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  ABSTRACT 

The applications of Artificial Neural Networks (NN) in estimating work trip distribution is a 
unique case study as its performance is not only measured in term of the error level in the 
estimated trips, but also by its ability to satisfy the Production and Attraction constraints. 
Previous research indicated that NN models were unable to fulfil those constraints and had 
rather poor generalization ability. However, this study has indicated that a NN with simple 
data normalization and a linear activation function (Purelin) in the output layer could 
accomplish the two constraints, with average correlation coefficients (r) of 0.958 and 0.997 
for Production and Attraction respectively. The test results have also provided evidence that 
a validated NN could provide a similar goodness of fit as a doubly-constrained gravity model. 
However, the error level is still higher than the gravity model as indicated by the average 
Root Mean Square Error (RMSE), where the RMSE for the NN and Gravity Model are 181 and 
174 respectively. Finally, the study suggests that the NN can be used to calibrate doubly-
constrained trip distribution matrices; although, further study and refinement is required to 
improve the model’s performance.       
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1. INTRODUCTION 
 
The success of a transportation planning study is dependent upon many factors. One of 
them is the existence of a reliable supporting data set. Among the data itself, the Origin and 
Destination work trip data is of particular importance because the trend of future trip flow 
can be predicted. As transport development impacts can cover multidimensional aspects of 
life such as society, the environment and the economy, the trip distribution data must have 
acceptable levels of accuracy and precision.  A robust and efficient technique is required to 
predict the patterns of trips in the future, so that the desired outcomes and impacts can be 
achieved and anticipated. There is no technique in trip distribution that is universally 
applicable, so attempts to develop alternative ways are always needed. This includes the 
adoption of approaches from other disciplines. Neural Networks are one of them and are 
proposed as an alternative method in this study. 
 
The use of NN in modelling activities is growing fast and covers many disciplines, including 
transport systems. The literature suggests that NN were used in some 13 categories of 
transport studies up to year 1990 where driver behaviour simulation models had the highest 
percentage of NN applications (Dougherty, 1995). However, more recent investigation 
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indicates a growing adoption of NN in travel demand modelling, dominated by Mode Choice 
and Trip Distribution.  
 
An approach must be supported by logic and sensible underpinning theory, and without it 
NN is just a naive computational tool. According to Black (1995), NN is an intelligent 
computer system that mimics the processing capabilities of the human brain. It is a 
forecasting method that specifies output by minimizing an error term indicated by the 
deviation between input and output through the use of a specific training algorithm and 
random learning rate (Black, 1995; Zhang et al, 1998). 
 
Various studies in transportation provide evidence of the advantages and disadvantages of 
using NN. It is usually compared with the existing methods in relevant studies. For example, 
the multilayer perceptron neural network has been compared with the Discrete Choice 
Model (DCM) for mode choice study as reported by Cantarella & de Luca (2005), Hensher & 
Ton (2000), Carvalho et al. (1998), and Subba Rao et al. (1998). There is less application of 
NN in trip distribution compared to mode choice studies. Black (1995) reported a study of 
spatial interaction modelling using NN focusing on commodity flows. This model was 
structured similarly to the doubly constrained gravity model (DCGM) and named as the 
Gravity Artificial Neural Network (GANN). For passenger flow modelling, Mozolin et al. 
(2000) used NN to model trip distribution,  also characterized by DCGM. The studies by Black 
and Mozolin et al. were also multilayer perceptron neural networks. 
 
NN is characterized by its important properties, such as learning algorithm, activation 
function, number of layers, number of nodes inside each layer, and learning rate (Teodorovic 
and Vukadinovic, 1998, Dougherty, 1995). The amount of data and the split of the data used 
for training, validating and testing is also important for NN fitting performance (Carvalho et 
al., 1998). Zhang et al. (1998) suggested that in the absence of proper guidelines, NN model 
development can only be done through trial and error procedures.  There is also a lack of 
reported studies on the behaviour of NN with regard to these properties.  
 
Lack of knowledge in defining the main properties of NN could lead to disadvantages in using 
this artificial intelligent approach, for example if the modeller is unable to enforce the 
network to behave according to the required constraints. This happened in the study by 
Mozolin et al. (2000). They reported that NN was unable to meet the double constraints and 
they used adjustment factors for the output of the NN so that it met the Production and 
Attraction constraints. They also reported that NN had rather poor generalization ability. 
Although this was not comprehensively discussed, Black (1995) presented a small report 
about the same issue in commodity flow estimation using NN. It was not clear whether the 
model can properly satisfy the constraints. 
 
This study aims at meeting the Production and Attraction constraints and improving the 
generalization ability by looking more intensively in the selection of the activation function 
and data normalization methods. There appears to be little research until recently on the 
relative performance of using difference activation functions, including a combination of 
linear and non-linear activation functions. Therefore, the effects of different activation 
functions toward the performance of the networks have not been previously investigated.  
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Meanwhile, Zhang et al. (1998) suggested that a linear transfer function is practical for use in 
forecasting, especially when the targets involve continuous values. However, the previous 
research merely used the same activation functions between hidden and output layers, and 
used the logistic function to capture the nonlinearity between input and output data. Thus, a 
study that investigates the impact of different activation functions toward the network 
performance could be a significant contribution to this approach development.  
 
This study focuses on passenger trip distribution, especially work trips. The Neural Networks 
are categorized into two grand scenarios, termed Norm 1 and Norm2. Norm1 and Norm2 
are used to asses the ability of the NN in fulfilling the constraints based on different data 
normalization methods. Norm1 is also used in testing the generalization ability of the NN to 
predict the work trips. Neural Networks with a constant number of ten nodes in the hidden 
layer were trained and validated. Different activation functions between hidden and output 
layers were used, which seems not to have been done before.  Comparisons with the doubly 
constrained gravity model (DCGM) were used to measure the generalization ability of NN 
models.  
 
 
2. MODEL DEVELOPMENT AND METHODOLOGY 
 
The models are developed using the structure as illustrated by Figure 1. This has three input 
nodes representing the Trip Production (Pi), Trip Attraction (Aj) and Distance (Dij).  There is 
one node in the output layer, the estimated trip number (Tij). Each node is connected to the 
hidden layer nodes by connection weights wj-i and wk-j. The work trip data is based on the 
2005 home interview survey conducted in Padang City, West Sumatra, Indonesia. This 
includes 36 zones. Two data normalization methods are used in this study, namely simple 
and statistical normalizations. Simple normalization will convert the input data to the range 
[0, 1]. The statistical normalization will convert the input data based on its mean and 
standard deviation. Matlab 7.0.1 is used to develop the network, where the initial 
connection weights are randomly defined by the tool.  
 
To investigate the network ability to fulfil the Production and Attraction constraints, the 
network is trained with whole data. To avoid over-fitting, the training is limited to 100 
epochs. Over-fitting may still occur, however, this will not affect its generalization ability 
since the testing is not undertaken yet at this stage. The objective here is only to examine 
the Production and Attraction output generated by the network. 
 
 
 
 
 
 
 
 
 

 
 

Figure 1 The Network Topography 
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Meanwhile, the second category of the network is aimed at examining the generalization 
ability of the network. In order to avoid over-fitting, the network can be validated so that the 
training is stopped when the error in the validation network starts to increase (Zhang et al., 
1998). Therefore, there is also validation and testing in addition to the training. 40 per cent 
of the whole data is used to train the model, 30 per cent is used to validate the model and 
the other 30 per cent is used to test it. The data set members are randomly selected without 
replacement.  The training is limited to 100 epochs. 
 
NN is a forecasting method based on the functions of the human brain in processing 
perceived information. There is no objective mathematical formulation used in each node, 
except the summation in the hidden and output layer nodes. The summation in the hidden 
layer is to add together the results of multiplications between the inputs and the connection 
weights connecting them. Meanwhile, the summation in the output node is to add together 
the results of multiplications of summation in the hidden layer nodes and the weights 
connecting them with the output nodes.  Then, the results are compared with the actual 
ones. If the difference is above the limit, the connection weights are adjusted based on that 
error which is back propagated to the network. The adjustment is conducted based on the 
Marquardt-Lavenberg algorithm for nonlinear least squares (Hagan and Menhaj, 1994).   
 
There are four common activation functions according to Teodorovic and Vukadinovic 
(1998), and two of them are Sigmoid and Linear functions. Sigmoid functions have often 
been used in different transportation studies, such as the studies by Mozolin et al. (2000), 
Carvalho et al. (1998), and Black (1995). Although the activation function is one of the main 
properties of the NN, there is no study specifically reporting the use of different activation 
functions and their impact on the network performance. Three activation functions are used 
and combined in this study. They are the Tansig, Logsig and Purelin functions. The 
mathematical formulations of these functions are given below. 
 

1. Tansig         (1) 

2. Logsig         (2) 

3. Linear           (3) 
 

 
 
 
 
 
 

Figure 2 Common Activation Function 

 
The first and second activation functions will squeeze the summation results in each node of 
the hidden and output layers based on the graphs depicted by Figure 2. The Tansig function 
will give results in the range [-1, 1] and for Logsig in [0, 1]. Meanwhile, the linear transfer 
function will not change the summation results and just transfers them after the summation 
process, and hence the outputs have no limits. With this knowledge, the selection of the 
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activation function and the data normalization is a crucial decision. The following factors are 
considered in selecting the activation function: 
 

1. The activation functions in the hidden layer must be able to capture the nonlinearity 
between input and output  

2. Different activation functions can be used in the hidden and output layers 
3. Due to all the data being positive, the activation in the hidden layer must not allow 

the summation outputs to be negative values 
4. The activation functions in the output layer merely summarize the results from 

previous layer, and hence the nonlinearity between output and input is only captured 
in the hidden layer 

5. The activation function in the output layer must ensure it does not generate negative 
outputs (estimated trips)  

 
Based on the explanations above, Logsig is a suitable activation function in the hidden layer. 
For the output layer, Purelin is then considered the most suitable function for forecasting 
the trip numbers. However, other activation functions will be also used in the output nodes 
in order to see their impacts on the average network performance. Details are given in Table 
1. 
 
Table 1  Network Scenarios 

Scenario 
Data 
normalization 

Activation function 
Number of 
experiment  

Data 

Hidden 
Layer 

Output 
Layer 

Input nodes Output Node 

 Norm1 xi = xo/xmax Logsig Purelin 10 times Trip Production  
  Logsig Logsig  Trip Attraction Observed Trip 
  Logsig Tansig  Distance  
Norm2 xi = (xo- x)/SD Logsig Purelin    

 
Due to the random /stochastic nature of the initial weights selection, each training will result 
in different outputs and performance. Therefore, the training is conducted ten times, and 
then the average performance is used at the final measurements. 
 
Firstly, the network is trained with the whole data for both grand scenarios (Norm1 and 
Norm2) which have the Logsig and Purelin activation functions in the hidden and output 
layers. The purpose is to define the impact of different data normalization methods (Norm1 
and Norm2) to the accomplishment of constraints based on the correlation coefficient (r) 
between the estimated and observed Production and Attraction. After that, the impacts of 
different activation functions, but the same data normalization (Norm1) are investigated 
through modification in grand scenario Norm1, as can be seen in the Table 1.  
 
The independent t-test is used to evaluate the significance of the difference in the average 
performance between each grand scenario in terms of the average Root Mean Square Error 
(RMSE) and correlation coefficient (based on Fisher’s Z transformation). The paired t-test is 
used within the Norm 1 scenario, to investigate the significance level of the change in the 
average performance before and after modification (Logsig-Purelin, Logsig-Logsig, Logsig-
Purelin). The Fisher’s Z transformation is used to conduct the statistic test for r. Meanwhile, 

an independent 2-test is used to test the variation within each scenario.  
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The best scenario is then compared with the doubly-constrained gravity model calibrated 
using Hyman’s maximum likelihood algorithm (Hyman, 1969). The generalization ability of 
the network in term of relative performance to predict the trip numbers are defined based 
on two categories, namely the error level (RMSE) and the ability to predict the trend (r). 

Finally, independent t, Fisher’s Z, and 2-tests are conducted to measure the testing 
performance of the NN compared to the Gravity model. 
 
 
3. DATA OUTPUT ANALYSIS 
 

The result of each training is reported in Tables 2, 3, 4 and 5. Table 2 contains the results of 
the training of grand scenarios Norm1 and Norm2 as described in the previous section. It can 
be seen that the two scenarios with the same activation functions in hidden and output 
layers (Logsig-Purelin) generate different figures (r), especially for the Production constraint. 
The Norm1 scenario is able to satisfy both constraints. In addition, the NN model can fulfil 
the Attraction constraint with higher correlation coefficient than the Production constraint.  
 
The average r for Production (rP) is 0.958 and 0.816 for Norm1 and Norm2 respectively. The 

2-test suggests that variations between each experiment within the same scenario are not 
significant for both grand scenarios.  Then, Norm1 has a significantly higher rP than Norm2 
as tested statistically using Fisher’s Z transformation for the correlation coefficient. Both 
scenarios have an average r for attraction (rA) that is above 0.99, and the difference 
between them is not significant. The test results also suggest that the first grand scenario 
has a significantly higher performance in term of level of error (RMSE) and correlation 
coefficient (rT) between estimated and observed trips. It can be concluded that when the 
data is normalized to its maximum value, the neural network can fulfil both constraints 
satisfactorily.  
 
Table 2 Mean and Variance test for Norm1 and Norm2 

Trial 
Norm1 Norm2 

rP rA rT RMSE rP rA rT RMSE 

1 0.955 0.996 0.846 157 0.819 0.997 0.812 172 
2 0.965 0.996 0.836 161 0.829 0.998 0.81 172 
3 0.948 0.996 0.845 157 0.790 0.997 0.805 175 
4 0.951 0.996 0.846 157 0.803 0.996 0.819 169 
5 0.957 0.997 0.842 159 0.820 0.997 0.814 171 
6 0.964 0.997 0.841 159 0.808 0.997 0.811 172 
7 0.958 0.997 0.837 161 0.838 0.996 0.826 166 
8 0.959 0.997 0.839 160 0.826 0.997 0.811 172 
9 0.960 0.997 0.848 156 0.811 0.996 0.811 172 
10 0.964 0.996 0.843 158 0.814 0.997 0.818 169 
Mean 0.958  0.997  0.842 159 0.816  0.997  0.814 171 

2 
test 1.354 

(19.02)  
1.564  
(19.02)  

2.258 
(19.02)  

0.502 
(19.02)  

2.880  
(19.02)  

3.613 
(19.02) 

 

t- test 3.460 
(2.009) 

-0.070 
(2.009) 

2.315 
(1.96) 

13.23 
(2.262) 

    

 
Although the Norm1 with Logsig and Purelin activation functions in hidden and output layers 
can fulfil both constraints satisfactorily, some of the outputs (the estimated trips) have 
negative values. This arises because the activation function in the output layer does not 
squeeze the summation to the same interval as the input data. This is not the same as the 
real data, where there are no negative trips. Thus, the activation function in the output layer 



32
nd

 Australasian Transport Research Forum   7 

 

is switched to Logsig which will squeeze the output within the range [0, 1]. The weakness of 
this function when used in the output layer is that it squeezes the output non-linearly (see 
Figure 2b). Tansig is also used in the output layer, and its weakness when used in the output 
layer is the same as Logsig. However, it transfers the output within the range [-1, 1]. This 
could level up its performance. The results of these trials are reported in Table 3. 
 
Table 3 Mean and Variance Tests for Grand Scenario Norm1 for the Correlation Coefficient (r) 

Trial 
Logsig-
Tansig 

 
Logsig- 
Logsig 

 
Logsig-
Purelin 

 Logsig-
Tansig 

 
Logsig- 
Logsig 

 
Logsig-
Purelin 

 

rP rA rP rA rP rA zP zA zP zA zP zA 

1 0.962 0.996 0.955 0.995 0.955 0.996 1.969 3.047 1.8903 2.9653 1.886 3.132 
2 0.966 0.997 0.937 0.995 0.965 0.996 2.027 3.234 1.7137 3.0255 2.008 3.106 
3 0.962 0.997 0.956 0.996 0.948 0.996 1.973 3.250 1.8938 3.1190 1.810 3.159 
4 0.962 0.996 0.959 0.996 0.951 0.996 1.969 3.132 1.9371 3.1190 1.838 3.132 
5 0.940 0.996 0.938 0.996 0.957 0.997 1.734 3.082 1.7245 3.0819 1.905 3.250 
6 0.966 0.997 0.927 0.995 0.964 0.997 2.026 3.188 1.6388 2.9653 2.001 3.234 
7 0.963 0.996 0.950 0.997 0.958 0.997 1.983 3.145 1.8318 3.1732 1.919 3.285 
8 0.946 0.996 0.956 0.996 0.959 0.997 1.792 3.082 1.8926 3.1454 1.936 3.285 
9 0.947 0.995 0.958 0.996 0.960 0.997 1.806 3.005 1.9247 3.1063 1.946 3.188 
10 0.967 0.997 0.945 0.995 0.964 0.996 2.039 3.188 1.7810 2.9846 1.995 3.094 
Mean 0.958 0.996 0.948 0.996 0.958 0.997 1.932 3.135 1.8228 3.0685 1.924 3.187 

2 test 3.669 

(19.02)  

1.951 

(19.02)  

3.140  

(19.02)  

1.774  

(19.02)  

1.354  

(19.02)  

1.564 

19.02)  

Fisher’s Z-transformation test -0.043 

(2.02)  

0.294 

(2.02)  

0.583 

(2.02)  

0.678 

(2.02)  
  

 
The results suggest that both Tansig and Purelin when being used in the output layer have 
very similar correlation coefficients; however, the variance is higher for Tansig than Purelin. 

The variation within each scenario is measured again by using the 2-test. It can be seen in 

Table 3 that the variation is not significant, where Logsig-Purelin has the lowest 2 values. 
Then, a paired two-tailed t-test based on Fisher’s Z transformation with a level of confidence 

( ) of 0.05 shows that the modified scenarios perform at the same level as the base scenario 
(Logsig-Purelin). If the performance of the modification is compared to each other, then the 
Logsig-Tansig scenario is better than Logsig-Logsig scenario in term of average correlation 
coefficient. The Logsig-Tansig scenario allows the output to be outside the range [0, 1], but 
still in the range [-1, 1]. This indicates that the linear function in output layer (Logsig-Purelin) 
is more suitable for forecasting the trip numbers than others. Therefore, the ranking of the 
best performance is as follows: 
 

1. Logsig-Purelin 
2. Logsig-Tansig 
3. Logsig-Logsig 

 
However, using a linear function in the output layer also has weaknesses. The outputs can be 
negative values, and this is against the reality where there is no such negative trip. The 
number of negative outputs is about five per cent of the whole data (1296 samples). Among 
that five per cent sample, more than 95 per cent has its original value of zero (no trip). In 
dealing with this case and finding, a modification is applied to the estimated trips. The 
modification is intended to remove the negative outputs, yet, the performance should 
remain constant. In adjusting the output of the network, the following conditions are 
applied. 

         (4) 
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Thus, the negative value trip is replaced by zero. As the negative outputs belong to the zone 
where there was no trip, removing negative values will not change the performance 
significantly. The average r for Production is slightly changed than before modification; 
however, it is not statistically significant. Therefore, this approach is acceptable. 
 
Finally, the performance of the Norm1 scenario is compared with the doubly-constrained 
gravity model. The comparison is conducted at two levels, calibration and testing 
(generalization ability).  The results are reported in Tables 4 and 5. The results suggest that 
the calibration performance for all scenarios in Norm1 outperforms the Gravity’s Model as 
the error level is significantly lower, while the correlation coefficient is significantly higher. 
 
Table 4 Comparison between Norm1 Scenario and Gravity Models (Calibration) 

Trial 
RMSE  Correlation Coefficient (r)  

Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  

1 160 159 157 0.839 0.842 0.846 

2 164 153 161 0.831 0.855 0.836 

3 160 159 157 0.839 0.842 0.845 

4 161 159 157 0.838 0.841 0.846 

5 153 154 159 0.854 0.853 0.842 

6 163 155 159 0.832 0.851 0.841 

7 160 160 161 0.839 0.839 0.837 

8 157 159 160 0.846 0.841 0.839 

9 159 159 156 0.841 0.841 0.848 

10 162 158 158 0.836 0.844 0.843 

Mean 160 158 159 0.840 0.845 0.842 

Gravity’ RMSE = 168;  r= 0.822 
2
     6.126(19.02)  4.918(19.02)  2.258(19.02) 

t- test  -8.149(1.960)  -13.25(1.960)  -16.881(1.960)  2.013(1.960)  2.679(1.960)  2.348(1.960)  

 
Table 5 Comparison between Norm1 Scenario and Gravity Models (Testing) 

Trial 

RMSE  Correlation Coefficient (r)  

Logsig-
Tansig  

Logsig-
Logsig  

Logsig-
Purelin  

Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  

1 170 184 175 0.819 0.786 0.809 

2 212 185 176 0.769 0.796 0.811 

3 168 176 178 0.829 0.805 0.806 

4 174 176 194 0.809 0.807 0.757 

5 171 180 181 0.816 0.800 0.793 

6 181 187 179 0.795 0.801 0.805 

7 196 173 191 0.762 0.812 0.804 

8 173 181 177 0.814 0.817 0.807 

9 173 171 180 0.813 0.821 0.804 

10 176 174 175 0.809 0.811 0.813 

Mean 179 179 181    

Gravity’ RMSE = 174;  r= 0.827  
2
     12.293(19.02)  3.071(19.02)  6.293(19.02)  

t-test  1.307(1.960)  3.054(1.960)  3.31(1.960)  -1.349(1.960)  -1.273(1.960)  -1.526(1.960)  

 
The gravity model has a statistically better performance in term of Root Mean Square Error 
(RMSE) than the neural network at the testing level, except for the Logsig-Tansig scenario. 
However, that scenario has the highest variation in the correlation coefficient than others. 
Then, both models have almost the same ability in predicting the trend or the pattern of the 
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trip number distribution as indicated by the value of r. It can be concluded that for this data 
set the NN model can calibrate the trip matrix better than the gravity model suggested by 
the calibration results. It can predict the trend at the same level as the gravity model, but 
with higher discrepancy between estimated and observed trips. In order words, neural 
network can calibrate the trip matrix, with the result closer to the distribution of the base 
trip matrix; however, the error is slightly higher than the Gravity model when predicting the 
trip as indicated by the test results. 
 
 
4. CONCLUSIONS AND FURTHER STUDIES 
 
Based on the results of the experiment as explained in the preceding sections, it can be 
concluded that the Neural Network model can be used to calibrate and to forecast trip 
distribution, especially for work trips. It is able to accomplish the Production and Attraction 
constraints satisfactorily. Neural Network is also able to estimate the work trip number 
distribution.  The correlation coefficients between estimated and observed trips are 
statistically the same. However, the discrepancy between estimated and observed trips is 
still higher than those found for the gravity model.  
 
Further attention must be devoted in selecting the activation function as well as the 
normalization methods. The research indicates that normalizing the data to its maximum 
value is more appropriate in calibrating the models as indicated by this NN model’s ability to 
satisfy the constraints, which is higher than the statistical normalization method. It also 
suggests that the linear activation function is more suitable in the output layer than non-
linear functions for calibration purposes.  
 
Further studies will involve using other method in normalizing the input data. Based on the 
findings in this research, non-linear data transformation could further improve the testing 
performance of the Neural Network. It is due to the input data will be nonlinearly 
transformed, including the target values (tij). Thus, the error computation will be based on 
the deviation between the NN model outputs (tij), which are nonlinearly transformed by the 
Tansig or Logsig function, and the target values (Tij) which are also transformed nonlinearly 
by using Tansig or Logsig functions.  
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