Container and ship movements through Australian ports – 2007–08 to 2029–30, preliminary estimates

Godfrey Lubulwa, Rob Bolin, Ben Slatter and Tony Carmody

Bureau of Infrastructure, Transport and Regional Economics

1 Introduction

The Australian maritime trade task is divided between containerised and non-containerised cargoes. Containerised freight is hauled by container vessels, these being cargo vessels that carry their entire load in containers. Non-containerised freight is either bulk or break-bulk freight and is hauled in a variety of vessels including chemical tankers, liquefied petroleum gas tankers, liquefied natural gas tankers, dry bulk carriers and general cargo ships. Full import containers grew at an average rate of 7.8 per cent between 2003–04 and 2006–07, while full export containers grew at an average of 5.7 per cent. Export containers contain primarily agricultural produce while imported containers carry mainly manufactured goods. Non-containerised exports were 91.7 per cent of the non-containerised freight task between 2003–04 and 2006–07. However, imports grew at a greater rate than exports. Imports grew at an average of 3.7 million tonnes per annum over the period.

The outline of the rest of the paper is as follows: Section 2 discusses models and sources of data used in the estimation of the models covered by the paper and presents estimates of port-level elasticities for: exports of full containers of sea freight from Australia, by Australian port of origin, and by each of Australia's 13 trading regions, exports of tonnes of non-containerised sea freight from Australia to each of Australia's 13 trading regions, imports of full containers of sea freight by Australian port of destination, imports of tonnes of non-containerised sea freight by Australian port of destination. Section 3 outlines our approach to constructing projections to 2029–30. Section 4 presents the key results of the study. Section 5 makes some concluding remarks.

2 Models of Australia's maritime trade

There have been previous projections of container and ship movements through Australian ports. Examples include BTRE (2002), BTRE (2006a;b). Previous studies used the gross domestic product of Japan and/or the Organisation of Economic Cooperation and Development (OECD) as proxies for income in the estimation of Australia's export demand functions. This paper instead defines 13 trading regions for Australia and estimates trading region-specific elasticities of demand with respect to GDP per head for Australia's exports. This extension makes it possible to explicitly accommodate differential GDP growth rates across Australia's trading partners in port-level projections of container and ship movements. Thus the increasing importance of China and India in Australia's trade is introduced explicitly in the models and projections. Furthermore, the paper uses an extended time series, from 1995–96 to 2006–07, in the estimation of the underlying models.

2.1 Australia's maritime exports

Containerised freight exported is measured as counts of containers in TEUs. Noncontainerised freight is measured in tonnes. For each one of these measures the paper reports estimates corresponding to equation (1):

$$\ln(PX_{ijt}) = \alpha_{ij0} + \alpha_{ij1} \ln(Exchange \ rate_t) + \alpha_{ij2} \ln(PGDP_{jt}) + u_t$$
(1)

where:

- PX_{ijt} = a generic measure of the volume of exports per head of population in the overseas destination region j, from the ith port in Australia in year t. If equation (1) refers to number of containers, then X_{ijt} denotes the full container exports from the ith port in TEUs, per head of population in region j. Data on total full containers by Australian port is from BITRE (2008a). For each year in the sample, these totals are disaggregated by overseas trading region using data on tonnes of liner freight, by Australia's trading region and by port from ABS (2008a). If equation (1) refers to the weight of non-containerised freight then X_{ijt} denotes the tonnes of non-containerised freight exports from the ith port, per head of population in region j. Data on tonnes of non-containerised sea freight are from ABS (2008b).
- Port *i* = Brisbane, Sydney, Melbourne, Adelaide, Fremantle, Other ports. The order of the first five ports (clockwise following the Australian coastline) follows the convention in BITRE's *Waterline* journal.
- Trading region *j* = Africa, North and Central America, South America, East Asia, South East Asia, South Asia, Japan, Korea, Europe, Middle East, New Zealand, Pacific Islands and Papua New Guinea, Australia (coastal shipping). The ordering of trading regions follows the convention in BITRE (2008b). Data on population and GDP for member countries of various trading regions is from the International Monetary Fund (IMF, 2008). Data on exchange rates of individual country currencies is from the Reserve Bank of Australia (RBA, 2008).
- Exchange rate = The exchange rate used in the particular model. Apart from the equation for Australian coastal shipping where the exchange rate term does not apply, various measures of the exchange rate term have been used as follows: The US dollar per Australian dollar is used in regression equations for Africa, North and Central America, and Middle East. The Chinese Renminbi is used for East Asia. Trade weighted index (TWI) is used for South East Asia. The New Zealand dollar/\$A is used for New Zealand. The unit of Special Drawing Rights (SDR), in terms of the Australian dollar, is used for South America, South Asia, Japan, Korea, Europe, Pacific Islands and Papua New Guinea. SDR is a unit of account by the IMF. SDRs per Australian dollar are determined by IMF based on the relative importance of the Australian dollar in international trade and finance. The choice of which measure is used in a given regression was made depends on the quality of the estimates and the overall R².
- $PGDP_{jt}$ = the per head real Gross Domestic Product in the jth export destination region in US dollars. *t* = is a time subscript and ranges from 1994–95 to 2006–07, *u* = error term.

 $\alpha_{ji0}, \alpha_{ij1}... \alpha_{ij2}$ are coefficients to be estimated.

In equation (1), irrespective of how measured, Australia's maritime exports depend on the GDP per head of the destination region for Australia's exports and on an exchange rate variable.

As GDP rises (or falls) in Australia's trading partner regions, the demand for Australia's exports rises (or falls). In equation (1) the paper reports estimates of coefficients for income (represented by GDP) per head in 13 regions which trade with Australia (including Australian coastal trade). The null hypothesis is that the estimate for the coefficient for trading region income per head in (1) is positive. The exchange rate term in equation (1) is a proxy for the prices of Australian exports. Devaluation (appreciation) of the Australian dollar in terms of the overseas currency is equivalent to a decrease (increase) in the price of Australian exports. The null hypothesis is that the estimate for the coefficient for Australian exports. The null hypothesis is that the estimate for the coefficient for Australia's exports. The null hypothesis is that the estimate for the coefficient for Australia's exports. The null hypothesis is that the estimate for the coefficient for the exchange rate in (1) is negative.

2.2 Australia's maritime imports

Containerised freight imported is measured as counts of containers in TEUs. Noncontainerised freight imported is measured in tonnes. For each one of these measures the paper reports estimates corresponding to the following function (2):

 $\ln(PM_{it}) = \beta_{io} + \beta_{i1} \ln(EXUSAU_t) + \beta_{i2} \ln(PSFD_{it}) + e_t$

(2)

where:

 PM_{it} is a generic measure of the volume of imports to the *i*th port in Australia, per head of population in the Australian state where port *i* is located. If equation (2) refers to full containers imported then PM_{it} is the full container imports to the *i*th port in twenty feet equivalent units per head of population in the Australian state where port *i* is located. If equation (2) refers to imports of non-containerised freight, then X_{it} denotes the tonnes of non-containerised freight imported to the *i*th port per head of population in the Australian state where port *i* is located.

Port *i* = Brisbane, Sydney, Melbourne, Adelaide, Fremantle, Other ports.

EXUSAU = Exchange rate of the US dollar per Australian dollar.

- PSFD_{it} = the chain volume measure of real State Final Demand (SFD) per head in the state where port *i* is located. In the equation for 'other ports' the chain volume measure for per head real Gross National Expenditure (GNE) of Australia is the income variable.
- *t* is a time subscript and ranges from 1994–95 to 2006–07.
- e is an error term, and

 $\beta_{i0}, \beta_{i1}..., \beta_{i2}$ are coefficients to be estimated.

In equation (2), irrespective of how measured, Australia's maritime imports depend on the SFD per head of the Australian state where the importing port is located and on the exchange rate of the United States dollar to the Australian dollar. As SFD rises (or falls) in Australia, the demand for imports in Australia rises (or falls). The null hypothesis is that the estimate for the coefficient for SFD per head in (2) is positive. The exchange rate of the United States dollar to the Australian dollar in equation (1) is a proxy for the prices of Australian imports. Devaluation (appreciation) of the Australian dollar is equivalent to an increase (decrease) in the price of Australian imports which in turn translates into a decrease (increase) in the demand for imports in Australia. The null hypothesis is that the estimate for the coefficient for the exchange rate in equation (2) is negative.

2.3 Empty containers

A number of studies have attempted to explain and estimate the volume of empty containers and their role in international maritime trade. These include Hanh (2003), Lopez (2003), Tioga Group (2002), Jarman (2004), United Nations Economic and Social Commission for Asia and the Pacific (2001) and BTRE (2006a; b). The need to reposition and thereby transport empty containers arises because of imbalances in international trade. For example not every container used for an import load to a given port can be immediately filled with an outward bound export load.

This paper adopts an approach similar to that in United Nations Economic and Social Commission for Asia and the Pacific (2001). The first step in this approach is the construction of a dataset of counts of inbound and outbound containers from the historical data in BITRE (2008a). The second step is to establish for each port and each projection year, the major directional movement (MDM) for containers, by comparison between total full export containers and total full import containers. Third, use data in the most recent observed data (2006–07) to estimate μ , the proportion of MDM empty containers to MDM full containers. We assume that μ is constant during the projection period. In the fourth step, the MDM empty containers are calculated, by multiplying the MDM full containers by μ , the proportion of MDM empty containers by μ , the proportion of MDM empty containers are then estimated as the residual of total MDM containers less the full containers in the minor flow direction.

2.4 Elasticities: estimates and their interpretation

The estimates for equation (1) are reported in Table 1 (containerised exports) and Table 2 (non-containerised exports). Table 3 gives the results for the estimates for equation (2) – for number of full containers of imports and for tonnes of non-containerised (bulk) imports.

The use of a double logarithmic function in equations (1) and (2) means that the coefficients reported in Table 1 to Table 3 for GDP per head and for the exchange rate term can be interpreted as the elasticity of demand for Australia's non-containerised sea freight in the different overseas markets with respect to those variables.

2.4.1 Containerised sea freight

Table 1 shows the estimates corresponding to the number of full export containers. The results were strongest for the aggregate equation ('all ports'). For individual ports the relationship estimated was strongest for the larger of Australia's trading regions. Japan was an exception in this regard. For the less important trading regions (in terms of trade volumes) the estimated equations were of poor quality. The results for other ports were not significant and have not been reported in the paper. The lack of significance for the relationship related to other ports is as expected because 'other ports' play a minor role in the Australia's sea-freight container trade.

2.4.2 Non-containerised sea freight

Table 2 shows the results for all Australian ports and for 'other ports'. Most of the coefficients were significant and the coefficients for both GDP per head and for the exchange rate term have the expected sign.

The regression equations for Brisbane, Sydney, Melbourne, Adelaide and Fremantle by trading region were of poor quality and are not reported. Generally their adjusted– R^2 were low (below 0.50), many coefficients were insignificant or had unexpected signs. This lack of strong results for capital city ports for non-containerised (bulk) sea-freight is not surprising given that these ports have only a small share of the non-containerised (bulk) sea freight.

A key assumption in classical regression models is that there is no serial correlation, or equivalently, no autocorrelation (Gujarati, 1995, p63). Durbin and Watson devised a method for deriving a lower bound and upper bound critical values which can be used to decide whether there is autocorrelation or not. These critical limit values depend only on N, the number of observations and k, the number of explanatory variables (excluding the constant). The lower bound and upper bound critical values for the set of models discussed in this paper where N = 13 and k = 2 are shown to be 0.861 and 1.562 respectively at a 5 per cent level of significance (Gujarati, 1995, Table D.5a, p.818). With these values, the null hypothesis that there is no autocorrelation is accepted when the Durbin-Watson statistic lies between 1.562 and 2.438 which is the case in: 55 of the 78 regressions for full containerised exports (Table 1); 19 of 26 regressions reported for non-containerised exports (Table 1); 19 of 26 regressions reported for non-containerised exports (Table 2); and 8 of 14 regressions reported for Australia's imports (Table 3). For the balance of the regression equations in these three tables, the Durbin-Watson statistic falls in the zone of indecision where it is not possible to decide whether there is autocorrelation.

3 **Projections**

This section discusses the assumptions underlying the projections, the strategy adopted in generating the projections, and presents projection results on container and ship movements through Australian ports to 2029–30. To develop projections of these variables to 2029–30 it is necessary to make assumptions about several macro-economic settings. IMF (2008) is the source for the assumptions about population growth and GDP for the short-term period to 2012–13. From then on, the growth rate is assumed to equal the rate in the last year for which an IMF forecast is available. Table 4 summarises the assumptions about the growth in GDP per head over the forecast period for each regions included in the analysis. The bottom half of Table 4 also summarises the assumptions about Australian growth in GNE per head for the short term period to 2016–17, derived from Access Economics (2006). As with the IMF forecasts, the long-term growth rate is assumed to equal the rate in the last year.

The following are assumed to be the values, from 2007–08 to 2029–30, of these exchange rate terms used in the projections:

- Chinese Renminbi / \$A = 6.52,
- European Euro / \$A = 0.60,
- Japanese Yen / \$A =97.33,
- New Zealand Dollar / \$A=1.15,
- United States Dollar / \$A = 0.89,
- Special Drawing Rights / \$A = 0.57, and
- Trade-weighted index (March 1995=100) = 139.04.

Other key assumptions relating to the proportion of 40 foot equivalent containers in total containers by Australian port, the average TEUs per vessel and the average tonnes per ship needed to estimate ship visits are from BTRE (2006b).

Full export containers and non-containerised exports projections were derived using port level regression equations. Similarly full import containers and non-containerised imports were derived using the port level set of regression equations.

Within the short-run period, the projections are completely reliant on the short-term elasticities reported in Table 1, Table 2 and Table 3 as well as the macro-economic assumptions discussed earlier. The short run is a period of 5 years from the start of the projection period.

Projections over the long run period—from the 6th year to the end of the projection period are achieved through a two step process. First the short-term elasticities in and the macroeconomic assumptions are used to generate <u>initial</u> long run projections. These <u>initial</u> projections assume that growth rates observed in the short run will continue in the long run. The short term growth rates based on short-term elasticities may not be achievable in the long run due to a variety of reasons including likely future port capacity constraints both in Australia and overseas, lower growth rates in Australia's trading regions and general maturing of Australia's export markets. The reported long run projections. Table 5 gives the average short- and long-term growth rates for Australia's exports, by trading region. Apart from Pacific Islands and Papua New Guinea, growth rates for containerised exports are projected to be lower in the long run than in the short run. This holds for all Australia's trading regions with respect to non-containerised exports.

The projections are presented in the following tables:

- (i) count of full export and import containers, TEUs (Table 6)
- (ii) count of empty containers—total of import and export, TEUs (Table 6)
- (iii) tonnes of non-containerised sea freight exports and imports (Table 7)
- (iv) number of container ship visits (Table 8) and
- (v) the number of non-container ship visits (Table 8).

In each case the 'all ports' results are compared with BTRE (2006b).

4 Key results

Econometric results from the estimation of export demand functions suggest that Gross Domestic Product (GDP) per head in Australia's trading regions is an important factor explaining the growth in Australia's exports over time. The Australian export elasticity with respect to Gross domestic product (GDP) per head varies by region. For containerised exports the elasticity is greater than 2.5 for North and Central America, South America, Japan and New Zealand, but is low (over 1 but less than 2) in most of the remaining eight regions including in the emerging regions of Korea, South Asia, East Asia and South East Asia. For non-containerised exports, demand is inelastic with respect to GDP per head in all Australia's trading regions except Japan. The statistically significant estimates of elasticities are summarised in Tables 9 to 12.

In these preliminary estimates, full containerised exports are projected to grow by 5.4 per cent per annum during the projection period increasing full containerised exports from all Australian ports by a factor of 3.3 from 1.80 million twenty foot equivalent units (TEUs) in 2006–07 to 6.01 million TEUs by 2029–30. Australia's imports of containerised freight are projected to grow by 5.1 per cent per annum during the projection period leading to full containerised imports increasing by a factor of 3.1 from 2.61 million TEUs in 2006–07 to 8.19 million TEUs in 2029-30 (Figure 1).

Similarly the preliminary estimates indicate that non-containerised exports are projected to grow by 5.0 per cent per annum increasing total non-containerised exports from all Australian ports by a factor of 3.1 from 692 million tonnes in 2006–07 to 2 155 million tonnes by 2029–30. Australia's imports of non-containerised freight are projected to grow at 1.8 per cent per annum during the projection period leading to non-containerised imports increasing by a factor of 1.5 from 118 million tonnes in 2006–07 to 180 million tonnes in 2029–30 (Figure 2).

Figure 1 – Containerised Trade, 1995–96 to 2029–30: All Ports

Figure 2 – Non-Containerised Trade, 1995–96 to 2029–30: All Ports

The preliminary estimates suggest that the number of ship visits of container and noncontainer vessels to all Australian ports, is likely to increase by a factor of 2.4 from an annual total of 28 147 in 2006–07 to an annual total of 68 400 in 2029–30 with container vessel visits growing faster at 4.2 per cent per annum while non-container vessels are projected to grow at 3.6 per cent per annum over the projection period.

4.1 Comparison with previous BITRE projections

Full containerised exports are projected to increase by 0.5 per cent per annum to 2024–25 *faster* than in previous projections in BTRE (2006b), largely due to the incorporation of higher rates of economic growth in (previously–omitted) regions outside of the USA, Japan and OECD. Some of these regions have high elasticities with respect to GDP per head for containerised exports as shown in Table 9.

Empty containerised exports are included in port totals (Table 6) and are projected to grow at a *slower* rate than in BTRE (2006a) while empty containerised imports are projected to grow at a *faster* rate. These differences are mainly due to use, in this paper, of a different methodology for estimating the number of empty containers. Overall, projection of growth in total containerised trade (full and empty containers) reported in this paper is broadly similar to BTRE (2006b) (see Table 6).

Full containerised imports (Table 6) are projected to increase at a growth rate to 2024-25 that is 0.3 per cent *lower* than projected in BTRE (2006b). This difference is largely due to two factors: (a) this paper uses State final demand while BTRE (2006b) used Australia's real GNE/ head to explain State demand for imports, and (b) for most States, at least in the short run, final demand is projected to grow slower than Australia's per capita expenditure.

Non-containerised import growth (Table 7) is projected to increase by an average rate of 1.8 per cent per annum to 2024–25—that is 0.2 per cent *higher* than the previous forecast. This higher forecast despite the lower estimated elasticities in this paper is largely due to corrections in the import data series with down-ward revisions in the earlier years and upward revisions in the more recent years.

Non-containerised export growth (Table 7) are projected to grow at an average annual growth rate in exports which is 2.6 per cent *higher* to 2012–13 and 1.3 per cent *higher* to 2024-25 than in BTRE (2006b), lifted by upward revised observed data to 2006–07 and, as with containerised exports, higher economic growth in destination regions.

Projected container ship visits are close to those in BTRE (2006b), while non-container ship visits are now projected to expand at 3.7 per cent per annum to 2024–25, resulting in at least an additional 7000 visits each year of bulk and break-bulk carriers more than previously anticipated.

5 Conclusions

This paper proposes a different way to develop projections of exports and imports of containerised and non-containerised freight and the associated ship movements through Australian ports. The proposed approach starts from export demand in Australia's trading regions and aggregating these demands to Australian port-level projections. This approach leads to similar projections to those which are based on an aggregated approach. However, this new approach generates information about elasticities with respect to GDP per head and the exchange rate which was previously not available.

Table 1 – Full containerised exports—estimates of elasticities of demand for Australian exports by port and trading region, 1994–95 to 2006–07

Port	Trading region name	GDP/head	SE 1)	Exchange rate ²⁾	SE 1)	Intercept	SE ¹⁾	Adjusted R ²	N ³⁾	DW ⁴⁾
All ports	Africa	1.68	0.68	-1.17	0.36	-10.35	0.23	0.51	13	0.98
All ports	North and Central America	2.83	0.57	-0.58	0.29	-17.69	1.77	0.72	13	1.50
All ports	South America	3.76	1.69	NS	NS	-16.79	2.85	0.23	13	1.88
All ports	East Asia	1.12	0.13	NS	NS	-9.44	0.42	0.86	13	2.47
All ports	South East Asia	1.54	0.17	-0.54	0.17	-7.91	0.02	0.92	13	2.11
All ports	South Asia	1.65	0.33	NS	NS	-9.92	0.45	0.68	13	1.83
All ports	Japan	2.57	1.03	NS 1.00	NS	-16.42	3.83	0.33	13	1.62
All ports	Furope	1.77	0.29	-1.20	0.40	-11.89	0.77	0.78	13	2.14
All ports	Middle Fast	1.39	0.32	-1.25	0.32	-14.80	0.34	0.92	13	1.58
All ports	New Zealand	3.21	0.18	0.80	0.31	-13.28	0.56	0.96	13	0.90
All ports	Pacific Islands and PNG	4.15	1.19	NS	NS	-5.34	0.28	0.46	13	1.89
All ports	Australia (coastal)	3.45	0.76			-16.70	2.66	0.62	13	1.72
Brisbane	Africa	8.72	0.92	-2.20	0.49	-11.66	0.31	0.89	13	2.19
Brisbane	North and Central America	3.96	0.74	NS	NS	-23.33	2.33	0.73	13	1.67
Brisbane	South America	11.55	4.38	NS	NS	-31.03	7.37	0.33	13	0.74
Brisbane	East Asia	1.12	0.19	NS	NS	-10.61	0.60	0.74	13	2.60
Brisbane	South East Asia	NS	NS	NS	NS	-10.15	0.22	0.10	13	2.62
Brisbane	South Asia	2.92	1.10	NS	NS	-11.07	1.52	0.30	13	1.46
Brisbane	Japan	1.98	0.67	-1.13	0.28	-15.98	2.48	0.60	13	2.11
Brisbane	Korea	3.03	0.36	-1.75	0.59	-16.83	0.98	0.86	13	2.02
Brisbane	Europe	6.39	0.54	-3.29	0.55	-31.19	1.46	0.94	13	1.93
Brisbane	Middle East	8.71	1.14	-5.72	0.74	-26.79	1.75	0.89	13	1.42
Brisbane	New Zealand	5.75	0.41	NS	NS	-23.09	1.24	0.95	13	1.60
Brisbane	Pacific Islands and PNG	-5.00	1.74	NS	NS	-5.72	0.42	0.34	13	1.80
Sudpov	Australia (coastal)	7.00	1.07			-30.19	0.32	0.58	13	2.34
Sydney	North and Central America	NS	NS	-1.92	0.44	-12.40	1.80	0.59	13	1.13
Sydney	South America	6.68	2.38	-3.71	1 17	-25.24	4.01	0.46	13	1.33
Sydney	East Asia	0.57	0.13	0.58	0.23	-11.32	0.41	0.66	13	1.92
Svdnev	South East Asia	1.04	0.40	NS	NS	-9.29	0.04	0.74	13	2.16
Sydney	South Asia	2.04	0.29	-1.60	0.49	-11.59	0.41	0.82	13	2.30
Sydney	Japan	-1.88	0.69	NS	NS	NS	NS	0.44	13	2.10
Sydney	Korea	NS	NS	-4.40	1.06	-13.13	1.75	0.58	13	2.36
Sydney	Europe	-1.16	0.49	-1.25	0.50	-8.43	1.33	0.42	13	2.15
Sydney	Middle East	2.95	0.58	-1.34	0.38	-15.68	0.90	0.71	13	1.88
Sydney	New Zealand	2.01	0.35	NS	NS	-10.72	1.08	0.73	13	1.28
Sydney	Pacific Islands and PNG	5.01	1.48	NS	NS	-6.77	0.36	0.45	13	2.49
Sydney	Australia (coastal)	7.43	1.37	•		-33.11	4.79	0.70	13	1.61
Melbourne	Africa	NS	NS	-1.38	0.41	-11.79	0.26	0.44	13	0.82
Melbourne	North and Central America	5.04	0.37	NS	NS	-25.41	1.15	0.94	13	1.56
Melbourne	South America	NS 1.00	NS 0.45	NS	NS	-12.28	3.27	-0.19	13	1.82
Melbourne	East Asia	0.65	0.15	0.56	0.20	-11.01	0.49	0.65	13	0.92
Melbourne	South Asia	0.05 NS	NS	-0.36 NS	NS	-0.90	0.02	0.27	13	3.13
Melbourne	Janan	3 71	0.68	-1.31	0.28	-22 11	2.52	0.76	13	1.86
Melbourne	Korea	1.57	0.57	NS	NS	-11.49	1.52	0.33	13	2.45
Melbourne	Europe	NS	NS	-1.38	0.61	-13.69	1.64	0.36	13	1.82
Melbourne	Middle East	0.41	0.20	-1.04	0.13	-10.08	0.30	0.85	13	2.04
Melbourne	New Zealand	3.89	0.23	1.56	0.41	-16.21	0.72	0.96	13	2.41
Melbourne	Pacific Islands and PNG	6.61	1.84	NS	NS	-6.38	0.44	0.48	13	1.78
Melbourne	Australia (coastal)	2.98	0.47			-15.73	1.65	0.76	13	2.78
Adelaide	Africa	NS	NS	NS	NS	-13.38	0.48	-0.08	13	0.87
Adelaide	North and Central America	5.72	2.22	NS	NS	-30.99	6.95	0.36	13	1.86
Adelaide	South America	NS	NS	NS	NS	-36.06	11.35	0.13	13	2.33
Adelaide	East Asia	2.38	0.30	NS	NS	-11.23	0.41	0.84	13	2.25
Adelaide	South East Asia	2.95	0.42	-1.69	0.78	-10.66	1.34	0.82	13	1.91
Adelaide	South Asia	2.11	0.43	NS	NS	-10.73	0.04	0.90	13	2.27
Adelaide	Japan	-4.43	1.39	2.19	0.58	NS 7.57	NS	0.59	13	1.84
Adelaide	nurea Europo	NS	NS 0.40	4.87	1.29	-1.5/	2.14	0.51	13	1.96
Adelaide	Lurope Middle East	0.30	0.40	-1.09	0.40	-20.09 25.01	1.24	0.90	13	3.01
	New Zealand	-8 71	1.32 2.30	-4.70 NS	0.00 NS	-23.01	2.02 7.20	0.62	13	0.82
Adelaide	Pacific Islands and PNG	NS	2.39 NS	NS	NS	-17 71	4 03	-0.02	13	2.98
Adelaide	Australia (coastal)	NS	NS			-19.80	9,28	0.00	13	2.14
		-					. ==		- Contir	ued over page

Table 1 -Full containerised exports-estimates of elasticities of demand for Australian exports by port and trading region, 1994-95 to 2006-07 (continued)

Port	Trading region name	GDP/head	SE 1)	Exchange rate ²⁾	SE 1)	Intercept	SE 1)	Adjusted R ²	N ³⁾	DW ⁴⁾
Fremantle	Africa	4.00	1.90	NS	NS	-11.15	0.64	0.17	13	1.07
Fremantle	North and Central America	NS	NS	NS	NS	-10.59	3.69	-0.18	13	2.37
Fremantle	South America	NS	NS	NS	NS	-14.47	4.54	-0.02	13	1.58
Fremantle	East Asia	1.74	0.20	NS	NS	-11.41	0.65	0.86	13	2.00
Fremantle	South East Asia	4.04	0.54	-1.62	0.54	-10.13	0.05	0.88	13	2.31
Fremantle	South Asia	2.43	0.74	NS	NS	-11.81	1.03	0.43	13	1.37
Fremantle	Japan	3.96	1.17	-1.07	0.49	-23.61	4.34	0.48	13	2.59
Fremantle	Korea	1.13	0.48	NS	NS	-11.91	1.29	0.23	13	1.07
Fremantle	Europe	NS	NS	NS	NS	-12.64	1.65	0.07	13	2.34
Fremantle	Middle East	2.44	0.76	NS	NS	-14.62	1.16	0.41	13	1.90
Fremantle	New Zealand	NS	NS	NS	NS	-12.69	3.49	0.09	12	1.16
Fremantle	Pacific Islands and PNG	NS	NS	NS	NS	-9.97	2.79	0.23	13	2.58
Fremantle	Australia (coastal)	NS	NS			-19.57	7.20	0.11	13	1.04
Notes:	1. Standard error of estimate									

1. Standard error of estimate.

2. Exchange rate term refers to the US\$/A\$ exchange rate for Africa, North and Central America and Middle East, to the Chinese renminbi/A\$ for East Asia, to the Trade-weighted Index for South East Asia, and to the New Zealand dollar/A\$ for New Zealand. For other regions the exchange rate term refers to the Special Drawing Right in terms of A\$.

3. Number of observations.

4. Durbin-Watson statistic.

NS: not statistically significant.

Table 2 – Non-containerised exports— estimates of elasticities of demand for Australian exports by port and trading region, 1994-95 to 2006-07

Port	Trading region name	GDP/head	SE 1)	Exchange rate 2)	SE 1)	Intercept	SE 1)	Adjusted R ²	N ³⁾	DW ⁴⁾
All ports	Africa	2.55	1.18	NS	NS	-4.07	0.39	0.25	12	2.30
All ports	North and Central America	NS	NS	-0.61	0.18	-2.94	1.30	0.46	12	1.44
All ports	South America	NS	NS	NS	NS	-4.87	1.56	-0.13	12	1.63
All ports	East Asia	1.73	0.06	0.56	0.11	-3.95	0.19	0.99	12	2.39
All ports	South East Asia	1.33	0.22	-0.69	0.22	-4.12	0.18	0.76	12	1.96
All ports	South Asia	0.67	0.12	NS	NS	-3.80	0.15	0.74	12	3.07
All ports	Japan	3.33	0.43	-0.47	0.13	-9.61	1.41	0.84	12	1.01
All ports	Korea	0.99	0.08	-0.38	0.12	-2.49	0.22	0.94	12	1.17
All ports	Europe	-1.21	0.24	NS	NS	NS	NS	0.74	12	1.66
All ports	Middle East	-1.78	0.55	NS	NS	NS	NS	0.62	12	2.13
All ports	New Zealand	NS	NS	NS	NS	NS	NS	0.01	12	2.45
All ports	Pacific Islands and PNG	8.24	1.22	-1.45	0.27	-1.89	0.11	0.82	12	2.29
AllI ports	Australia (coastal)	NS	NS			1.52	0.36	0.12	12	2.33
Other ports	Africa	2.64	1.10	NS	NS	-4.18	0.36	0.33	12	2.07
Other ports	North and Central America	NS	NS	-0.53	0.21	-4.91	1.46	0.32	12	1.50
Other ports	South America	NS	NS	NS	NS	-5.09	1.54	-0.13	12	1.63
Other ports	East Asia	1.75	0.06	0.55	0.11	-3.97	0.19	0.99	12	2.37
Other ports	South East Asia	1.50	0.25	-1.00	0.24	-4.59	0.19	0.79	12	2.20
Other ports	South Asia	0.78	0.14	NS	NS	-3.80	0.18	0.73	12	2.47
Other ports	Japan	3.39	0.44	-0.47	0.13	-9.83	1.45	0.84	12	1.01
Other ports	Korea	1.00	0.08	-0.39	0.12	-2.53	0.22	0.93	12	1.19
Other ports	Europe	-1.22	0.25	NS	NS	NS	NS	0.73	12	1.64
Other ports	Middle East	-1.92	0.52	NS	NS	NS	NS	0.65	12	2.03
Other ports	New Zealand	NS	NS	NS	NS	NS	NS	0.09	12	2.44
Other ports	Pacific Islands and PNG	2.10	1.00	NS	NS	-2.03	0.09	0.21	12	2.16
Other ports	Australia (coastal)	NS	NS			1.19	0.33	0.04	12	1.74
Notes:	1. Standard error.									

2. Exchange rate term refers to the Trade-weighted Index for Africa, to the US\$/A\$ for North and Central America, Middle East and Pacific Islands and PNG, to the Chinese renminbi/A\$ for East Asia, to the Japanese yen for Japan, to the euro for Europe and to the New Zealand dollar/A\$ for New Zealand. For other regions the exchange rate term refers to the Special Drawing Right in terms of A\$.

3. Number of observations.

4. Durbin-Watson statistic.

NS: not statistically significant.

Port	SFD/head ¹⁾	SE 2)	Exchange rate (US\$/A\$)	SE ²⁾	Intercept	SE 2)	Adjusted R ²	N ³⁾	DW ⁴⁾
			Full o	ontainerised	l imports. 1994-	95 to 2006-0)7		
All ports	2.36	0.10	NS	NS	-27.56	1.05	0.98	13	1.75
Brisbane	3.64	0.14	-0.53	0.13	-41.77	1.51	0.98	13	2.02
Sydney	2.50	0.08	0.13	0.05	-29.07	0.80	0.99	13	1.69
Melbourne	1.98	0.05	0.21	0.05	-23.03	0.57	0.99	13	1.44
Adelaide	1.88	0.34	-0.67	0.31	-23.74	3.53	0.74	13	0.71
Fremantle	2.51	0.29	-0.84	0.25	-29.74	3.12	0.86	13	1.02
Other ports	3.40	0.81	NS	NS	-41.47	8.62	0.57	13	1.43
			Non-o	containerise	d imports, 1995-	96 to 2006-	07		
All ports	0.30	0.11	NS	NS	NS	NS	0.41	12	1.28
Brisbane	NS	NS	NS	NS	NS	NS	-0.21	12.00	1.89
Sydney	0.86	0.36	NS	NS	-8.87	3.81	0.31	12	1.84
Melbourne	NS	NS	NS	NS	NS	NS	0.06	12	1.45
Adelaide	-1.16	0.43	NS	NS	12.62	4.49	0.49	12	2.10
Fremantle	NS	NS	NS	NS	NS	NS	0.26	12	2.71
Other ports	0.32	0.11	NS	NS	NS	NS	0.42	12	1.69

Table 3 – Estimates of elasticities of demand for Australian imports by port

Notes: 1. State final demand. For 'all ports' and 'other ports', Australian real gross national expenditure per head is used as the explanatory variable.

2. Standard error.

3. Number of observations.

4. Durbin-Watson statistic.

NS: not statistically significant.

Table 4 – Average annual observed growth rates, and assumed over the projection period

Region	Gi	ross Regional Product per he	ad
	2001–02 to 2006–07	2007–08 to 2012–13 (per cent)	2013–14 to 2029–30
Africa	3.0	3.8	3.3
North and Central America	1.7	1.5	2.1
South America	3.0	2.8	2.6
East Asia	8.4	7.6	6.8
South East Asia	4.3	4.5	4.8
South Asia	6.1	6.1	5.6
Japan	1.9	1.8	1.9
Korea	4.2	4.4	4.2
Europe	2.5	2.5	2.7
Middle East	4.3	3.2	2.9
New Zealand	1.8	1.5	1.7
Pacific Islands and Papua New Guinea	0.4	1.6	2.6
Australia	2.0	2.0	2.2
Country / State	Gross National	Expenditure / State Final De	emand per head
	2001–02 to 2006–07	2007–08 to 2016–17	2017–18 to 2029–30
		per cent	
Australia	3.7	1.4	1.5
Queensland	4.9	1.2	1.3
New South Wales	2.6	1.6	1.6
Victoria	2.9	1.4	1.5
South Australia	3.4	1.2	1.5
Western Australia	6.2	1.2	1.3

Source: ABS 2008, Access Economics 2006, IMF 2008, BITRE projections

Average annual observed growth rates for full containerised and non-containerised Table 5 – exports, by trading region, and assumed over the projection period

Region	Ful	l export contaii	ners	Non-c	ontainerised e	xports
	2001–02 to 2006–07	2007–08 to 2012–13	2013–14 to 2029–30	2001–02 to 2006–07	2007–08 to 2012–13	2013–14 to 2029–30
			(per	cent)		
Africa	-0.2	13.6	6.2	-4.2	12.2	5.2
North and Central America	2.4	5.4	4.8	-4.7	1.1	0.7
South America	8.4	21.1	7.8	7.4	4.9	1.4
East Asia	4.6	9.3	4.5	19.6	13.2	6.2
South East Asia	6.4	7.6	3.8	5.9	7.0	3.5
South Asia	4.6	12.6	5.8	7.5	5.3	2.5
Japan	-4.9	3.6	2.3	3.0	5.4	2.8
Korea	-2.1	7.8	4.8	2.6	4.2	2.0
Europe	-1.6	7.5	4.4	-3.2	-2.4	-1.3
Middle East	-2.8	8.8	4.2	-12.8	-2.6	-0.8
New Zealand	5.3	6.1	4.0	-1.3	1.8	0.9
Pacific Islands and Papua New Guinea	3.7	6.7	7.5	-6.4	8.0	3.5
Australia (coastal)	10.2	8.7	5.2	1.1	0.9	0.4

Source: BITRE projections

Financial year	All ports	BTRE (20	066)		All ports			Brisbane			Sydney		٨	Aelbourne			Adelaide		F	remantle		0	ther ports	
	Full	Full	Total	Full	Full	Total	Full	Full	Total	Full	Full	Total	Full	Full	Total	Full	Full	Total	Full	Full	Total	Full	Full	Total
	Exports	Imports		Exports	Imports		Exports	Imports		Exports	Imports		Exports	Imports		Exports	Imports		Exports	Imports		Exports	Imports	
												(thousand	f teus)											
1994-95	NA	NA	NA	952	1 036	2 468	99	80	233	204	348	667	352	392	880	33	19	67	74	81	189	190	116	433
1995-96	NA	NA	NA	908	967	2 300	011	76	249	217	347	685	372	395	923	36	19	69	84	84	203	89	46	170
1996-97	NA	NA	NA	982	1 055	2 458	122	89	273	232	373	730	402	432	984	46	25	88	84	90	210	96	46	173
1997–98	NA	NA	NA	1 043	1 182	2 720	134	112	318	250	404	798	410	461	1 041	49	36	108	95	109	251	104	60	205
1998-99	NA	NA	NA	1119	1 271	2 966	153	124	358	256	445	879	436	496	1 121	54	39	121	105	111	276	115	55	213
1999-00	1 306	1 532	3 513	1 306	1 532	3 513	170	153	414	295	518	1011	501	574	1 288	55	35	116	112	122	297	173	129	387
2000-01	1 302	1 520	3 635	1 302	1 520	3 635	194	154	453	306	492	989	524	571	1 317	63	38	133	126	136	354	90	129	388
2001-02	1 526	1 620	3 928	1 526	1 620	3 928	199	174	482	307	507	1 009	554	605	1 421	70	41	145	142	154	382	254	139	489
2002-03	1 554	1 889	4 456	1 554	1 889	4 456	193	223	570	294	587	1 161	569	696	1 594	71	41	148	153	186	431	275	156	552
2003-04	1 633	2 107	4 859	1 633	2 107	4 859	205	262	639	304	643	1 270	591	775	1718	86	42	169	160	204	457	287	182	605
2004-05	1 625	2 284	5 171	1 625	2 284	5 171	227	292	726	320	687	1 376	653	854	1 910	80	40	171	161	210	467	184	202	521
2005-06	1714	2 356	5 380	1719	2 347	5 311	246	321	766	345	721	1 445	670	873	1 930	91	48	189	154	205	455	213	179	525
2006-07	1 859	2 452	5 669	1 804	2 608	5 829	257	364	875	370	800	1 620	699	949	2 094	97	54	219	164	235	505	218	207	516
2007-08	1 988	2 701	6 188	1 898	2 763	6 277	273	363	886	388	875	1 786	730	1 025	2 295	106	50	246	174	239	525	226	215	542
2008-09	2 136	2 889	6 6 4 0	2 0 3 6	2 927	6 669	294	385	939	415	947	1 932	774	1 072	2 401	118	51	275	196	252	553	239	226	575
2009-10	2 273	2 974	6 917	2 207	3 072	7 028	319	406	992	447	1 003	2 045	828	1 113	2 492	134	52	311	223	263	579	255	240	613
2010-11	2 407	3 135	7 309	2 4 1 9	3 248	7 461	353	439	1 072	485	1 062	2 167	895	1 163	2 606	155	54	359	257	275	604	274	259	657
2011-12	2 526	3 327	7 740	2 665	3 446	7 967	395	478	1 166	530	1 125	2 295	969	1 2 1 9	2 731	180	56	417	298	291	655	294	279	706
2012-13	2 656	3 472	8 096	2 781	3 623	8 360	416	512	1 248	548	1 181	2 409	1011	1 270	2 845	187	58	434	312	307	687	308	298	738
2013-14	2 802	3 657	8 523	2 901	3 739	8 646	437	532	1 299	567	1 218	2 485	1 054	1 304	2 920	195	59	451	328	318	721	321	309	771
2014-15	2 931	3 853	8 965	3 024	3 850	8 928	459	553	1 350	586	1 253	2 556	1 098	1 336	2 993	202	60	469	343	328	755	335	320	805
2015-16	3 065	4 059	9 426	3 155	4 056	9 381	483	595	1 453	607	1 317	2 687	1 144	1 393	3 1 2 0	210	62	488	360	346	792	350	341	840
2016-17	3 205	4 277	9 913	3 292	4 262	9 838	510	637	1 553	628	1 383	2 821	1 193	1 449	3 246	219	64	508	377	363	830	366	363	878
2017-18	3 352	4 506	10 426	3 438	4 479	10 330	538	681	1 661	651	1 452	2 963	1 244	1 507	3 376	228	66	528	396	382	870	382	386	927
2018-19	3 506	4 749	10 967	3 591	4 707	10 854	568	728	1 776	675	1 525	3 111	1.298	1 568	3 512	237	68	549	415	401	913	399	411	986
2019-20	3 667	5 005	11 539	3 754	4 948	11 406	601	778	1 899	700	1 601	3 267	1 354	1 631	3 654	247	70	572	435	421	958	417	437	1 049
2020-21	3 836	5 276	12 142	3 926	5 201	11 988	636	832	2 0 3 0	726	1 682	3 430	1 413	1 697	3 801	257	73	595	457	443	1 006	436	465	1 1 1 5
2021-22	4 013	5 561	12 780	4 107	5 468	12 602	674	889	2 170	754	1 766	3 602	1 476	1 765	3 954	267	75	620	480	465	1 056	456	494	1 186
2022-23	4 198	5 863	13 453	4 299	5 749	13 249	715	951	2 320	783	1 854	3 782	1 541	1 836	4113	278	78	646	504	489	1 109	477	526	1 262
2023-24	4 391	6 182	14 163	4 503	6 046	13 932	760	1 017	2 481	814	1 947	3 972	1 610	1 910	4 279	290	80	673	530	513	1 166	499	559	1 342
2024-25	4 594	6 5 1 9	14 915	4718	6 358	14 651	808	1 087	2 652	846	2 045	4 171	1 682	1 987	4 451	302	83	701	557	540	1 225	523	595	1 428
2025-26	NA	NA	NA	4 946	6 687	15 410	859	1 162	2 836	880	2 147	4 380	1 759	2 067	4 630	315	86	731	586	567	1 288	547	633	1 519
2026-27	NA	NA	NA	5 188	7 034	16 210	915	1 243	3 032	916	2 254	4 599	1 839	2 150	4816	329	88	762	616	596	1 355	573	673	1.615
2027-28	NA	NA	NA	5 445	7 400	17 055	976	1 329	3 242	954	2 367	4 829	1 924	2 237	5 010	343	91	795	648	626	1 426	600	716	1718
2028-29	NA	NA	NA	5717	7 785	17 945	1 041	1 420	3 466	994	2 486	5 071	2 013	2 327	5 212	357	94	879	682	658	1 501	679	762	1 828
2029-30	NA	NA	NA	6 005	8 192	18 886	1111	1 519	3 706	1 037	2 610	5 325	2 107	2 420	5 422	373	97	865	718	691	1 580	659	810	1 944
Annual average growth rate (per cent)					GARAN		in the							00000					1.1.1					
1999-00 to 2006-07	5.2	6.9	7.1	4.7	7.9	7.5	6.0	13.2	11.3	3.3	6.4	7.0	4.9	7.5	7.2	8.4	6.2	9.6	5.6	9.8	7.9	3.4	6.9	4.2
2007-08 to 2012-13	6.0	5.2	5.5	7.9	5.6	5.9	8.7	7.1	7.1	7.2	6.2	6.2	6.7	4.4	4.4	12.0	2.7	12.0	12.4	5.1	5.5	6.4	6.8	6.4
2007-08 to 2024-25	5.0	5.3	5.3	5.5	5.0	5.1	6.6	6.7	6.7	4.7	5.1	5,1	5.0	4.0	4.0	6.4	3.0	6.4	7.1	4.9	5.1	5.1	6.2	5.9
2007-08 to 2029-30	NA	NA	NA	5.4	5.1	5.1	6.6	6.7	6.7	4.6	5.1	5.1	4.9	4.0	4.0	5.9	3.0	5,9	6.6	4,9	5.1	5.0	6.2	6.0

Containerised trade—observed to 2006–07 and projections to 2029–30 Table 6 –

Note: Total for each port includes empty (import and export) containers. NA: Not available

* Figures below line are forecasts.

Table 7 – Non-containerised trade – observed to 2006–07 and projections to 2029–30

Financial year	All ports	BTRE (2	006Ь)		All ports			Brisbane			Sydney		٨	Aelbourne		29	Adelaide		F	Fremantle		0	ther ports	(
	Exports	Imports	Total	Exports	Imports	Total	Exports	Imports	Total	Exports	Imports	Total	Exports	Imports	Total	Exports	Imports	Total	Exports	Imports	Total	Exports	Imports	Toto
											((thousand	tonnes)											
1995-96	NA	NA	NA	406 576	83 706	490 282	7 789	8 566	16 356	1 455	7 602	9 057	2 798	3 288	6 086	2 300	3 127	5 427	9 544	7 334	16 878	382 690	53 789	436 47
1996-97	NA	NA	NA	436 457	86 937	523 394	8 532	8 3 9 6	16 928	1 531	6 937	8 468	3 126	3 913	7 039	2 910	3 682	6 592	10 546	9 006	19 552	409 812	55 002	464 81
1997-98	NA	NA	NA	461 689	91 667	553 356	7 671	8 826	16 497	1 656	6 239	7 895	4 259	4 093	8 353	3 099	4 921	8 020	11 733	7 204	18 936	433 272	60 384	493 65
1998-99	NA	NA	NA	459 607	89 269	548 876	7 434	9 182	16 616	719	7 862	8 581	3 110	5 164	8 274	2 578	3 011	5 589	11 032	8 503	19 534	434 735	55 547	490 28
1999-00	436 364	90 604	526 969	491 364	89 372	580 736	8 3 4 1	9 791	18 132	1219	7 081	8 300	3 248	4 497	7 745	2 885	3 183	6 068	11 074	7 562	18 636	464 597	57 258	521 85
2000-01	453 546	86 628	540 174	526 203	90 911	617 115	8 772	9 237	18 009	1 681	8 126	9 807	3 901	3 761	7 662	3 363	3 764	7 127	10 775	7 296	18 071	497 711	58 727	556 43
2001-02	464 076	86 891	550 967	531 665	94 372	626 037	9 477	8 966	18 442	1 099	7 986	9 085	4 477	4 597	9 074	4 050	4 270	8 320	9 465	7 843	17 309	503 097	60 710	563 80
2002-03	485 004	90.089	575 093	559 592	95 609	655 200	8 382	9 667	18 048	846	7 415	8 260	2 825	4 582	7 407	3 495	3 748	7 242	9 888	8 757	18 645	534 157	61 440	595 59
200304	492 435	94 874	587 309	586 998	95 957	682 955	7 870	9 907	17 777	998	8 359	9 358	3 254	3 951	7 205	2 990	2 333	5 323	11 664	9 367	21 031	560 220	62 041	622 26
2004-05	550 615	98 953	649 568	630 624	98 321	728 945	8 198	9 986	18 183	1 203	8 266	9 469	2 998	4 550	7 548	3 052	2 344	5 396	11 744	9 803	21 547	603 429	63 372	666 80
2005-06	577 834	100 813	678 646	647 507	103 667	751 174	8 347	9 694	18 041	1 268	9 387	10.655	2119	4 783	6 902	3 383	2 609	5 991	11 690	9 656	21 346	620 701	67 538	688 23
2006-07	608 067	102 174	710 241	691 884	117 842	809 726	8 907	11 557	20 464	2 198	11 443	13 640	3 617	7 251	10.867	3 1 1 0	2 730	5 841	10 258	9 677	19 935	663 794	75 184	738 97
2007-08	645 459	106 366	751 824	739 397	122 069	861 465	9 199	11 838	21 037	2 530	12 165	14 695	3 609	7 508	11 117	3 417	2 461	5 877	10 975	10 343	21 318	709 666	77 754	787 42
2008-09	688 115	108 861	796 976	796 227	124 547	920 773	9 641	12 089	21 730	2 746	12 606	15 352	3 832	7 680	11 512	3 645	2 429	6 075	11 195	10 596	21 791	765 168	79 146	844 31
2009-10	725 057	109 417	834 473	861 305	126 828	988 133	10 134	12 342	22 475	3 023	12 940	15 964	4 173	7 832	12 005	3 906	2 411	6 317	11 490	10 803	22 293	828 579	80 501	909 08
2010-11	758 639	111 029	869 668	936 097	129 273	1 065 370	10 730	12 595	23 325	3 383	13 287	16 670	4614	8 007	12 621	4 230	2 380	6.610	11 819	11 009	22 878	901 321	81 996	983 31
2011-12	790 774	113 285	904 059	1 019 523	131 778	1 151 301	11 428	12 850	24 278	3 839	13 640	17 479	5 159	8 191	13 350	4 623	2 346	6 969	12 196	11 230	23 426	982 278	83 521	1.065.79
2012-13	820 954	114 419	935 373	1 061 301	134 157	1 195 453	11 563	13 106	24 669	3 946	13 959	17 905	5 276	8 362	13 638	4 739	2 316	7 055	12 796	11 449	23 745	1 023 490	84 960	1 108 44
2012-14	849 477	115 979	965 451	1 103 911	136 213	1 240 124	11 699	13 363	25.062	4 055	14 199	18 254	5 403	8 493	13 897	4 857	2 303	7 160	12 396	11 657	24 053	1 065 500	86 198	1 151 69
2014-15	878 253	117 892	996 145	1 147 211	138 249	1 285 460	11 836	13 622	25 458	4 164	14 428	18 592	5 532	8 677	14 154	4 977	2 293	7 270	12 495	11 865	24 360	1 108 206	87 419	1 195 62
2015-16	908 007	119 837	1 027 844	1 192 775	140 777	1 333 502	11 977	13 883	25 860	4 777	14 772	19 049	5 667	8 803	14 470	5 102	2 261	7 363	12 597	12 093	24 690	1 153 155	88 916	1 747 07
2016-17	938 768	121 814	1 060 582	1 240 732	143 199	1 393 931	12 121	14 144	26 267	4 395	15 117	19 512	5 909	8 981	14 799	5 233	2 230	7 463	12 702	12 321	25 023	1 200 473	90 404	1 790 87
2017-18	970 572	123 823	1 000 302	1 291 215	145 717	1 436 937	12 720	14 414	26 683	4518	15 471	19 990	5 955	9 167	15 117	5 369	2 200	7 569	12 809	12 553	25 367	1 250 794	101 01	1 342 21
2017-10	1 002 454	125 025	1 129 221	1 244 240	149 292	1 400 450	12 400	14 407	20 000	4 4 4 4 7	15 924	20 490	4 109	9 247	15 454	5 510	2 170	7 602	12 007	12 333	25 302	1 200 740	424 CD	1 394 21
2010-17	1 003 450	123 000	1 125 205	1 400 241	150 005	1 551 724	12 570	14 045	27 542	4 700	16 204	20 900	4 349	0 524	15 905	5 441	21/0	7 002	12 022	12/70	25 707	1 302 700	05 010	1 452 02
2017-20	1 073 403	120 053	1 103 373	1 450 304	153 552	1 412 052	12 370	15 740	27 545	4 010	16 204	20 703	6 207	0 730	12 144	5 014	2 111	7 001	13 032	13 031	20 004	1 330 021	93 010	1 513 03
2020-21	1 100 940	130 032	1 202 004	1 531 401	133 330	1 012 032	12 737	15 527	27 707	5 0/5	10 304	21 303	6 417	0 035	10 100	5 070	2 111	0.041	13 140	13 277	20 723	1 410 230	70 007	1 575 70
2021-22	1 147 500	132 17/	1 241 137	1 521 401	150 031	1 7/5 0/0	12 704	13 337	20 991	5 003	10 7/2	22 037	0 012	7 723	10 330	3 7/0	2 003	0 001	13 20/	13 320	20 / 74	1 4/1 3/3	70 227	1 3/3 /3
2022-23	1 105 252	134 3/0	1 200 007	1 / 55 705	137 031	1 /43 000	12 240	12 031	20 703	5 171	17 307	22 303	0 / 70	10 126	10 722	6 140	2 034	0 202	13 307	13 /03	2/ 1/1	1 342 213	77 00/	1 042 00
2023-24	1 103 332	130 373	1 3/4 250	1 033 /73	101 013	1 017 010	13 270	10 131	27 570	5 520	1/ //0	23 130	0 200	10 530	17 310	0 323	2.02/	0 500	13 313	14 200	27 330	1 010 340	101 330	1 705 41
2024-25	1 223 311	138 848	1 304 339	1 / 28 4/6	104 /11	1 673 187	13 427	10 430	27 863	5 358	16 172	23 730	7 187	10 339	17 /28	6 309	1 999	8 308	13 041	14 508	20 250	1 662 1/3	103 237	1 785 41
2023-26	NA	INA	NA.	1 802 030	10/ 032	19/2/2/	13 611	10 /4/	30 338	5 /09	18 618	24 327	7 399	10/52	18 101	6 /01	19/2	8 6/3	13 //2	14 0/0	28 330	1 /3/ 903	104 765	1 862 86
2026-27	NA	NA	NA	1 885 8/9	170 606	2 006 486	13 800	17 065	30 864	0 887	19 004	24 941	7 619	10 969	18 289	6 902	1 945	8 84/	13 907	14 852	28 / 39	1 837 765	106 /21	1 944 48
2027-28	NA	NA	NA	1 9/1 069	1/3 636	2 144 /05	13 994	17 388	31 382	6 0/2	19 500	25 5/2	/ 850	11 191	19 041	7111	1 919	9 0 3 0	14 045	15 133	29 177	1 921 997	108 506	2 030 50
2028-29	NA	NA	NA	2 060 919	1/6 /23	2 23/ 643	14 194	17717	31 911	6 266	19 95/	26 223	8 092	11 417	19 509	7 329	1 893	9 111	14 186	15 418	29 604	2 010 853	110 322	21211/
2029-30	NA	NA	NA	2 155 701	179 868	2 335 569	14 400	18 052	32 452	6 46/	20 424	26 891	8 345	11 648	19 992	7 557	1 867	9 424	14:330	15 709	30.039	2 104 602	112 168	2 216 77
Annual average growth rate (per cent)																								
1999-00 to 2006-07	NA	NA	NA	5.0	4.0	4.9	0.9	2.4	1.7	8.8	7.1	7.4	1.5	7.1	5.0	1.1	-2.2	-0.5	-1.1	3.6	1.0	5.2	4.0	5.
2007-08 to 2012-13	4.9	1.5	4.5	7.5	1.9	6.8	4.7	2.1	3.2	9.3	2.8	4.0	7.9	2.2	4.2	6.8	-1.2	3.7	2.3	2.1	2.2	7.6	1.8	7.
2007-08 to 2024-25	3.8	1.6	3.6	5.1	1.8	4.7	2.2	1.9	2.1	4.7	24	2.9	4.1	2.0	2.8	3.9	-1.2	2.2	1.3	1.9	1.6	5.2	1.7	4
2007_08 to 2029_30	NA	NA	NA	5.0	1.8	4.6	2.1	1.9	2.0	4.4	2.4	2.8	3.9	2.0	2.7	3.7	-1.7	2.2	1.2	1.9	1.6	5.1	1.7	4

* Figures below line are forecasts.

Table 8 – Container and non-container ship visits—observed to 2006–07 and projections to 2029–30

Financial year	All ports	BTRE (20	006b)	1	All ports			Brisbane			Sydney		1	Melbourne			Adelaide		1	Fremantle		0	ther ports	
	Container	Non- container	Total	Container	Non- container	Total	Container	Non- container	Total C	Container	Non- container	Total (Container	Non- container	Total	Container	Non- container	Total	Container	Non- container	Total	Container	Non- container	Total
2000.01	4.040	20.200	35.140	4.040	20.200	35.140	701	1.357	3.677	1.120	I EIO	umber of	ship visits	1.7//	2 012	222	011	1.044	5/3	1.041	1.004	1.557	13 707	14.0/1
2000-01	4 050	20 200	23 190	4 050	20 200	25 140	721	1 350	2 0//	1 044	1 317	2 574	1.062	1 /00	2 012	233	050	1 077	503	1.015	1 600	1 230	13 707	15 005
2007-02	5 002	20 274	25 249	5 002	20 274	25 249	/00	1 259	2 090	1 004	1 400	2 324	1 002	2 073	2 163	227	793	1 015	520	1 049	1 540	1 237	13 696	13 003
2002-03	4 941	20 343	25 510	4 941	20 343	25 510	740	1 2.37	1 000	1 0/0	1 217	2 334	1 070	2 1/12	3 102	222	071	1 104	320	1 075	1 545	1 220	13 070	15 200
2003-04	5 201	20 0/7	25 620	5 201	20 6/7	25 620	072	1 514	1 700	1 1071	1 317	2 400	1 2/2	1 057	3 103	233	0/1	1 100	407	1 0/0	1 534	1 328	12 035	15 112
2001-03	5 453	21 137	20 110	5 201	20 992	23 723	1 024	1 500	2 30/	1 103	1 026	2 900	1 243	1 737	3 200	223	0.32	1 10/3	407	1 007	1 530	1 272	15 023	13 117
2003-06	0 403	21 887	2/ 340	5 744	21 841	2/ 301	1 024	1 540	2 613	1 307	1 036	2 343	1 336	1 774	3 330	200	847	1 109	403	1 092	1 2/3	1 275	15 070	16 3/6
2006-07	0 /10	22 680	28 375	1 074	22.703	20 17/	1 003	1 347	2 632	1 347	1 037	2 300	1 420	7 000	3 401	101	020	1 107	97/	1 131	1 020	1 113	13 878	10.771
2007-08	0 10/	23 770	21 530	0 830	23 399	30 434	1 086	1 3//	2 663	1 4/2	1 108	2 380	1 591	2 006	3 348	314	822	1 1 3 5	512	1 197	1 709	1 903	16 888	18 / 77
2000-07	6 302	29 790	31 327	7 420	24 7/3	32 138	1 137	1 451	2 / 31	1 377	1 190	2 /23	1 376	2 03/	3 033	340	041	1 100	534	1 212	1 701	1 772	10 40/	20 076
2007-10	0 804	23 863	32 000	7 437	20 333	33 7/3	1 171	1 601	2 093	1 633	1 180	2 033	1 091	2.129	3 /63	307	000	1 233	203	1 228	1 /01	2.012	17 400	21 477
2010-11	7 131	25 687	33 818	7 760	28 326	36 066	1 2/4	1 69/	2.971	1734	1 220	2 734	1 697	2 211	3 909	111	877	1 341	3/1	1 240	1 010	2 038	21 036	23 074
2011-12	7 407	20 127	35 010	0 101	30 300	30 4/1	1 3/3	1 750	3 122	1 017	1 207	3 003	1 /02	2 313	4 1/0	510	737	1 447	613	1 200	1 0/0	2 000	22 5/4	24 002
2012-13	0 176	28 137	33 710	0 700	31 138	37 6/3	1 400	1 737	3 213	1 890	1 205	3 1/3	1 010	2 342	4 160	543	737	1 405	637	1 207	1 700	2 171	23 309	23 / 33
2013-14	8 126	28 / 33	35 881	8 708	32 002	40 710	1 499	1 769	3 269	1 930	1 297	3 227	1 847	2 363	4 210	542	943	1 485	662	1 2/3	1 933	2.228	24 337	26 585
2014-15	84/9	29 3/5	37 854	8887	32 844	41 /31	1 543	1 780	3 323	1 402	1 308	3 2/3	18/4	2 383	4 257	800	948	1 506	686	1 2/6	1 963	2.259	25 149	2/ 409
2015-16	8 845	30 010	38 855	9 191	33 / 54	43 026	1 644	1 790	3 434	2 046	1 32/	3 372	1 935	2412	4 34/	5/4	951	1 525	/12	1 281	1 993	2.381	25 9/4	28 355
2016-17	9 230	30 659	39 889	9 686	34 663	44 349	1 /40	1 800	3 540	2 12/	1 346	34/2	1 993	2 440	4 433	221	954	1 546	739	1 285	2 024	2 495	26 838	29 333
2017-18	9 632	31 323	40 955	10 107	33 634	19/ 19	1 843	1 810	3 6 3 3	2 211	1 365	3 3/6	2 053	2 4/0	4 523	609	958	1 26/	768	1 290	2 007	2.624	2/ /41	30 363
2018-19	10 055	32 003	42.057	10 553	36 630	47 202	1 420	1 821	3771	2 299	1 384	3 683	2114	2 500	4 614	628	963	1 241	191	1 294	2 092	2 /65	28 686	31 451
2019-20	10 498	32 698	43 196	11 019	37 711	48 / 30	2 065	1 832	3 896	2 390	1 404	3 /95	21//	2 532	4 /09	64/	968	1 615	828	1 299	2 1 28	2912	296/6	32 58/
2020-21	10 963	33 409	44 372	11 506	38 821	50 32/	2 186	1 843	4 029	2 485	1 425	3 910	2 243	2 564	4 806	.667	974	1 641	861	1 304	2 165	3 065	30 711	33 776
2021-22	11 451	34 137	45 588	12 015	39 981	51 996	2 314	1 854	4 168	2 583	1 446	4 029	2 310	2 597	4 907	687	981	1 668	895	1 309	2 205	3 225	31 /94	35 019
2022-23	11 964	34 882	46 845	12 546	41 194	53 741	2 449	1 866	4315	2 686	1 467	4 153	2 379	2 631	5 010	709	988	1 697	931	1 315	2 246	3 392	32 928	36 320
2023-24	12 502	35 643	48 145	13 102	42 463	55 565	2 593	1 878	4 470	2 793	1 489	4 282	2 450	2 666	5116	731	996	1.727	969	1 320	2 289	3 567	34115	37 681
2024-25	13 067	36 423	49 490	13 682	43 790	57 472	2 744	1 890	4 6 3 4	2 903	1 511	4 4 1 4	2 524	2 702	5 225	755	1 005	1 759	1 008	1 326	2 334	3 748	35 357	39 105
2025-26	NA	NA	NA	14 289	45 178	59 467	2 905	1 902	4 807	3 019	1 534	4 552	2 599	2 739	5 338	779	1014	1 793	1 049	1 331	2 381	3 937	36 658	40 595
2026-27	NA	NA	NA	14 922	46 630	61 553	3 0/5	1 915	4 990	3 138	1.557	4 695	26//	2///	5 454	804	1 024	1 828	1 093	1 337	2 430	4 135	38 020	42 155
2027-28	NA	NA	NA	15 584	48 149	63 733	3 255	1 927	5 183	3 263	1 581	4 844	2 757	2816	5 574	830	1 035	1 865	1 138	1 343	2 482	4 340	39 446	43 786
2028-29	NA	NA	NA	16 276	49 738	66 014	3 446	1 941	5 387	3 392	1 605	4 997	2.840	2 857	5 697	857	1 047	1 904	1 186	1 349	2 536	4 554	40 940	45 494
2029-30	NA	NA	NA	16 999	51 401	68 400	3 648	1 954	5 602	3 527	1 629	5 156	2 925	2 899	5 824	886	1 059	1 945	1 236	1 356	2 592	4.777	42 504	47 281
Annual average growth rate (per cen	nt)																							
2000-01 to 2006-07	2.4	1.9	2.0	2.5	1.7	1.9	7.0	2.2	4.0	3.0	-6.1	-1.7	5.2	1.9	3.2	3.2	0.3	1.0	-2.1	1.4	0.2	-2.0	2.5	2.1
2007-08 to 2012-13	4.7	3.4	3.7	4.5	5.7	5.4	6.0	2.2	3.8	5.1	3.0	4.2	3.4	3.1	3.2	10.9	2.7	5.2	4.5	1.2	2.2	2.8	6.9	6.5
2007-08 to 2024-25	i 4.5	2.5	3.0	4.2	3.7	3.8	5.6	1.1	3.3	4.1	1.8	3.2	2.9	1,8	2.3	5.3	1.2	2.6	4.1	0.6	1.8	4.0	4.4	4.4
2006-07 to 2029-30	NA NA	NA	NA	4.2	3.6	3.7	5,7	1.0	3.4	4.1	1.8	3.2	3.0	1.7	2.3	4.8	1.2	2.5	4.1	0.6	1.9	4.3	4.3	4.3

* Figures below line are forecasts.

Region	Brisbane	Sydney	Melbourne	Adelaide	Fremantle
Current estimates					
Africa	8.72				4.00
North and Central America	3.96		5.04	5.72	
South America	11.55	6.68			
East Asia	1.12	0.57	1.26	2.38	1.74
South East Asia		1.04	0.65	2.95	4.04
South Asia	2.92	2.04		2.11	2.43
Japan	1.98	-1.88	3.71	-4.43	3.96
Korea	3.03		1.57		1.13
Europe	6.9	-1.16		6.36	
Middle East	8.71	2.95	0.41	8.11	2.44
New Zealand	5.75	2.01	3.89	-8.71	
Pacific Is & PNG	-5.00	5.01	6.61		
Australia (Coastal)	7.86	7.43	2.96		
BTRE (2006b)					
Japan	5.57				4.8
OECD		1.73	1.73	3.58	

Table 9 - Container export elasticity with respect to gross regional product per head

'blank' = Estimated but not significant; NE: Not estimated.

Table 10 – Containerised import elasticity with respect to real State final demand and real GNE, per head

	Brisbane	Sydney	Melbourne	Adelaide	Fremantle	Other ports
Current estimates						
State final demand	3.64	2.50	1.98	1.88	2.51	NE
Real GNE	NE	NE	NE	NE	NE	3.40
BTRE (2006b)						
Real GNE	3.78	2.06	2.16	2.74	2.88	NE

Table 11 – Non-containerised import elasticity with respect to real State final demand and GNE, per head

Per head	Brisbane	Sydney	Melbourne	Adelaide	Fremantle	Others	All ports
Current estimates							
State final demand		0.86	NS	-1.16		NE	NE
Real GNE	NE	NE	NE	NE	NE	0.32	0.30
BTRE (2006b)							
Real GNE	1.21	1.58	1.97	1.06	0.35	NE	1.25

Region	Brisbane	Sydney	Melbourne	Adelaide	Fremantle	Others	All ports
Current estimates							
Africa			11.10	5.32		2.65	5.31
North/Central America	-5.85	1.95			-6.71		
South America						0.74	0.67
East Asia		2.44		-0.59	1.22	1.76	1.73
South East Asia				2.89		0.25	1.33
South Asia	-4.35					0.78	0.67
Japan		-11.30				3.39	3.33
Korea	3.32					0.99	0.99
Europe					-2.07	-1.23	-1.21
Middle East						-1.92	-1.78
New Zealand							
Pacific Is. & PNG		15.56	26.11		97.5	2.1	8.24
Australia(coastal)			-1.91				
BTRE (2006b)							
Japan	0.14						
OECD			0.58	1.48	1.54	NE	1.93

Table 12 – Non-containerised export elasticity with respect to real gross regional product per head

References

Access Economics (2006). *Business Outlook*, December issue, Canberra.

- Association of Australian Ports and Marine Authorities (2008). *Trade Statistics*, <<u>http://aapma.org.au/tradestats/</u>>.
- ABS (2008a). *Australian National Accounts: National Income, Expenditure and Product*, Cat. No. 5206.0, Australian Bureau of Statistics : Canberra.
- ABS (2008b). *International Cargo Statistics*, unpublished, Australian Bureau of Statistics: Canberra.
- BITRE (2008a). *Waterline 44*, Bureau of Infrastructure, Transport and Regional Economics: Canberra. <<u>http://www.bitre.gov.au</u>>.
- BITRE (2008b). *Australian sea freight*, Information Paper 61, Bureau of Infrastructure, Transport and Regional Economics: Canberra. <<u>http://www.bitre.gov.au</u>>.
- BTRE (2002). *Australia's seaborne containerised freight forecast to 2010–11*, Working Paper 50. Bureau of Transport and Regional Economics: Canberra.
- BTRE (2006a). Port level forecasts of container and ship movements in Australia: 2004–05 to 2024–25, BTRE staff paper presented by Hamal, K., James, B. and Cregan, M. at the 29th Australian Transport Research Forum, held 27-29 September 2006, Gold Coast.
- BTRE (2006b). *Container and ship movements in Australia: 2004–05 to 2024–25*, Working Paper 65, Bureau of Transport and Regional Economics: Canberra.
- Gujarati D.N. (1995). Basic econometrics, 3rd Edition, McGraw Hill: New York.
- IMF (2008). *World Economic Outlook database*, April, International Monetary Fund. <<u>http://www.imf.org/external/pubs/ft/weo/2008/01/weodata/index.aspx</u>>.
- Hanh, L. D. (2003). *The logistics of empty cargo containers in the southern California region.* Final Report. Department of Civil and Environmental Engineering, University of Southern California, USA. <<u>http://www.metrans.org/research/final/01-05_Final.htm</u>>
- Jarman, M. (2004). 'Tackling the empty container problem', *World Cargo News*, November <<u>http://www.worldcargonews.com/htm/nf20041130.535525.htm</u>>.
- Lopez, E. (2003). 'How do ocean carriers organize the empty containers reposition activity in the USA', *Maritime Policy and Management*, 30(3), pp. 339-355.
- RBA (2008). *Exchange rate statistics*, Reserve Bank of Australia: Canberra. <<u>http://www.rba.gov.au/Statistics/HistoricalExchangeRates/index.html</u>>.
- Tioga Group (2002). *Empty ocean container logistics study*. Report to Gateway Cities Council of governments, Port of Long Beach and Southern California Association of Governments.