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1 Introduction  

1.1 What it does  

This paper describes a management tool for identifying the optimal mix of road safety inter-
ventions to achieve a given target at minimum cost, or alternatively to maximise safety for a 
given budget. The tool embodies a computable simulation model to predict the road safety 
outcomes of a user-specified set of interventions. Though not an optimising model (it does 
not formally identify the optimal mix of interventions), it can be used in an exploratory mode 
to seek the optimum.  

It differs from most other predictive models (see Section 2) in two main ways. First, it explic-
itly represents road safety interventions in considerable detail. This means that agencies can 
use it to explore whether particular interventions are justified, where and to what intensity. 
Second, it uses standard datasets and software, which makes it readily adoptable by most 
road safety agencies in developed countries.  

1.2 Why it is needed  

Road safety agencies need to predict road safety outcomes for several reasons. One is effi-
ciency: unless the agency can predict what effect its policies will have, it cannot allocate re-
sources sensibly. Another is target-setting: if a road safety target is to be not just achievable 
but demonstrably so, it must be transparently linked to the measures intended to bring it 
about. Lastly, forecasting: road agencies need to predict safety outcomes so that resources 
can be mobilised and consequences prepared for.  

1.3 How it came about  

This paper and the model it describes arose out of work done for Queensland Transport 
(QT) to assist them with the preparation of their forthcoming road safety plans. In the words 
of the Brief, QT sought our advice to help them spot future ‘issues’ and to prioritise ‘needs’ 
(Tsolakis, Rockliffe and Cairney 2005).  

There were, we considered, two parts to our task. One was build a management tool that 
gave advance warning of what the future held. The other was both to flag problems (the ‘is-
sues’ of the Brief) and to rank them and their possible remedies (the ‘needs’). In other 
words, QT needed more than a tool to tell the future; they needed a tool that would tell them 
what to do about it.  

The predictive model was the easy part. But to identify issues and needs we also needed a 
measure of value. We took the view that QT’s aim was to manage road safety so as to maxi-
mise the benefit to the people of Queensland. That so, our measure of value was social cost 
and benefit: the model had simultaneously to rate the social benefit of a road safety outcome 
and the social cost of achieving it.  

To do so, a model must satisfy two additional requirements. First, it must formally link re-
source inputs to safety outcomes; that is, it must show what happens to the number and se-
verity of crashes whenever a change is made to any given road safety intervention. Second, 
it must express resource inputs and safety outcomes in monetary terms; that is, it must tell 
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us what we are paying for safety and what that safety is worth. The model described in this 
paper aims to do both.  

2 The research context  

2.1 Macroscopic, microscopic or mesoscopic?  

The literature documents dozens of predictive models of road safety. With so many to 
choose from, do we need another one? We argue below that existing models are either too 
macroscopic to be useful for resource allocation, or too microscopic to be useful for target-
setting. Our proposed model combines the advantages of both.  

Smeed (1949) was perhaps the first to analyse road safety at the macroscopic level. He ex-
emplified all that was good and bad about the approach: good, because his prediction was 
very accurate—for a time; bad, because after that it was wildly wrong. And for a good rea-
son: it took no account of road safety interventions. Later macroscopic models, notably 
Oppe (1989, 1991), Gaudry (1984), Vulcan and Corben (1998), Broughton et al. (2000) 
Cameron et al (1993), Cameron (2003), Newstead et al (1998), and Bijleveld et al (2002) 
have all moved beyond Smeed’s early work by including safety interventions, or their prox-
ies, as explanatory variables. Such approaches are valuable for forecasting, target-setting, 
and justifying individual interventions. But they do not assist in resource allocation as they 
are spatially aggregated and do not embody the full suite of interventions that any road 
safety agency would normally command.  

Microscopic road safety models, many proprietary, are equally numerous and widely used by 
consultants and others in the design of individual road safety treatments and the cost-benefit 
analysis of individual interventions. Some are econometrically estimated, such as Nilssen 
(1982); others empirically calibrated or derived from engineering theory. Again, these ap-
proaches are valuable, but are unsuited for making system-wide predictions.  

The proposed model incorporates microscopic algorithms within a macroscopic framework. 
We know of no other ‘mesoscopic’ model that fulfills this role.  

2.2 Strategic plans  

How then do road agencies currently tackle their strategy plans? For without a predictive 
model to underpin it, a strategy plan is hampered by the difficulty of demonstrating that tar-
gets are achievable and the resource mix optimised.  

Most rely on macroscopic models, for instance, the Australian plan (Australian Transport 
Council (2000)) and the UK plan (documented in Allsop (1998)). Only one to our knowledge, 
New Zealand’s plan, uses something like the approach proposed here (documented in LTSA 
1996, 2000). Macroscopic models of the kind described are in principle capable of producing 
predictions every bit as good as the ones proposed in this paper. This is good for setting 
‘headline’ national targets. What they cannot do is show how resources should be optimised, 
either spatially or between interventions.  

2.3 An economic approach  

Our approach to resource allocation is explicitly founded in the theory of welfare economics. 
But this is not the only approach to road safety management. The Dutch ‘Sustainable road 
safety’ and Sweden’s ‘Vision Zero’ (Fildes and Langford 2002) are both founded on the be-
havioural proposition that human beings are fallible, and whatever we do to make them more 
alert, law-abiding, or competent, they will still make mistakes. Hence we must design and 
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operate the network to accommodate human error, which we should do by rendering error 
impossible or its consequences acceptable.  

We see no incompatibility in practice. The Dutch and Swedish approaches are engineering 
design philosophies that recognise, among other things, that one can never rely on behav-
iour modification alone to achieve complete safety. Nevertheless, as long as resources are 
limited, one will always have to choose between alternatives. The proposed management 
tool will assist planners to do so in the most advantageous way.  

3 The theory  

The theory underlying the model is described below, illustrated in Figure 1, and detailed in 
mathematical terms in the Mathematical Appendix.  

Figure 1: Logical flowchart of the model  
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3.2 Exposure  

All traffic in a given category is exposed to the particular level of risk associated with that 
category. Hence changes in traffic affect exposure, which in turn affects social cost.  

In the current model, exposure is taken to be directly proportional to traffic volume, which in 
turn is directly proportional to factors such as population and to mobility. But more detailed 
and complex formulations are possible. For instance there is no need to assume that expo-
sure varies in direct proportion to traffic; for as traffic grows, congestion (to the extent that 
there is any) will tend to reduce speeds and hence the severity of crashes; at the same time 
it will tend to increase their frequency. In the current model we assumed the two effects 
would roughly cancel out; in other circumstances they might not.  

3.3 Risk  

Road safety resources are applied to traffic categories in amounts specified by the analyst. 
They show where particular interventions take effect, who they will affect, and how much. 
The risk borne by each traffic category varies according to amount of road safety resources 
applied—the more resources, the greater the reduction.  

In the current model, the link between the amount of resource and the level of risk—or 
‘dose-response’ relationship—is mediated by an elasticity parameter.

1
 We chose to specify 

the relationship in this way because elasticities are widely used by economists and engi-
neers, and are computationally simple. But other formulations are possible and, like elastic-
ities, may be estimated econometrically from empirical data or derived from engineering 
principles.  

3.4 Predicted social cost  

Social cost is predicted by multiplying current social cost by the proportional change in risk 
and exposure. Double the exposure (that is, double the volume of traffic in the current 
model) and you double the social cost; likewise double the risk, and you also double the so-
cial cost; double both and you quadruple social cost.  

Since social cost is calculated separately for each traffic category, the results of the model 
can be disaggregated and reported by any of the attributes used to characterise traffic cate-
gories. Given that traffic categories always relate to road links, it is possible to report results 
by regions and police districts, which is helpful for setting and monitoring agencies’ perform-
ance targets. If traffic categories also distinguish vehicle types, for instance, it is possible to 
set and monitor still more detailed road safety targets.  

Naturally the level of disaggregation is limited by standard error of the prediction. Since 
crashes are random events, any measure of social cost is in fact a sample whose size de-
pends on the amount of traffic to which the social cost relates. Our experience shows that it 
is rarely possible to obtain adequate estimates of social cost for spatial units smaller than 
municipalities, and even then three years’ data are generally required.  

3.5 Interactions between interventions  

Interventions are never applied in isolation. A road safety plan typically specifies a suite of 20 
or more complementary interventions applied with differing intensities in different places. 
Some relate to vehicles, some to road users, and some to infrastructure. Whatever the inter-

                                                

1  An elasticity of minus η indicates that a 1 percent increase in resource allocation will reduce risk by η percent.  
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vention, it cannot save life or limb that have already been saved by another intervention; and 
the more lives that are saved, the harder it is to save those remaining.  

The logic of the model accounts for these interactions. Interventions are made to combine 
multiplicatively where they affect the same traffic category, and additively where they do 
not.

2
 Crash migration is one kind of interaction that is not handled by the model; however, 

this is unlikely to be a problem at the spatial granularity for which the model is designed.  

Synergies between interventions, for instance that between education and enforcement, are 
likewise not endogenously handled by the model. However, these can be handled exoge-
nously by bundling, so enforcement and education are treated as a single, composite inter-
vention.  

4 The practice  

This section describes the model that was constructed for QT based on the theory described 
in the preceding section.  

4.1 Application software and database structure  

The modelling approach lends itself to a relational database such as SAS, Oracle or (for 
smaller models) MS Access. Table 1 lists the data tables and fields.  

This database structure relates to the current model. A more detailed model might catego-
rise traffic not just by road link but by other attributes as well, such as type of controller or 
vehicle. If so, the database structure would contain a data table of traffic categories instead 
of road links; it would be similar, except that the record for each link would be replicated for 
each type of traffic it carried.  

Likewise, a more detailed model might employ more descriptors for both crashes and road 
links. There is in fact no theoretical limit to the number and type of descriptors incorporated 
into the model; and the only limit in practice is one of data availability.  

4.2 Sources of input data  

4.2.1 Road links  

Roading data came from ARMIS, Queensland’s official electronic database of the state-
controlled road network (SCRN). Each link was defined so as to be as far as possible homo-
geneous; that is, constructed to roughly the same engineering standard throughout, located 
entirely within the same geographical unit, and with about same volume and mix of traffic 
along its length. The current model contains records of over 5000 road links.  

4.2.2 Crashes and casualties  

Crash and casualty data were extracted from RoadCrash, Queensland’s official electronic 
database of road crash data. The current model contains records of over 50 000 crashes.  

                                                

2  Suppose two interventions A and B affect the same kinds of crashes, and each is capable of reducing the number of 
crashes by, say, 40% in isolation. Together, they reduce crashes not by 80% (= 0.4 + 0.4), but by 64% (=1–(1 – 0.4)(1– 
0.4)). The former is an additive interaction; the latter, a multiplicative one.  
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4.2.3 Elasticities  

Is non-technical language, the elasticity of a given intervention is a measure of the respon-
siveness of risk to increases in the resources devoted to that intervention: it reflects the per-
centage change in social cost (or other outcome) produced by a one percent increase in re-
sources. Elasticities are as yet rarely to be found in the literature, so additional work is 
needed to derive them. But to the extent that they depend on the laws of physics, they are 
independent of jurisdiction; so once derived they can be widely used by other road safety 
authorities.  

Table 1: Structure and content of the database  

Data table Fields Comment 
   

Link identifier* Required for linking to crash records 

Location (LGA*, Police District* etc) May be geo-coded for flexibility  

Length* Used to calculate traffic volume in veh-km/yr 

Traffic flow* Used to calculate traffic volume in veh-km/yr  

Traffic volume* Calculated from link length and traffic flow 

Road links  
A table in which 
each record de-
scribes a link in 
the network 

Descriptors (functional level*, seal, 
median, width, lanes, shoulders etc ) 

One field for every descriptor used in the 
analysis  

   

Crash identifier* Required for linking to casualty records 

Link identifier* Required for linking to road link records 

Involvement: alcohol, excessive 
speed, young/old controller, heavy 
vehicle, pedestrian, bicycle, motor-
cycle etc* 

Optional depending nature of analysis  

Crashes  
A table in which 
each record de-
scribes a crash on 
the network 

Descriptors (time of day, weather, 
lighting etc)  

One field for every descriptor used in the 
analysis  

   

Crash identifier* Required for linking to crash records 

Severity* Used to calculate social cost 

Casualties  
A table in which 
each record de-
scribes a casualty 
on the network 

Social cost* Calculated from crash severity and unit so-
cial cost  

   

Elasticity of intervention 1* 

Elasticity of intervention 2* 

Elasticities  
A table of one re-
cord listing elastic-
ities  Elasticity of intervention 3 etc* 

Used to calculate change in risk due to inter-
vention 1, 2, 3 etc  

   

Proportional increase* Used to calculate change in exposure Exposure factors  
One table for each 
exposure factor 

Attributes of road link* Those attributes relevant to the exposure 
factor in question  

   

Proportional increase* Used in combination with the appropriate 
elasticity to calculate change in risk 

Resource inputs 
One table for each 
intervention Attributes of road link* Those attributes relevant to the intervention 

in question 

Note: Asterisks show fields used in the current model; unmarked fields are optional and can be used 
as required in more detailed models.  
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4.2.4 Exposure factors  

The current model employed two exposure factors, sourced as follows.  

• Population. We relied on ABS population projections, broken down by Statistical Di-
vision.  

• Mobility. We extrapolated from historical data to arrive at a statewide compound 
growth rate of 0.73 percent per annum.  

4.2.5 Resource inputs  

Unlike other data inputs, which are state variables or parameters outside government con-
trol, resource inputs are policy variables directly under government control. They are there-
fore not sourced but stipulated by the user of the model.  

4.3 Outputs  

4.3.1 Social cost and other measures of road safety outcome  

The model computes social cost, crashes and casualties disaggregated by road link. These 
results can then be tabulated and cross-tabulated by any of the descriptors that characterise 
road links, for instance, by functional class of road or by geographical unit such as Police 
District or LGA.  

In the current model, social cost is computed for three analysis cases:  

• ‘Before plan’  

• ‘Business as usual’—the outcome that would pertain if traffic grew as predicted but 
no changes were made in the mix or intensity of interventions  

• ‘After plan’—includes the impact of the plan’s proposed changes in resources.  

The model is also capable of computing road safety outcomes for each intervention in isola-
tion.  

4.3.2 Risk and exposure  

Besides computing safety outcomes, the model computes risk (expressed as social cost per 
vehicle-km) and exposure (expressed as vehicle-km). Risk might be relevant in its own right 
if, say, it were deemed that certain levels of risk were unacceptable on equity grounds. That, 
however, was not part of the current study.  

4.3.3 Benefit–cost ratio (BCR)  

Currently, the model expresses costs as proportional changes in physical resources. For in-
stance, the model can show the saving in social cost (in other words, the benefit) resulting 
from, say, a 10% increase in the number of speed cameras. This is not a BCR in the formal 
sense. To calculate a formal BCR—one useful for ranking projects—cost must be expressed 
in monetary terms. This requires two additional data items to be incorporated into the model:  

• the long-run marginal cost of each intervention (including the annualised capital 
cost of infrastructure improvements)  
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• the physical quantities currently being devoted to road safety.  

The logic of the model can readily incorporate these data, and the logic for the calculations 
of BCRs, when the necessary data are available.  

5 Illustrative hypothetical results  

In this section we used actual Queensland road and crash data to generate illustrative re-
sults for a hypothetical plan to increase the resources devoted to the following nine interven-
tions by 20%.:  

Publicity Anti-skid surface  

Roadside protection Blackspot treatments 

Police patrol  Random breath testing 

Speed enforcement Speed camera 

Trauma management  

  

Not all active interventions need be included in the model: exclusion implies only that an in-
tervention continues to be implemented at the same level as before the plan, not that it is 
discontinued.  

5.1 Statewide social cost disaggregated by case  

Three cases were modelled (Figure 2). Before the plan, social cost is $2.05 billion. After the 
plan, social cost is predicted to be $1.83 billion. ‘Business as usual’ shows what would hap-
pen if traffic grows as predicted but road safety interventions remain unchanged at pre-plan 
levels: social cost is predicted to be $2.44 billion. This implies that social cost would increase 
by $390 million were it not for the impact of the plan. Instead, it is expected to fall by $220 
million as the plan will reduce it by $610 million below what it would otherwise be.  

Figure 2: Actual and predicted social cost, by case  
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5.2 Risk disaggregated by functional class of road  

Although risk declines for all functional classes of road as a result of the plan, the propor-
tional change varies between classes (Figure 3) because interventions affect some classes 
of road more than others. As expected, the data show that road classes vary widely in risk. 
For instance, Class 1, which includes freeways, is a third less risky than Class 3, which is 
mainly undivided rural roads.  

Figure 3: Actual and predicted risk, by functional class of road 
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5.3 Social cost disaggregated by Police District  

Because Police Districts differ in their mix of road classes, they are hard to compare. Dis-
tricts with a lot of roads in a risky class would have an unduly high social cost, masking its 
true performance. To compare them on an equal footing their social cost was compared with 
a ‘normalised’ social cost, and the variance

3
 calculated. A positive variance means the Dis-

trict’s roads are more risky than average after allowing for their functional composition; a 
negative variance means the opposite.  

Figure 4 presents variances in social cost for all Police Districts. In the current analysis, Dis-
trict variances change somewhat as a result of the plan, but there is no clear tendency for 
variances to decline. For that to happen, the plan would have to be targeted specifically at 
the ‘worst-performing’ Districts—those with the highest positive variances. This could be 
done by allocating resources spatially so that they were concentrated in the target Districts, 
or by directing resources at road types and/or crash types that are to be found dispropor-
tionately in the target Districts.  

                                                

3  Variance’ in this context is the ratio of (1) the social cost calculated by the model, and (2) the normalised social cost. The 
normalised social cost is that which would pertain if the average risk for all roads of a given class in the District in question 
was the same as the average for all roads of the same class in Queensland as a whole. 
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Figure 4: Actual and predicted variance in social cost, by Police District  

-40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60%

Brisbane Central

Brisbane West

Bundaberg

Cairns

Charleville

Dalby

Gladstone

Gold Coast

Gympie

Innisfail

Ipswich

Logan

Longreach

Mackay

Mareeba

Maryborough

Mount Isa

North Brisbane

Oxley

Pine Rivers

Redcliffe

Rockhampton

Roma

South Brisbane

Sunshine Coast

Toowoomba

Townsville

Warwick

Wynnum

P
o
li
c
e
 D
is
tr
ic
t

Variance from normalised average

After

Before

 

6 Conclusions  

6.1 What we have achieved and what we have not  

We have built a management tool that helps road safety decision-makers get the most from 
the resources at their disposal, and at the same time set demonstrably achievable (hence 
credible) targets and plan for them.  

We have not quantified the ‘dose-response’ relationships between interventions and road 
safety outcomes. This task remains as hard as ever, and in some cases (for instance, edu-
cation and advertising) largely intractable. But to expect the current work to do this is to mis-
understand its purpose. The proposed management tool is not so much a model as a frame-
work that embodies dose-response relationships established by others. Its value is that it 
marshals this corpus of knowledge into a coherent, consistent and comprehensive whole.  

This has obvious advantages. Once the tool is in place, prediction will become straightfor-
ward, even routine. The tool itself will serve as a repository of knowledge. In this way it will 
clarify debate and so discipline the agenda. Disagreement will continue of course, but it will 
now be easier to focus on what the disagreement is about.  

The tool will engender transparency. In a sometimes intensely political environment, it will 
make it easier to resist the pressure to set targets that are impossible to reach or budgets 
impossible to keep. It will also reveal the true cost of political imperatives: the government 
will still have the last word, but we will know at what cost.  

6.2 Some possible criticisms and how we respond to them  

A critic might argue that the task we have set ourselves is just too hard: one cannot quantify 
all the relationships needed to make the tool work.  
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While it is true that the tool is only as good as its component parts, which are often deficient, 
this is the wrong test. The correct test is: does the tool help? We believe it does, and for the 
reasons stated above. Besides, if our critics are right and road safety relationships are too 
complex to be quantified, then much of the road safety literature is without merit. We do not 
think so.  

A critic might furthermore argue that road safety relationships are too complex to be cap-
tured in a simple parameter such as an elasticity. Again, this misses the mark. The tool can 
in principle accommodate any specification of its dose-response relationships; in the ab-
sence of better information we merely chose one that was widely used and understood. In 
any case, the fact that a specification is mathematically simple does not prevent its repre-
senting a complex relationship over a limited range.

4
  

That said, there are policy areas that are notoriously hard to evaluate, none more so than 
education, advertising and the ‘safety culture’. But this is not unique to road safety. It is be-
yond the scope of this paper to show how this problem can be tackled, other than to say that 
it can be modelled, if imperfectly, by such means as a secular trend to represent a gradual 
cultural change that affects all crashes everywhere.  

6.3 Where to from here?  

The tool could be extended in two main ways. First, our knowledge of elasticities and 
dose/response relationships in general could be greatly improved by adapting and augment-
ing existing knowledge to put it in an acceptable format. Second, as currently formulated the 
tool is a simulation model; optimisation must done by trial and error. Optimality conditions 
could be derived mathematically, and given sufficient data, could be used to find the optimal 
mix of interventions analytically.  

                                                

4  Economists have successfully done so for years. A road safety dose-response relationship is nothing more than a produc-
tion function; and the specification adopted in the current model is functionally of a Cobb-Douglas kind—perhaps the most 
widely used specification in econometric models.  
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Mathematical appendix  

Specification  

Variables  

The model links three variables that describe traffic characteristics. Exposure to risk,E , is 
determined by the quantity of traffic, and is typically measured in units of vehicle-km, though 
other units are possible, such as person-km. Road trauma,S , is a measure of the amount of 
trauma inflicted on a particular category of traffic, and is expressed in terms of crashes or 
casualties (possibly broken down by type), or social cost. Risk,R , is defined as the amount 
of road trauma per unit of traffic. By definition, these variables are linked as follows:  

 ERS .=  (1) 

All must be expressed in consistent units. For instance if exposure is expressed in vehicle-
km and road trauma in dollars of social cost, risk is in terms of dollars per vehicle-km. Alter-
natively, if exposure is in person-km and road trauma in fatalities, risk is in terms of deaths 
per (million) person-km.  

Traffic categories  

Different types of traffic grow at different rates and respond differently to interventions. For 
modelling purposes, therefore, all traffic on the network was disaggregated into disjoint 
categories as follows.  

Let every unit of traffic on the network be characterised by n attributes, each of which can 
have a number of discrete values. Set I  of possible traffic categories is defined as the prod-
uct set nIIII ×××= ...21  formed from the n sets of attribute values nIII ,...,, 21 ; and set i is de-

fined as a unique set of n traffic attributes, where i a member of I ( Ii ∈ ). Thus for every traf-

fic category i, we define exposure iE , risk iR , and road trauma iS , where by definition  

 iii ERS .=  (2) 

Exposure  

Since the factors that affect exposure to risk (that is, traffic volume) within the same traffic 

category generally combine multiplicatively, predicted exposure ∗
iE  is given by  

 ( )∏ +=∗

k ikii eEE 1  (3) 

where ike  is the proportional change in exposure caused by factor k acting on traffic i.  

Risk  

Since interventions within the same traffic category combine multiplicatively, predicted risk 

iR ′  is given by  

 ( )∏ +=∗

j ijii rRR 1  (4) 
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where ijr  is the proportional change in risk brought about by intervention j acting on traffic i.  

The proportional change in risk is, however, determined by the proportional change in quan-
tity of resources ijq  of intervention j applied to traffic i, where jη  is an elasticity parameter 

specific to intervention j:  

 









=

j

j

j
q

r
η  (5) 

Substituting (5) in (4):  

 ( )∏ +=∗

j ijjii qRR η1  (6) 

Road trauma  

From (1), the predicted amount of road trauma ∗
iS  for traffic i is given by:  

 ∗∗∗ = iii ERS .  (7) 

Summing across all traffic categories:  

 ( )∑ ∗∗∗ =
i ii ERS .  (8) 

Substituting (3) and (6) in (8):  

 ( ) ( )∑ ∏∏ 




 ++=∗

i k iki
ij ijji eEqRS 1.1 η  (9) 

Substituting (2) in (9):  

 ( ) ( )∑ ∏∏ 




 ++=∗

i k ik
ij ijji eqSS 1.1 η  (10)  
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