the graph 
remains undamaged is much higher than the rest of the networks, while in the case of some 
damage being produced, the probability is significantly lower. It can be also seen that the 
maximum damage that can be provoked in the tram network is 2 sub-graphs while for all 
other graphs the maximum damage reached 5. 

The concept of first degree stochastic dominance (Goodwin and Wright, 2009) is pertinent in 
this graph, whereby a cumulative distribution such as the Tram network fully dominates 
(better in all points) another distribution (Street 100).  Based on stochastic dominance, the 
Tram network is the strongest. 

Topological integrity is a good enough albeit intrinsic measure of resilience. As it is, the 
structure of the graph offers information about possible vulnerabilities of the network related 
to lack of redundancy, or presence of highly connected nodes that bond different pieces of 
the network and act like bottlenecks, reducing thus the overall resilience of the whole 
structure. 

Real networks, though, are located in space and their resilience implicitly depends on the 
distances among different waypoints. In the case of disintegration of the network as a result 
of arbitrary failures of nodes, distance gaps between disconnected pieces (if exist) can be 
calculated, in order to estimate the amount of damage. Calculating the distance gap would 
give a good idea about the cost implied by the recovery of a gap, if we consider the cost as a 
function of the length of the damaged path (e.g. rail to be maintained or replaced, road to be 
consolidated or rebuilt). 
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Figure 3: Topological integrity – probability density function (top) and cumulative distribution 
(bottom) 

 

 

In the case of calculating the resilience from distance gap point of view, results can be seen 
in Figure 4. Distances are rounded to 100m. The insights of the plots show that the 
maximum distance gap produced by network disintegration is around 7000 meters. The main 
plots only depict the meaningful data which is in the limit of a distance gap of 1000 meters. 
All of the analysed graphs show fairly a similar behaviour, with slight differences among 
them. As the probability density function doesn’t give us a clear understanding about which 
network is more resilient, we use again the cumulative probability distribution function. 
However, because the cumulative curves intersected with each other, we have to use 
second order stochastic dominance to establish an order on the networks in terms of their 
resilience. Second order stochastic dominance requires the calculation of the areas in each 
intersection between two curves to calculate dominance. The resultant order of resilience 
based on the distance gap measurement shows that the most resilient network is again the 
tram network followed by the train and streets networks. 
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Figure 4: Distance gap – probability distribution function (top) and cumulative distribution 
(bottom) 

 

 

 

We now turn attention to the third group of measures. Figure 5 visualises, in latitude-
longitude coordinates, all nodes from all networks colour-mapped based on topological 
integrity. A spatial representation of the vulnerabilities in all networks is presented. The first 
inner circle is centred on a point in Melbourne city and has a radius of 5km. Each 
subsequent circle represents a radius of 5km away from the previous circle. The red colour 
represents nodes with topological integrity of 2, the blue colours correspond to 1, and the 
black colours represent those with a value greater than 2. The figure demonstrates that 
vulnerabilities decline as we move further away from the city. Despite that the result seems 
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logical since most transportation activities occur closer to the city centre, it raises some 
issues about the resilience of the different networks. 

Figure 5: The spatial distribution of topological integrity of nodes divided into circular zones.  

 

The previous figure demonstrates the information visually. We needed to transform this 
information into measurable quantities that we can use to objectively estimate resilience. We 
count the number of nodes with topological integrity of 2 in each zone. Zones are drawn 
circularly using a radius of 5km from the centre of the city. Figure 6 demonstrates the 
cumulative distribution of the vulnerable nodes in each network over the zones. 

Once more, it is clear that the vulnerability of these networks is concentrated in or closer to 
the city centre. A 15km radius around the city contains almost 100% of the tram vulnerable 
nodes, while a radius of 30km contains close to 90% of all vulnerable nodes including – 
surprisingly – streets with 100 km/h speed limits. 

The last measure is the impact of a vulnerable node with topological integrity of 2 as 
measured by the size of local population (Figure 7). For each network, we identify the 
suburbs within which each node with topological integrity of 2 is located. We then identify all 
suburbs for all of these nodes in one network and calculate the average population size. This 
measure is a proxy for the impact of vulnerable nodes on local populations. Figure 7 shows 
a high impact of the road networks with speed limit of 60 and 100 km/h on the population, 
from the population size point of view. We found (figure not showed in the paper) that the 
roads with the speed limit of 100 km/h are the main radial roads that connect the inner to 
outer parts of the city and relate the high populated peripheral residential areas to the 
metropolitan area. Hence, the highest impact on the population. In a similar manner, the 
roads with speed limit of 60 appear to be a mesh of main roads mapped over the 
metropolitan area, which connects the metropolitan residential areas with high impact on the 
served population. 
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Figure 6: The Cumulative Distribution of Vulnerable Nodes with topological integrity of 2  

 

Figure 7: The average population size in areas with nodes having a topological integrity value 
of 2. 

 

 

5. Conclusions 

This study can be seen as an attempt to offer an alternative to the complex and expensive 
existing evaluation frameworks, which are based on Four Stage Travel Demand Models. As 
the largest cities in Australia use such systems for evaluation and planning, the proposed 
framework intends to be a low-cost, effective and versatile solution which could offer 
elasticity and improved manoeuvrability in relation with fast paced landscape changes. 

The three layer assessment model that we introduced is based on changes in the 
landscape, rather than routes and stops as in the classical representation of transportation 
networks. It provides, in connection with GPS systems, simplicity and effectiveness for pre-
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event analysis, which can be successfully used by planning boards in the future. We should 
highlight that our main purpose was to validate the GPS based definition of the 
transportation networks and demonstrate its practical usability in conjunction with different 
measures which are usually used as abstract tools in the graph theory research. 

Therefore, the paper presented in a systemic way different measures that can be used to 
assess the physical resilience of Melbourne city. We should add that the chosen measures 
are simple, intuitive and can create a fair picture of the overall system resilience, but we 
acknowledge the existence of many other tools that could be successfully applied with our 
model (e.g. investigation of networks’ modularity, assortative mixing, diameter etc.) and 
generate a more comprehensive and valuable assessment. 

We presented a multi-layer approach – physical, service and cognitive – for analysing the 
resilience of a transportation network and focused on the physical layer. The methodology is 
general and can be easily applied for other cities or areas which are covered by a GPS map. 
At this stage, we concentrated on the Melbourne area. 

The analysis of Melbourne’s transportation system provided valuable information about the 
size of the investigated networks and also about the level of the vulnerability that can be 
produced by arbitrary failures of nodes. We found that the tram network had the highest level 
of resilience when compared to other networks analysed in the study. We should add though 
that we did not intend to promote in this paper a hierarchy among the different transportation 
networks within the system. The classification of their performance has been made only in 
order to demonstrate the fact that the GPS based definition of the framework is practically 
applicable. Furthermore, we considered the Melbourne area as being a single large 
transportation system, and we referred to it as to the “Melbourne transportation system”, 
while when referring to its components (tram, train, streets) we used the term “networks”. 

However, the analysis presented in the paper indicates the potential existence of some 
structural and operational weaknesses, such as: lack of redundancy in the system, low 
alternative routes, and existence of bottlenecks. 

For future work, we will characterise situations and networks where the Four Stage Travel 
Demand Model would generate different conclusions from the measures used in this paper. 
We will also design a database of measures for transportation resilience, which in general, is 
a hard task. More visualisation of spatial vulnerabilities can be used to communicate the 
results. Finally, we need to further investigate the resilience at the service and cognitive 
layers for which we need to find the proper measures and the appropriate validation 
methods. 

 

References 

Albert R., Jeong H., and Barabasi A.L., Nature 2000, Error and attack tolerance of 
complex networks, 406, 378 

Barabasi A.L., Albert R., and Jeong H., Physica A 1999, Mean-field theory for scale-free 
random networks, 272, 173 

Berdica K., Transport Policy 2002, An introduction to road vulnerability: what has been 
done, is done and should be done, 9(2) 117 

Callaway D.S., Newman M.E.J., Strogatz S.H., and Watts D.J., Physical Review Letters 
2000, Network Robustness and fragility: Percolation on Random Graphs, 85(25) 

Chen A., Yang H., Lo H.K., and Tang W.H., Transportation Research Part B 2002, 
Capacity reliability of a road network: an assessment methodology and numerical 
results, 36, 225 



ATRF 2010 Proceedings 

14 

Clark S., and Wattling D., Transportation Research Part B 2005, Modelling network 
travel time reliability under stochastic demand, 39, 119 

CMTT, Committee for Melbourne Transport Taskforce to the East-West Link Needs 
Assessment 2007, http://melbourne.org.au/taskforces/project/melbourne-s-transport-
taskforce/  

Dall’Asta L., Barrat A., Barthelemy M., and Vespignani, A., Integrated European Project 
– DELIS 2006, Vulnerability of weighted networks, http://www.delis.upb.de/paper/DELIS-
TR-0340.pdf 

Dorogostev S.N., and Mendes J.F.F., Oxford Press 2003, Evolution of networks: From 
Biological Nets to the Internet and WWW 

Evans R., Burke M., and Dodson J., Urban Research Program – Griffith University 2007, 
Clothing the Emperor?: Transportation modelling and decision making in Australian 
cities, http://www98.griffith.edu.au/dspace/browse-title 

Goodwin P., and Wright G., Decision Analysis for Management Judgement 4th edition 
2009, a John Wiley and Sons Ltd. Publication, 194 

Jenelius E., Petersen T., and Mattsson L.G, Transportation Research Part A 2006, 
Importance and exposure in road network vulnerability analysis, 40, 537 

Mathew T.V., and Rao K.V.K, Introduction to Transportation Engineering 2007, NPTEL 
Program India 

McNally M.G., Handbooks in transport Volume 1: Handbook of transport modelling 2000, 
The Four-Step Model 

Newman M.E.J., The New Palgrave Dictionary of Economics 2nd edition 2008, The 
mathematics of networks 

Sakakibara H., Kajitani Y., and Okada N., Journal of Transportation Engineering 2004, 
Road Network Robustness for Avoiding Functional Isolation in Disasters, 130(5), 560 

Scott D.M., Novak D.C., Aultman-Hall L., and Guo F., Journal of Transport Geography 
2006, Network Robustness Index: A new method for identifying critical links and 
evaluating the performance of transportation networks, 14, 215 

VPPIA, Victoria’s project prioritisation submission to Infrastructure Australia 2008, 
http://www.transport.vic.gov.au 

Watling D.P., Transportation Science, A second order stochastic network equilibrium 
model, 36(2), 149 

Yin Y., Ieda H., Transportation Research Record 2001, Assessing performance reliability 
of road networks under nonrecurrent congestion, 1771, 148 

Population of Melbourne suburbs has been taken from: http://www.dse.vic.gov.au: 
“Victoria population bulletin 2010” ISBN 1834-6650 

http://melbourne.org.au/taskforces/project/melbourne-s-transport-taskforce/
http://melbourne.org.au/taskforces/project/melbourne-s-transport-taskforce/
http://www.delis.upb.de/paper/DELIS-TR-0340.pdf
http://www.delis.upb.de/paper/DELIS-TR-0340.pdf
http://www98.griffith.edu.au/dspace/browse-title
http://www.transport.vic.gov.au/
http://www.dse.vic.gov.au/

