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Abstract: Different transportation modes (such as road, rail, coach and air) have vastly different economic 

and environmental impacts. Understanding the interrelationships between transportation networks, the 

economy and the environment therefore requires an understanding of the modal shares of the transportation 

network. The acquisition of mode-choice decision data is however, a costly and time-consuming process, 

often necessitating a reliance on secondary data sources. Such secondary sources may well be at a higher 

level of aggregation than required, again due to the costs and time involved in fine-grained data collection.  

 

In such cases, one method to satisfy the need for disaggregate data is to predict the lower level mode-choice 

decisions from the known mode-choice decisions at the more aggregate level. This paper examines such a 

scenario, using a secondary data set collected at a high level of aggregation (15x15 OD-pairs) to develop a 

model to predict transport behaviour at a lower level of aggregation (154x154 OD-pairs). 
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1  INTRODUCTION 

 

Over the past two decades there has been significant research devoted to the construction of 

land use and transport models for major metropolitan areas with relatively high population 

densities (Wegener, 2004). In contrast, the development of analogous models for rural and 

regional areas has not attracted the same level of interest, with the notable exceptions of a 

small number of national models developed primarily in Europe (Daly, 2008) These systems 

evidence the usefulness of models capable of evaluating policy instruments outside of 

metropolitan areas, but no such capability currently exists in Australia. 

 

The development of such models requires both demand- and supply-side information about 

transportation movements and networks. Furthermore, this information must be available in 

the same geographic units as used in the model. Whilst much supply-side information is 

publicly available (for example, census data on vehicle ownership, public transport 

timetables, airline route schedules etc.), demand-side data is more difficult to obtain. The 

reasons for this are many: trips by personal vehicle are not centrally recorded; commercial 

operators may consider their patronage figures to be commercially sensitive, and governments 

may consider figures from nationalised operations to be politically sensitive. 

 

In the absence of actual demand-side figures, travel surveys become one of the main 

methods of obtaining demand-side data. The collection of primary survey data is a costly 

process however, particularly if the survey is to be conducted at a high level of geospatial 

disaggregation. It must be remembered that if origin-destination (OD) data is to be collected, 

the number of OD-pairs increases quadratically with respect to the number of zones. 
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If sufficient resources are not available to commission a survey especially for the model to 

be developed, a practitioner may be forced to rely on a survey undertaken for an entirely 

different purpose. There is no guarantee that the available survey data will employ the desired 

geospatial partitioning. The survey data may have been collected at a higher level of 

aggregation or perhaps using an overlapping geography to that which is to be used.  

 

This study considers the former case, examining the disaggregation of mode choice trip 

data collected for large, highly aggregate geospatial areas to smaller, less aggregate geospatial 

units. Using a secondary survey data source collected at a high level of geospatial 

aggregation, trip-prediction models for four different modes of transportation are estimated. 

These models are then applied at the desired (more disaggregate) level to obtain trip 

predictions for this level. The predictions can then be used in a subsequent stage to develop an 

integrated land use and transport model system. 

 

 

2 METHODOLOGY AND RESULTS 

 

2.1 Data source 

 

The primary data source discussed in this paper is the National Visitor Survey (NVS) 

conducted annually by Tourism Research Australia (2008). Each year, 120,000 Australian 

residents are surveyed using random digit dialing and a computer aided telephone interview 

(CATI). This survey is the principal source of information on domestic tourism movements in 

Australia. Information about the movements of international visitors is collected separately. 

As “tourism”' in this context is defined to include holidaying, visiting friends and relatives 

and travel for business, education or employment, the survey covers a broad range of 

passenger movements. 

 

Data from the survey is divided into two parts: movements involving an overnight stay, and 

those that do not. Whilst this division is relevant from a tourism perspective (overnight stays 

lead to economic activity in the accommodation and hospitality sectors), from a transport 

perspective no such distinction is necessary. For this reason, all trips, leading to an overnight 

stay or not, were combined into a single data set for the purposes of this study1. The survey 

considers five different modes of transport: car (both private and rental), bus, plane, and other 

(train). The two car modes were combined into a single mode. 

 

Data from the NVS is reported at the Tourism Region (TR) level. Tourism regions are 

defined by State and Territory tourism authorities and are comprised of sets of Statistical 

Local Areas (SLA), the smallest spatial unit in the Australian Standard Geographical 

Classification in non-Census years2 (ABS, 2008). This study focuses on passenger 

movements within New South Wales (NSW) and the Australian Capital Territory (ACT). In 

total, there are 15 tourism regions within NSW and the ACT (see Figure 1). 

 

Details of the trip data collected in the 2007 NVS is summarised in Table 1. As TRA does 

not publish estimates for the total number of trips wholly contained within individual states,     

                                                           

1 Tourism Australia provided data on trips undertaken in the one day as a separate file on the understanding that sample sizes 

are relatively small. This data is normally not released. 
2 In census years, a smaller unit denoted a Census Collection District (CD) is defined for ease of collection and dissemination 

of census data. 



 

Figure 1. NSW and ACT Tourism Regions and LGA boundaries. 

 

 

the assumption has been made here that survey trips (within NSW/ACT) translate into 

estimated total trips at the same rate as they do at a national level. These figures would               

therefore differ from those obtained by TRA, which are calculated with consideration to other 

demographic variables such as age, sex and household size. 

 

These trips are reported by Tourism Region OD-pairs, of which there are a total of 225 

considered in this study. Whilst a substantial number of trips are available for the car mode, 

other modes, particularly air, provide comparatively few observations. Surveyed trips are not 

uniformly distributed across OD-pairs, with those involving a state capital (Sydney or 

Canberra) as an origin or a destination much more often represented in the data. Particularly 

for the non-car modes, numerous OD-pairs exist where the number of trips observed (<40) is 

smaller than what TRA considers necessary to draw statistically significant conclusions; 

however at this stage these observations have not been removed from the data set. There are 

also OD-pairs where no observed trip data is available and cannot be used in the estimation of 

models. The number of OD-pairs for which data exists was: car, 218; bus, 113; air, 86; and 

other, 105. 

 

2.2 Aggregation bias and the ecological fallacy 
 

An ecology fallacy is committed when conclusions about subsets of a population (or an area) 

are made on the basis of information about the whole population (or an aggregate area). The 

use of prediction models estimated on aggregate geospatial areas to make predictions about 

disaggregate areas immediately raises the possibility of having committed such a fallacy. The 

implication of this is that any such predictions made may contain an amount of aggregation 

bias due to unobserved heterogeneity at the disaggregate level. It is not possible to test for 

aggregation bias without accurate data at the disaggregate level for the dependent variable.  



Table 1. NVS 2007 statistics - Australia-wide and intra-NSW/ACT 

 Overnight Day Trips 

Total survey respondents reporting travel: 38,633 20,264 

Total survey trips (Australia-wide): 73,750 147,737 

Estimated total trips (Australia-wide): 73,800,000 147,700,000 

Intra-NSW/ACT survey respondents (total)3: 9,992 5,961 

- by car 8,804 5,537 

- by bus 268 186 

- by plane 432 28 

- by other 517 390 

Intra-NSW/ACT survey trips (total)
3
: 20,098 47,718 

- by car 17,816 43,068 

- by bus 553 1,409 

- by plane 847 239 

- by other 952 3,310 

Estimated intra-NSW/ACT total trips: 20,111,625 47,706,049 

 

 

Paradoxically, if such data were universally available it would negate the need to make 

disaggregate-level predictions and similarly the need to test for aggregation bias. 

 

It can be readily seen that LGAs in NSW/ACT are not homogeneous insofar as their 

demography, geography or commercial activities are concerned. To what extent these 

differences produce heterogeneity in the consumption of long distance transport is difficult to 

quantify without data from comprehensive travel surveys covering multiple disparate 

geographic regions. The use of a single model (for each mode) when there are multiple TRs 

within NSW means that even making predictions about the aggregate regions assumes a 

degree of homogeneity between these aggregate geographic regions. At the aggregate level it 

is possible to quantify the amount of variance accounted for by the model as the actual trip 

values are known. This information may provide some guidance as to the reliability of the 

model at the disaggregate level. 

 

Whilst it is necessary to consider the theoretical possibility of aggregation bias in the 

chosen methodology, this must be weighed against more practical considerations, such as the 

cost of undertaking large-scale travel surveys. This study should therefore be considered a 

first-pass attempt to produce a highly-disaggregate description of long distance travel within 

NSW and the ACT4, with a view to future model refinement and improvement as further 

information and resources become available. 

 

2.3 Model Estimation 

 

Models for trips between TRs were estimated for all four modes. The available explanatory 

variables included a range of demographic data: population (individuals and households), 

household size, average personal income, four household income category variables, and 

number of vehicles per household categories. These variables were considered for both origin 

and destination TRs. Inter- and intra-zone distances were also available. Inter-zone distances 

were calculated from the population weighted centroids of each TR. As this definition would 

lead to an unrealistic (zero) distance for  trips between the same TRs, intra-zonal distance was 

 

                                                           

3 Individual values do not sum exactly due to multi-mode respondents. 
4 The most recent National Travel Survey was conducted in 1976, over 32 years ago. 



Table 2. Descriptive profile of the explanatory variables 

Variable Mean Median Std Dev. Min. Max. 

Distance (km) 385.41 328.37 234.52 23.16 1032.21 

Population 457,487 237,545 919,941 33,791 3,747,179 

Num. Households 163,007 87,017 314,533 12,335 1,285,363 

Avg. Household Size 2.71 2.70 0.08 2.59 2.92 

Median Household Income $913.72 $849.83 $224.72 $685.75 $1534.26 

% HHs Income < $500 26.14% 26.76% 5.74% 11.72% 34.45% 

% HHs $500 < Income < $1000 28.06% 29.09% 3.77% 18.48% 33.09% 

% HHs $1000 < Income < $2000 31.38% 32.14% 2.48% 26.66% 35.59% 

% HHs Income > $2000 14.42% 11.35% 7.49% 7.50% 34.21% 

% HHs 0 vehicles 9.69% 9.48% 2.03% 7.06% 14.04% 

% HHs 1 vehicles 39.04% 38.78% 2.93% 35.26% 44.35% 

% HHs 2 vehicles 36.21% 36.48% 2.15% 32.46% 39.03% 

% HHs 3 vehicles 10.52% 10.42% 1.34% 8.82% 12.58% 

% HHs > 3 vehicles 4.55% 4.38% 0.91% 3.29% 6.22% 

 

instead defined to be the „radius‟ of the zone, assuming that the zone was circular. Finally, 

dummy variables were introduced to account for trips where the origin and/or destination was 

Sydney, due to the disparity between this TR, which is metropolitan, and the other TRs, 

which are all regional/rural. A descriptive profile of the explanatory variables (at the TR 

level) is shown in Table 2. The variables “Pop”, “Dist”, “HSize” and “Syd” refer to zone 

populations, distance, household size and the Sydney dummy respectively; the subscripts “O” 

and “D” denote origin and destination respectively.  

 

Models were estimated using LIMDEP v9.0 and the final model specifications are shown in 

Table 3. Origin and destination populations feature in all models with positive coefficients as 

expected. The use of double log models permits direct interpretation of the elasticities for the 

explanatory variables. Distance exhibits negative coefficients for both the road-based modes, 

with car trips having a greater sensitivity to distance than bus trips. Distance occurs as linear 

and quadratic terms in the Air and Other models, but with opposite signs. The result of this is 

that air travel is more appealing for medium-range travel (~500km); conversely, train (other) 

travel is least appealing over these distances. Anecdotal evidence suggests that air travel 

within NSW over longer distances would involve non-trunk routes and often a transfer to a 

smaller aircraft, which is likely to be a disincentive. The presence of household size in the car 

model is explained by the cost effectiveness to larger families in using a private motor vehicle 

in comparison with other modes. Finally, the reduced travel by car and increased travel by 

train for travel wholly within Sydney (as evidenced by the presence of the Sydney dummy), 

can be explained by the presence of a comprehensive urban transport network within this 

region that is not present in the regional and rural TRs. 

 

Plots of predicted versus actual trips, along with adjusted R-squared values of the estimated 

models, are shown in Figure 2. 
 

Table 3. Final model specifications by mode 

ln(TripsCar)  = -5.7526+0.68669ln(PopO)+0.53150ln(PopD)-1.5038ln(DistOD)+3.3058ln(HSizeO)-1.193SydOD 

ln(TripsBus) = -0.4232+0.41396ln(PopO)+0.18647ln(PopD)-0.97825ln(DistOD) 

ln(TripsAir) = -15.648+0.60768ln(PopO)+0.64014ln(PopD)+0.00523DistOD-0.40981E-05DistOD
2 

ln(TripsOther) = -13.1897+0.63759ln(PopO)+0.69911ln(PopO)-0.01124DistOD+0.10630E-04DistOD
2+0.95811*SydOD 

 

 

 



 
Figure 2. Predicted vs Actual trips (by mode) at TR-level 

 

 

2.4 Model Application 

 

The models estimated previously were subsequently applied at the LGA-level to obtain 

LGA-LGA trip estimates. All data items from the TR-level were similarly available at the 

LGA-level, with inter-/intra-TR distances being replaced by analogous inter-/intra-LGA 

distances. 

 

A problem was immediately apparent with this approach, owing to the substantial size and 

proximity differences between TRs and (mainly urban) LGAs. The negative distance 

coefficient for all land-based modes, coupled with the significantly lower distances caused by 

the change from TR- to LGA-level distances, led to predictions of an excessive number of 

trips within and between small and close LGAs. Whilst all models suffer from this problem, it 

was most apparent for the car model due to the much higher number of car trips than for any 

other mode. Figure 3 shows the scale differences between this variable at the two levels. 

Close LGA pairs can be seen to exhibit distances more than two orders of magnitude smaller 

than their corresponding tourism regions. 

 

Table 4. Model coefficient t-ratios 

 TripsCar TripsBus TripsAir TripsOther 

Constant -2.396 -0.236 -6.676 -5.872 

ln(PopO) 11.072 4.933 6.022 6.100 

ln(PopD) 10.893 2.317 5.951 7.336 

DistOD – – 2.906 -6.845 

DistOD
2 – – -2.265 5.701 

ln(DistOD) -14.207 -9.119 – – 

ln(HSizeO) 1.442 – – – 

SydOD -4.8 – – 2.112 
 



 

Figure 3. Ratio of applicable TR- to LGA-level distance for all LGA-LGA pairs 

  

In order to resolve this, LGA-level distances were replaced by the applicable TR-TR 

distances for the TRs containing the origin and destination LGAs. This is of little practical 

significance for widely separated LGAs, but for small or close LGAs it provides a measure of 

distance in line with that originally used to estimate the models. Whilst this serves to correct 

the extreme over-predictions caused by small and/or close LGAs, it must be noted that values 

below the unity (10
0
) line demonstrate that this method will also increase the predicted 

number of trips between some LGA-LGA pairs. Following this adjustment, the models were 

re-applied at the LGA level in order to obtain LGA-LGA trip estimates for each mode. 

 

Ideally, predictions made at the LGA-level, when aggregated, should reproduce the 

estimates observed at the TR-level. As Figure 4 shows, this is not the case, with most TR-TR 

pairs exhibiting a greater predicted number of trips when the prediction is produced by 

aggregating up from predictions made at the LGA level. Ortúzar and Willumsen (1994) 

discusses the process of naïve aggregation in order to make predictions at a higher aggregate 

level from a disaggregate model. Although linear models applied at different levels of 

aggregation will produce equivalent results, naïve aggregation involving a non-linear model 

will usually introduce aggregation error5, resulting in different predictions at different levels 

of aggregation. The method being used herein is analogous to, but the reverse of, such a 

process and suffers from identical problems. 

 

The principal source of this error is the use of logarithms of the population variables in the 

model equations. Although distance and household size are also present as logarithmic terms, 

their values at the aggregate level are not calculated by summation of disaggregate level 

values (unlike the population measures). The use of TR-level distances at the LGA level and 

the fact that household size is an average indicates that the values of these variables are 

similar at both the TR and LGA levels. Unfortunately, linear models were found to give 

substantially worse model fits than those containing the logarithmic terms. 

                                                           

5 The term “aggregation error” is used here rather than Ortúzar and Willumsen‟s “aggregation bias”, to distinguish this error 

from that occurring in disaggregate estimates made from a heterogeneous aggregate population (the so-called ecological 

fallacy).  



 

Figure 4. Ratios of aggregated LGA-LGA to TR-TR trip predictions 

 

Consider the differences in the equations for trip predictions at the different levels of 

aggregation (without loss of generality, a function of only one independent variable is 

considered, for clarity of notation): 
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In order to explain why predictions made at the disaggregate level and summed result in a 

larger number of predicted trips, it is necessary to show why agg disaggy y . The full proof has 

been omitted for brevity, but essentially if 0 1 (as is the case for all coefficients of the 

population variables in the estimated models) exponentiating by  causes both a reduction in 

the value of the base 
1 1

1 1

1 1
i i

i j i j

j j

x x x x , and larger (aggregate) values to grow at 

a smaller rate than smaller (disaggregate) values. As the ix  values can be considered to be 

arranged in descending order (without loss of generality), the following inequality holds:

 



1 1i i i ix x x x . A proof by induction leads to 
1 1

1 1

1 1
i i

i j i j

j j

x x x x

 

and therefore 

agg disaggy y .

  

A prediction made at the disaggregate level and summed will therefore always be larger 

than the prediction made at the aggregate level, explaining the errors of scale observed in 

Figure 4. Whilst the exact magnitude of the error depends on the specific model equation, 

smaller values of will lead to a larger error. This is caused by the compounding effect of the 

outer  exponent in the aggregate model. For example, note that the scale of the error for bus 

trip predictions (Figure 4) is significantly higher than for other three modes as it has smaller 

coefficients on its population parameters. 

 

In order to address this error, it is necessary to constrain the total trips predicted at the 

LGA-level to either the actual or predicted trips at the TR-level. Any missing observations in 

the actual trip data will preclude scaling to actual trip counts. Scaling is a simple process of 

linear reduction to recreate the TR-level predicted (or actual) values: 
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One way of looking at this process is to consider that trip generation is occurring at the 

aggregate level but trip distribution is occurring at the disaggregate level. The final LGA by 

LGA trips data for each model is summarized in Table 5. Although some of the values 

presented in Table 5 may seem rather low, it must be remembered that the estimated trips are 

being distributed over the full 154x154 matrix of OD-pairs, many of which would have few, 

if any, tourism movements. 

 

Table 5. Descriptive statistics of annual LGA-LGA level trip predictions 

Mode Mean Median Std Dev. Min. Max. 

Car 2542.75 335.11 25291.55 5.906 3255531.00 

Bus 65.01 23.91 416.07 1.66 52290.65 

Air 35.18 18.38 66.71 0.46 1984.95 

Other 142.34 19.57 431.83 0.33 32089.28 

 

These annualised trip rates by mode for each LGA-LGA pair provide the best estimates of 

the dependent variables for a next stage model development at the LGA level. This was the 

only missing data in our full matrix of LGA by LGA trip, origin, destination, and person 

characteristics. 

 

 



3 CONCLUSIONS AND FUTURE WORK 

 

This paper has described a method by which travel behaviour may be predicted at a highly 

disaggregate level from more aggregate survey data. Trip prediction models estimated at an 

aggregate geographic level were subsequently applied at a disaggregate level in order to 

predict trip counts at that level to overcome the need to obtain survey data at that level. 

 

A number of adjustments were shown to be necessary in order to obtain „realistic‟ trip 

estimates at the disaggregate level. Firstly, variables that change significantly in scale 

between the two levels (in this case, distance) need to be corrected. The solution employed 

here was to use the aggregate level distances at the disaggregate level. Secondly, the 

prediction differences due to a non-linear model system were discussed and it was shown that 

the presence of logarithmic terms in the model will always lead to higher predictions if 

calculated at a more disaggregate level (subject to the coefficients of the explanatory 

variables). This difference was eliminated by constraining disaggregate level trip estimates to 

aggregate level predictions. 

 

One method of validating the performance of this method would be to conduct a 

disaggregate level travel survey of a number of aggregate zones to permit comparison of 

actual trip counts with predicted values. This remains an object for future work. 

 

The resulting predictions of trips between each LGA pair for each of car, bus, train and 

plane, can be used to develop a system of multi-modal models in which the production and 

attractions characteristics together with accessibility descriptors are explanatory variables. In 

ongoing research, we have used the prediction LGA to LGA trip matrices to develop 

empirical models of modal activity and embedded these within a new transport and 

environmental strategy impact simulator for regional NSW called R-Tresis (Hensher et al. 

2008). 
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