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Abstract 
Public-transport (PT) timetables and their compliance mirror the quality of the PT service 
provided. Hence, vehicles departing too early or ahead of schedule need to be restrained, 
just as those leaving late must be scheduled or rescheduled to be on time. Because of 
existing problems of PT reliability, there is need to improve the correspondence of 
vehicle-departure times with passenger demand instead of assuming that passengers will 
adjust themselves to given timetables (excluding situations characterized by short 
headways). With the advance in technology of passenger information systems, the 
importance of even and clock headways is reduced. This allows for the possibility to 
create more efficient schedules from both the passenger and operator perspectives. This 
work contains a methodology framework with developed algorithms for the derivation of 
vehicle departure times (timetable) with either even headways or even average loads and 
with a smoothing consideration in the transition between time periods. The procedures 
presented are accompanied by examples and clear graphical explanations. It is 
emphasized that the PT timetable is one of the predominant bridges between the operator 
(and community) and the passengers, and thus its improvement will increase the level-of-
service for the PT passengers.  
 
 
Main subject and keywords: Public transport, timetables, passengers’ level of service. 
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INTRODUCTION 
 
The Public Transport (PT) timetable is one of the predominant bridges between the 
operator (and community) and the passengers. Therefore more attention should be 
provided for the construction of the timetable in order to improve its correspondence with 
fluctuating passenger demand. 

In general terms, the PT operational planning process includes four basic 
components performed in sequence:  (1) network route design, (2) setting timetables, (3) 
scheduling vehicles to trips, and (4) assignment of drivers (crew).  It is desirable for all 
the four components to be planned simultaneously to exploit the system’s capability to 
the greatest extent and maximize the system’s productivity and efficiency.  However this 
planning process is extremely cumbersome and complex, and therefore seems to require 
separate treatment of each component, with the outcome of one fed as an input to the next 
component. This work is related to Component (2) of the planning process.   

 
Literature Review  
The problem of finding the best dispatching policy for PT vehicles on fixed routes has a 
direct impact on constructing timetables. This dispatching-policy problem, which has 
been dealt with quite extensively in the reviewed literature, can be categorized into three 
groups: (1) models for an idealized PT system, (2) simulation models, and (3) 
mathematical programming models. 
 The first group, idealized PT systems, was investigated by, among others, Newell 
(1971), Osana and Newell (1972), Hurdle (1973), Wirasinghe (1990, 2003), and De 
Palma and Lindsey (2001). Newell (1971) assumed a given passenger-arrival rate as a 
smooth function of time, with the objective of minimizing total passenger waiting time. 
He showed analytically that the frequency of transit vehicles with large capacities (in 
order to serve all waiting passengers) and the number of passengers served per vehicle 
each varied with time approximately as the square root of the arrival rate of passengers. 
Osana and Newell (1972) developed control strategies for either holding back a transit 
vehicle or dispatching it immediately, based on a given number of vehicles, random 
round-trip travel times with known distribution functions, and uniform passenger-arrival 
rates with a minimum waiting-time objective. Using dynamic programming, they found 
that the optimal strategy for two vehicles and a small coefficient of variation of trip time 
retained nearly equally spaced dispatch times. Hurdle (1973), investigating a similar 
problem, used a continuum fluid-flow model to derive an optimal dispatching policy 
while attempting to minimize the total cost of passenger waiting time and vehicle 
operation.  
 Wirasinghe (1990, 2003) examined and extended Newell’s dispatching policy 
while considering the cost components initially used by Newell (1973).  Wirasinghe 
considered the average value of a unit waiting time per passenger (C1) and the cost of 
dispatching a vehicle (C2) to show that the passenger-arrival rate in Newell’s square root 
formula is multiplied by (C1/2C2). Wirasinghe also showed how to derive the equations 
of total mean cost per unit of time by using both uniform headway policy and Newell’s 
variable-dispatching policy. 

De Palma and Lindsey (2001) develop a method for designing an optimal 
timetable for a single line with only two stations. The method is suitable for a situation in 
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which each rider has a precise time in which they want to travel; travelling earlier or later 
than desired increases the total cost. The objective is to minimize riders’ total schedule-
delay costs. Two cases are analyzed with respect to passenger preferences. In the first 
case, all passengers treat a unit of delay equally. The second case assumes several rider 
groups, with different level of delay costs ascribed to riders from the different groups. In 
addition, the researchers compared two models: a “line” model, in which preferred travel 
times are uniformly distributed over part of the day and trips cannot be rescheduled 
between days; and a “circle” model, in which preferred travel times are uniformly 
distributed over the full 24-hour day and trips can be rescheduled between days. Optimal 
timetables are derived for each of the models. 
 In the second group, simulation models were studied by, for example, Marlin, 
Nauss, and Smith (1988), Adamski (1998), and Dessouky et al. (1999). Marlin et al. 
(1988) developed a simulation model for dispatching t PT vehicles every day. They 
checked the feasibility of the results and used mathematical programming for vehicle 
assignments in an interactive computer-support system. Adamski (1998) employed a 
simulation model for real–time dispatching control of transit vehicles while attempting to 
increase the reliability of service in terms of on-time performance. His simulation 
implemented optimal stochastic control with linear feedback. The use of intelligent 
transportation systems was applied by Dessouky et al. (1999) in a study of bus 
dispatching at timed transfer points. The researchers used a simulation analysis to show 
that the benefit of knowing the location of the bus was most significant when the bus was 
experiencing a significant delay, especially when there was a small number of connecting 
buses at transfers point. 
 Mathematical programming methods, the third group for determining frequencies 
and timetables, have been proposed by Furth and Wilson (1981), Koutsopoulos et 
al.(1985), Ceder and Stern (1984), Ebelein et al.(1998), Galla and Di-Miele (2001), and 
Peeters and Kroon (2001). Furth and Wilson sought to maximize the net social benefit, 
consisting of ridership benefit and waiting-time saving, subject to constraints on total 
subsidy, fleet size, and passenger-load levels. Koutsopoulos et al. extended this 
formulation by incorporating crowding-discomfort costs into the objective function and 
treating the time-dependent character of transit demand and performance. Their initial 
problem consisted of a non-linear optimization program relaxed by linear 
approximations. Ceder and Stern addressed the problem with an integer programming 
formulation and a heuristic person-computer interactive procedure. Their approach 
focuses on reconstructing timetables when the available vehicle fleet size is restricted. 
Ebelein et al. (1998) studied a special dispatching problem for the purpose of introducing 
dead-heading trips in high-frequency transit operations.  They solved their dispatching 
strategy optimally; they also determined the number of stops that could be skipped in 
order to minimize total passenger cost in the system.  

Galla and Di-Miele (2001) produced a model for the special case of dispatching 
buses from parking depots. Their model is based on the decomposition of generalized 
assignments and design, non-crossing, and matching sub-problems. It can be extended to 
a case in which there is an overlap between arrival and departure- vehicle flows. Peeters 
and Kroon (2001) present a procedure for planning an optimal cyclic railway timetable; 
i.e., a timetable in which trains leave at the same minute every hour. The problem is 
represented through a constraint graph, in which each node is an event that needs to be 
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scheduled; cycles are examined according to a calculation of tensions and potentials. The 
model is formulated as a mixed-integer nonlinear program with the objectives of 
minimizing passenger time, maximizing timetable robustness, and minimizing the 
number of required trains. A solution procedure is suggested, by which the nonlinear part 
of the formulation is transformed into a mixed-integer linear problem that is an 
approximation of the original problem; further actions are taken in order to reduce the 
number of constraints. 

In this paper another group of dispatching policy is introduced and called data-
based models initiated and described by Ceder (1986, 2003, 2007).  
 
STUDY FRAMEWORK 
 
The bus timetable is perhaps the main reference for defining unreliable bus service. The 
assumption that passengers will adjust themselves to given timetables (with headways of, 
say, longer that 10 minutes) instead of adjusting the timetables to the passenger demand 
is one of the largest sources of unreliable service. When passenger load is higher than 
expected, the bus is slowing down (increased dwell time), behind schedule and entering 
the inevitable process of further slow down. This will eventually lead to the known 
bunching phenomenon with the buses behind (Ceder, 2007). Opposite to that is the 
situation of overestimating the demand which may result in buses running ahead of time. 
Both situations are not observed when the service is highly frequent and characterized by 
low variance of the headway distribution. 
 This work aimed at proposing and analyzing three different procedures for better 
matching the passenger demand with a given timetable while attempting to minimize the 
number of departures (leads to reducing the number of buses which is one of the main 
resources). This will result in a more reliable and comfortable service. Commonly, across 
almost all the PT agencies, the frequency is determined by the maximum load procedure.  
This max load procedure is established to ensure adequate space to accommodate the 
maximum number of on-board passengers, along the entire route, for a given time period 
(e.g. one hour). That is, 

                                        F max
l
d

 ,  Fj
j

j
mj=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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 (1) 

where lj is the average (over days) maximum number of passenger (max load) observed 
on-board in period j, dj is the desired occupancy (load factor) in period j, and Fmj is the 
minimum required frequency (number of buses) in period j. The minimum frequency is a 
standard set for a minimum level of service, and the desired occupancy is the planning 
standard of the acceptable load. 
 Figure 1 presents schematically the three procedures to be proposed and analyzed, 
along with their input and outcome. Procedure 1 produces departure times with evenly 
spaced headways while considering a smooth transition between adjacent hours. This 
procedure is based on the given standards dj  and  Fmj for each hour j and on the j-th 
hourly max load, lj . Procedure 2 determines departure times such that, in average sense, 
buses will carry on even dj  loads at the hourly max load point. This procedure 2 is based 
on dj , Fmj  and on individual bus loads at the hourly max load point where lj  is observed. 
Procedure 3 derives the departure times such that, in average sense, the on-board 



5 
 

passenger load will not exceed dj , and will be equal to dj  at each individual bus max load 
point (as opposed to the lj  points in procedure 2). 
 

INPUT PROCEDURE OUTCOME 

• Average 
Hourly (j) 
Max Load (lj) 

 

• Hourly (j)  
Desired 
Occupancy (dj ) 

 

• Hourly (j) 
Minimum 
Frequency 
(Fmj) 

• Individual 
Bus Loads at 
the lj point 

 

• dj  
 

• Fmj 

• Individual 
Bus Loads 
Across the 
Entire Bus 
Route  

 
• dj  

 
• Fmj 

Procedure 1: 
 

Even Headways 
with smooth 
transitions  

Procedure 2: 
 

Even Average 
Loads on 
Individual Buses 
at the lj points 

Procedure 3: 
 

Even Average 
Loads on 
Individual Buses 
at their 
Individual 
Maximum Load 
points  

Departure Times 
with Evenly Spaced 
Headways for each 
Hour 

Departure Times 
Arranged for Even 
Average Loads on all 
Buses at lj points  

Departure Times 
Arranged for Even 
Average Loads on all 
Buses at their 
Individual Maximum 
Load points  

FIGURE 1   Overview of the procedures used in the study 
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PROCEDURES 
 
In this section the three procedures exhibited in Figure 1 are fully described.  In addition, 
a numerical example is introduced to illustrate the principles and application of each 
procedure. 
 
Example Problem and Initial Analysis 
The example problem is used as an explanatory device for three procedures. Table 1 
contains the necessary information and data for a 2-hour example j = 1, 2 of a bus route 
from A to C with one stop at B. There are 5 departures observed. For each departure 
Table 1 contains the average observed on-board passenger at both boarding points A and 
B. The minimum required frequency is Fmj = 2, j = 1, 2.  The desired occupancy is d1 = 50 
and d2 = 55 passenger per bus, and the average travel time from A to B is 18 minutes. 
 
TABLE 1.  Input and observed data of the example 
 
Route:  
 
Average 
Travel Time:  

 
 
 
 
 
 
Time 

 
 
 
Observed 
Departure 
Time  
at A 

Average Observed Number 
of Passengers on-board 

the Bus 

 
Hourly 
Average 
Maximum 
Load  
(HAML) 
Point 

 
 
 
 
Desired 
Occupancy 
(pass/bus) 

Derived Values 
Frequency 

(bus/hr) 
Headway 

(min)
 
 
at 
A 

 
 
at 
B 

Hourly Demand H 
A 
M 
L 

I 
M 
 

H 
A 
M 
L 

I 
M 
 

 
at  
A 

 
at  
B 

Ind. 
Max.
(IM) 

 
7 - 8 
a.m. 

7:15 
7:45 

30 
80 

65 
35 

 
125 

 
148 

 
193 

 
     B 

 
     50 

 

2.96 
 

3.86 
 

20 
 

16 

 
8 - 9 
a.m. 

8:10 
8:30 
8:50 

25 
94 
88 

80 
72 
67 

 
 
192 

 
 
177 

 
 
214 

 
 
     A 

 
 
     55 

 
 
3.49 

 
 
3.89 

 
 
17 

 
 
15 

Minimum Frequency: 2 buses per hour 
 

The estimated hourly demand is also included in Table 1. It is based on two basic 
assumptions: (a) the average load observed is a representative value of the actual demand 
and it is independent of the exact setting of departure times; (b) the passengers observed 
on-board are accumulated at a uniform rate. The first assumption can be realized when 
using the vast amount of data anticipated from equipment like APC (Automated 
Passenger Counters), or when the schedulers have reliable sources of information 
provided by road inspectors and supervisors. The second assumption usually holds when 
the observed headways are relatively small. For headways greater than 30 minutes, some 
of the passengers may time their arrival and, if data is available, this second assumption 
may not be needed. 

Referring to the example in Table 1, the hourly demand for the first hour, between 
7 - 8 a.m., j = 1, is based not only on the average loads observed, but also on part of the 
load observed on the first bus in the second hour, j = 2. That is, the average load on the 

A B C 

18 min 
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first bus in j = 2 is divided proportionally in order to reflect the demand at the end to the 
period j = 1. Therefore, at point A and B the loads of 25 and 80 associated with the 8:10 
departure, are divided into 3/5 and 2/5 where the 3/5 portion is related to the j = 1 
demand.  This proportion is stem from the 25 minutes difference between the last 
departure of the period j = 1 (7:45) and 8:10 where 15 minutes of this time difference 
belongs to j = 1, and 10 minutes to j = 2. 

The hourly demands at A and B are 125 and 148 passengers, respectively, for j = 
1, and 192 and 171, respectively, for j = 2. This means that for j = 1 the hourly max load 
point is B with l1 = 148, and - point A for j = 2 with l2 = 192. In addition, the third column 
under hourly demand, in Table 1, includes a newly element called individual max hourly 
demand. This demand reflects the sum of the max on-board loads observed on each bus, 
in each hour, while considering also the proportion of max demand associated with the 
first bus of the next hour. The results are 193 and 214 passenger demand for j = 1, 2, 
respectively, where, for the example of j=1, one obtains 193 = 65 + 80 + (3/5)x 80. The 
interpretation of this element is clarified under the description of procedure 3. 

Finally in the last four columns in Table 1 there are the derived frequencies and 
headways based on equation (1). The headway Hj for hour j, is simply the inverse of the 
frequency, and in minutes: 

                                                  H 60
Fj

j

=  (2) 

Therefore, for j = 1, 2 the frequencies based on the hourly max load points are 
2.96 and 3.49, respectively, and are 3.86 and 3.89 buses per hour for the individual max  
load hourly demand, respectively. 
 
Procedure 1 
One characteristic of existing transit timetables is the repetition of the same headway in 
each time period. The scheduler, using Hj , is facing, however, a problem on how to set 
the departure times in the transition segments between adjacent time periods. In addition, 
the scheduler (or existing software) usually round-up the frequencies Fj to the next 
integer, prior the use of equation (2). In this section it is shown that in order to save 
resources there is no need to round-up Fj  and moreover the transition between hours (or 
any other time periods) can be carried out in a simple and accurate manner. 
 
The Underlying Principle of Procedure 1 

The simple way, used by many bus agencies, to smooth the headways during the 
transition time is to consider an average headway between two adjacent hours. This 
average rule may result in either undesirable overcrowding or underutilization. For 
example, using equations (1) and (2) one obtains H1 = 25 and H2 = 9 minutes with 
average of 17 minutes.  Thus, a timetable can be set to 7:00, 7:25, 7:50, 8:07, 8:16, …By 
assuming uniform arrival rate with d1 = 50 and d2 = 60, j = 1 contributes for the 8:07 
departure (10/25) x 50 = 20 passengers, for the remaining 10 minutes between 7:50 and 
8:00, and j = 2 contributes (7/7) x 60 = 60 passengers. The total is 20 + 60 = 80 average 
passengers, on the 8:07 departure, representing overcrowding.  In order to overcome this 
undesirable situation the following principle is employed. 
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Principle 1:  Establish a curve representing the accumulative frequency versus the time 
(adding the non-integer value of the frequency determined with respect to time).  Moving 
horizontally, for each departure, until intersecting the accumulative curve, and then 
vertically, results with the required departure times. 
 
Proposition 1:  Principle 1 provides the required evenly spaced headways with a 
transition load approaching the average of du  and du+1 , where du  and du+1  are the desired 
occupancies for two consecutive time periods.  
 
Proof:  Figure 2 illustrates Principle 1 using the information in Table 1.  Since the slopes 
of the lines are 2.96 and 3.49 for j = 1 and j = 2, respectively, the resultant headways are 
those required.  The transition load is the one determined for the 8:01 departure, and is 
comprised of 20 minutes arrivals for j = 1, and 1 minute arrival for j = 2. Therefore 
(20/20) x 50 +(1/17) x 55 = 53 approximately. This transition load is not the exact 
average between d1 = 50 and d2 = 55 since departures are made in integer minutes.  That 
is, the exact determined departure after 8:00 is (3-2.96) x 60/3.49 = 0.688 minutes, and 
inserting this value instead of 1 minutes in the above calculation yields a closer value to 
the exact average.  Basically, the proportions considered satisfy the proof-by-construction 
of Proposition 1. 

Figure 2 exhibits the resultant six departures for procedure 1 where the 
determined frequencies are kept non-integer. Principle 1, therefore, allows for saving 
some unnecessary bus runs and also stabilizes the average load during the transition 
segment between time periods. 
 
Procedure 2 
While arriving with procedure 1 to a satisfactory timetable, with even headways, it is still 
unclear if the loads on individual buses will not exceed dj , for all j.  It is well-known that 
passenger demand varies even within a single time period, reflecting the business, 
industrial, educational, cultural, social and recreational transit needs of the community. 
This dynamic behaviour provides a basis for the scheduler to adjust the departure times. 
These adjustments are not done frequently unless there is a clear cut information (e.g. 
from the road supervisions) to support it. Nonetheless with the anticipated vast amount of 
passenger load data (e.g. from APCs) it is possible to construct procedures to better 
match the timetables (departure times) with the variable demand. This and the next 
section provide such procedures. 
 
The Underlying Principle of Procedure 2 
The results of procedure 1 starts with the 7:20 and 7:40 departures for j = 1. The 
frequency required, based on the hourly max load point, is 2.96 for j = 1 (as is shown in 
Table 1). This frequency aimed at 50 passengers per bus while considering the entire 
hourly max demand.  However, the assumption of uniform passenger arrival rate, 
between the observed departures, results in 65/15 = 4.3 passengers/minute between 7:00 
and 7:15 and 35/30 = 1.2 pass/min between 7:15 and 7:45 at the hourly max load point B. 
Therefore, the 7:20 departure (by procedure 1) may result in 65 + 1.2 x 5 = 71 
passengers; significantly above the desired 50 passengers. In order to avoid this 
imbalanced situation the following principle is exploited. 
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FIGURE 2   Determination of the example departure times (at A) for evenly spaced 
headways with a smoothing process between time periods 

Time 

Accumulative 
Frequency  
(# of required 
buses) 

7:20 7:40 8:01 8:18 8:35 8:52

9:008:007:00

1

2

3

4

5

6

7
2.96 + 3.49 = 6.45

2.96
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Principle 2:  Construct a curve representing the accumulative loads observed on 
individual buses at the hourly max load points. Moving horizontally per each dj  for all j, 
until intersecting the accumulative curve, and then vertically, results with the required 
departure times. 
 
Proposition 2:  Principle 2 results in departure times such that the average max load on 
individual buses, at the hourly j max load point, approaches the desired occupancy dj . 
 
Proof:  Figure 3 illustrates Principle 2 for the example problem appearing in Table 1. The 
derived departure times are unevenly spaced to obtain even loads at points B for j = 1 , 
and point A for j = 2. These even loads are constructed on the accumulative curve to 
approach d1 and d2  for j = 1, j = 2, respectively. Assuming uniform passenger arrival rate 
between each two observed departures shows that the load (at B) of the 7:45 departure (at 
A), for example, is comprised of the arrival rate between 7:12 and 7:15 (65/15 = 4.3) and 
the rate between 7:15 and 7:45 (35/30 = 1.2). Thus, 4.3 x 3 + 1.2 x 30 = 49 which is 
approaching d1 = 50.  Moreover, in the transition between j = 1 and j = 2, the value of d2 = 
55 is considered since the resultant departure is after 8:00.  The load of the bus departing 
A on 8:16 at its hourly max load point A, is comprised of (25/25) x 25 + (94/20) x 6= 
53.2 which is approaching d2 = 55. The exact value of d2 can be obtained only for 
departures with non-integer minutes. This completes the proof-by-construction of 
Proposition 2. 
 Figure 3 includes the results of procedure 2 with six departures. The last departure 
at 8:52 is determined using a slight extrapolation of the uniform passenger arrival rate 
between 8:30 and 8:50. 
 
Procedure 3 
While procedure 2 ensures even average loads of dj  at the j-th max load point, it does not 
guarantee that in other bus stops the average load will not exceed dj  and, therefore, may 
result in overcrowding.  The purpose of the procedure presented below is to derive the 
bus timetable provided that in an average sense all buses will have even loads (equal to 
the desired occupancy) at the max load stop of each bus.  That is, for a given time period 
each bus may have a different max load point across the entire bus route with a different 
observed average load.  The objective set forth is to change the departure times such that 
all observed average max loads will be same and equal to dj during all j.  Certainly the 
adjustments in the timetable are not intended for highly frequent urban services where the 
headway is less than say, 10 minutes, or an hourly frequency of about 6 vehicles or more.  
Behind this procedure is the notion that passenger overcrowding situations (loads greater 
than dj ) should be avoided. 
 
The Underlying Principle of Procedure 3 
The results of procedure 2 are exhibited in Figure 3. Considering in that Figure, for 
example, the resultant departure at 7:45 with 50 average passengers on-board at point B. 
From Table 1 it is clear that point B is the j=1 max load point. However, one does not 
know what is the average load in the other stops, and in the example problem, it is 
referred to point A. Since the first departure is at 7:12, the accumulative load at A  
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FIGURE 3   Determination of the example departure times (at A) 
with even loads at the hourly maximum load point 

Accumulative 
load  
(# of 
passengers) 

Time 

7:11 8:16
8:28

8:40
8:53

7:45

9:008:007:00

155

210

265

320

50

100

150

200

250

300

350

55

50
65

100

125

219

307

7:15 7:45 8:10 8:30 8:50

Observed Departure 
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between 7:12 and 7:45 is of interest. For that purpose the data in Table 1 is used while 
constructing an accumulative curve of the observed loads at A. The average load at A for 
the 7:11 departure results in 22 passengers (30/15 = 2 pass/min arrival rate).  The average 
load at 7:45 is combined from the remaining passengers between the observed 30 at 7:15 
and 22, and those observed on the 7:45 departure. That is (30 - 22) +80 = 88 passengers. 
No doubt that the 7:45 departure faces, in an average sense, overcrowding at A while 
complying with d1 = 50 at B.  In order to overcome this undesirable possible 
overcrowding the following principle is employed. 
 
Principle 3:  Construct an accumulating passenger load curve at each stop (except the 
arrival point). Moving horizontally per each dj , for all j, on each curve, until intersecting 
each of the accumulative curves, and then vertically to establish a departure time for each 
curve.  The required departure time is the minimum one across all curves.  Using the last 
determined departure time, set the loads across all the curves and add the considered or 
next dj . Repeat until the end of the time span. 
 
Proposition 3:  Principle 3 results in departure times such that the average max load 
observed on individual buses approaches the desired occupancy dj. 
 
Proof:  Figure 4 illustrates Principle 3 for the first three departure of the example 
problem in Table 1. Fig. 4 shows the accumulative load curves of the three buses where 
the curve at B is shifted by 18 minutes to allow for an equal time basis (at the route’s 
departure point) in the analysis. At the initialization the value of 50 is coordinated with 
the two accumulative curves to obtain: 7:11 at B and 7:22.5 at A. According to principle 
3 one selects the minimum time between the two to be the first departure at 7:11 
(emphasized in Fig. 4). It means that the first bus is shifted backward by 4 minutes to 
have at B, in an average sense, 50 instead of 65 passengers. Then one adds d1 = 50 to 50 
at stop B curve, and to 22 at stop A curve. This results in 7:31 and 7:45 departures. 
Hence, 7:31 is the next departure, and the procedure continues and results in 7:56 as the 
last departure at the period [7:00 - 8:10]. Adding dj =50 to 122 (at A) or to 134 (at B) 
results in departures beyond 8:10. The bus of 7:11 has its d1=50 passengers at B and the 
bus of 7:31 -at A. This completes the proof-by-construction of Proposition 3. 

Figure 4 includes at its bottom the complete set of departure times of the example 
problem. If extrapolating the accumulative curve, another departure can be set at 
approximately 9:00. 
 
Comparison 
The comparison between the observed data of the example problem and the results of the 
three procedures is summarized in Table 2 and illustrates in Figure 5. In Table 2 the 
associated individual average max load and its corresponding stop appear in brackets 
under each departure. It can be seen, as expected, that only procedure 3 complies with 
balanced loads at the critical individual max load points. 

Figure 5 presents the diversity of the individual max loads across all the 
procedures and the observed ones. Certainly this comparison is applied only to the 
specific example problem in Table 1, and varies from one situation to another. In  
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Accumulative  
Passenger Load 

Complete dep. times:  7:11, 7:31, 7:56, 8:12, 8:24, 8:36, 8:48 
(determined) 

FIGURE 4   Determination of the first three departure times (at A) considering 
even loads at the individual bus maximum load point 

50

150

0

200

122

72

22

7:15 7:45 8:10

30

Observed
Departure

t

STOP
A

50

100

150

7:00

200

134

(t-18)

STOP
B

180

100

65

7:567:11
:20 :208:00

(1) (3)

84

7:31
7:587:22.5

(2)

110

135

7:00
0

7:45

Time

120
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TABLE 2.  Departure times and loads of the observed data and for 
  the three procedures 

 
Departure 1st 2nd  3rd 4th  5th 6th 7th Characteristic 
Observed 7:15 

(65,B)* 
7:45 
(80,A) 

8:10 
(80,B) 

8:30 
(94,A) 

8:50 
(88,A) 

 
    _ 

 
    _ 

Observed 

Procedure 1 7:20 
(72,B) 

7:40 
(54,A) 

8:01 
(57,B) 

8:18 
(58,B) 

8:35 
(81,A) 

8:52 
(75,A) 

 
   _

Even Headways 

Procedure 2 7:11 
(50,B) 

7:45 
(88,A) 

8:16 
(99,B) 

8:28 
(79,A) 

8:40 
(52,B) 

8:53 
(61,A) 

 
    _ 

Even Load at 
Hourly Max 
Load Point 

Procedure 3 7:11 
(50,B) 

7:31 
(50,A) 

7:56 
(50,B) 

8:12 
(55,B) 

8:24 
(55,A) 

8:36 
(55,A) 

8:48 
(55,A) 

Even Load at 
Individual Max 
Load Point 

*(i, j)  in bracket means: i = average individual max load associated with the  
cell's departure time, j = the stop where i is observed or determined 

 
situations where the hourly max load point is usually coincided with the individual max 
load, the results of procedure 2 will be close to those of procedure 3. 
 

CONCLUDING REMARKS 
 
Different bus agencies use different scheduling strategies based primarily on their own 
schedulers’ experience, and secondarily on their scheduling software (if any). As a result, 
it is unlikely that two independent bus agencies will use exactly the same scheduling 
procedures, at the detailed level. In addition, even at the same bus agency, the schedulers 
may use different scheduling procedures for different groups of routes. Consequently, 
there is a need when developing computerized procedures to supply the schedulers with 
alternative schedule options along with interpretation and explanation of each alternative. 
Three such alternatives are presented in this work. Also, undoubtedly, it is desirable that 
one of the alternatives will coincide with the scheduler manual procedure. In this way, the 
scheduler will be in a position not only to expedite manual tasks but also to compare the 
different procedures regarding the trade-off between passenger comforts and operating 
cost. 
 This work presents the creation of bus (and potentially rail) timetables with even 
headways and even average passenger loads on individual buses. Average even loads on 
individual buses can be approached by relaxing the evenly spaced headways pattern 
(rearrangement of departure times). It is known that passenger demand varies even within 
one hour, reflecting the business, industrial, educational, cultural, social and recreational 
public transport needs of the community. This dynamic behaviour can be detected 
through passenger load counts, and information provided by road supervisors. The 
adjustments of departure times, made in this work by three procedures, form the basis to 
improve the correspondence of bus departure times with the fluctuated passenger 
demand. These adjustments, resulting in a balanced load timetables, are based on a given 
bus desired occupancy at the maximum load point of each bus. The keyword here is to be  
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FIGURE 5   The example departure times and average maximum 
loads on individual buses as observed and obtained by 
the three procedures 

 
able to control the loading instead of being exposed repeatedly to an unreliable service 
resulting from imbalance loading situations. 
 With the growing problems of PT reliability, and advance in the technology of 
passenger information system the importance of even and clock headways is reduced. 
This allows for introducing alternative timetables with the consideration of even average 
loads on individual buses. The construction of such timetables takes into account, in 
essence, the passenger perspective. The controlled procedures for adjusting the timetable, 
will eventually reduce one of the major sources of unreliable service, resulting also in the 
reduction of wait and travel times. 
 
 

Average 
Individual 
Maximum Load  
(# of 
passengers) 

Time 

50

60

70

80

90

100

40
7:00 7 :30 8 :308 :00 9 :00
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P ro ced ure  3

P ro ced ure  1
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