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1  Introduction 
 
Realistic estimates of short- and long-term costs for maintenance and rehabilitation of road 
asset management should take into account the stochastic characteristics of asset conditions 
of road networks. The probability theory has been widely used in assessing life-cycle costs 
for bridge infrastructures by many researchers such as Zayed et.al. (2002), Kong and 
Frangopol (2003), Liu and Frangopol (2004) and Noortwijk and Frangopol (2004). Very few 
studies were reported for road networks (Salem et. al. 2003, Zhao et. al. 2003).  In the 
existing studies, analysts usually made assumptions about the variability and probability 
distributions of input variables and maintenance/rehabilitation costs in estimating life-cycle 
costs. By taking into account the variability of the stochastic characteristics of road asset 
conditions, variation in the cost estimates can be investigated. The output statistical 
information of the cost estimates produced useful information for further analysis in selecting 
cost estimates with a reasonable degree of reliability (e.g. 90th or 95th percentile).  
 
This paper presents the results of research projects conducted by The Australian 
Cooperative Research Centre for Construction Innovation, Queensland University of 
Technology, RMIT University, Queensland Government Department of Main Roads and 
Queensland Department of Public Works. The research project aimed at developing a 
methodology for assessing variation and risk in investment in road network, including the 
application of the method in assessing road network performance and maintenance and 
rehabilitation costs for short- and long-term future investment.  
 
The objectives of the paper are: 

• To present a methodology for predicting the variation and likelihood (probability) of 
whole-of-life outcomes for short- and long-term investments in maintenance of road 
works given the natural variability of asset properties affecting road asset 
performance; 

• To demonstrate the feasibility of the method on an Australian road network. 
  
The expected outcomes of the study include: 

• Greater confidence in predicting future whole-of-life costs for short- and long-term 
investment in road assets; 

• Greater confidence in predicting the nature of future maintenance required and return 
periods (time intervals) for maintenance and rehabilitation; 

• Greater confidence in economic outcomes; 
 
2 Methodology Framework 
 
The aim of the methodology is for predicting the likelihood (probability) of short-term and 
whole-of-life investments for road networks given the natural stochastic characteristics (or 
variability) of asset properties affecting road asset performance. The method for the analysis 
is used for network or strategic analysis. Steps for the analysis are given below. Figure 1 
shows the schematic chart of the framework. 
 



 
Figure 1 Flow chart for assessing variation in life-cycle costs 
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Figure 1 Flow chart for assessing variation in life-cycle costs (continued) 

(Step 6) 
Input observational values of the critical input 

variables into analysis 
 

(HDM-4 is used in this study as a calculation tool) 
 

(Step 8) 
Conduct a series of HDM-4 
analyses to obtain the 
statistics of output road 
network performance  

(Step 9) 
Quantify statistical 

information (e.g. probability 
distributions, mean values, 
standard deviations of 
output road network 

performance) 

(Step 10) 
Assess variation and risk for road network 

performance including:  
• Physical performance characteristics 
• Nature of maintenance and rehabilitation 

activities 
• Cost per kilometre 
• Whole life cycle costs 

 

(Step 7) 
 

Assess calibration factors for deterioration 
prediction models 

 
(In this case, HDM-4 deterioration prediction 

models are used) 
 



1) The first step is to identify network performance characteristics to be modelled in the 
analysis.  

 
 

2) Identify critical input variables that significantly affect road network performance and, 
hence, cost estimates.  

 
3) Categorise road networks and variability assessment. In this step the analysed road 

network is categorised into different categories, so that each category has common 
characteristics. The variability of critical input variables is assessed for each category. 
This step allows the possibility of incorporating the variability of road data for road 
networks into the analysis. 

 
4) Establish probability distributions and statistical information (means, standard 

deviation and etc.) of the stochastic characteristics of the critical input variables of the 
road network.  

 
5) Use Latin-Hypercube Sampling Technique to sample data from the probability 

distributions of the identified critical input variables. 
 

6) Use a calculation tool to predict network performance characteristics (HDM-4 is used 
in this study). At this stage, it is necessary to calibrate HDM-4 prediction models to 
reflect observed local road asset condition. 

 
7) Calibrate deterioration prediction models to reflect the rate of change in road 

pavement condition for local condition. 
 

8) Conduct a series of HDM-4 analyses to obtain the statistics of output road network 
performance characteristics. 

 
9) Quantify the statistical information (e.g. probability distribution, mean, standard 

deviation, etc) of the output road network performance characteristics. 
 

10) Investigate the degrees of variation for the established probability distributions of the 
output road network performance characteristics. 

 
3 Analysis Process 
 
The first step in the analysis is to identify network performance characteristics to be modelled 
in the analysis. In this study, the network performance characteristics to be investigated 
include: 
 

• Whole life cycle costs  
• Physical performance characteristics 
• Cost per kilometre 
• Nature of maintenance and rehabilitation activities 

 
The second step is to identify critical input variables. It must be recognised that it is not 
feasible to incorporate the variability of all input variables into the analysis. Piyatrapoomi et al 
(2005) adopted the probabilistic technique to identify input variables that are critical in 
predicting variation in road network performance. These critical input variables include 
pavement strength, pavement roughness, annual average daily traffic (AADT) and rut depth. 
The details of the analysis are given in Piyatrapoomi et al 2005. 
 



The third step is to categorise road networks into different groups of common characteristics. 
Primary inter-city road networks in Queensland of approximately 4,500 km were chosen as a 
case study. Road networks of approximately 2,295 km, 1195 km and 1408 km were 
represented for wet non reactive soil, dry non reactive soil and dry reactive soil, respectively. 
These road networks were categorised into different groups, with group having common 
characteristics. The criteria used for categorising roads are shown in Table 1. Three hundred 
and seventy-eight road categories were generated from the combination of the categorising 
criteria. However, only sixty-five road categories were obtained from the categorisation of the 
4,500 km road networks. Table 2 shows examples of road categories obtained from the 
categorisation. For simplicity an identification is given for each road category, for instance 
‘WNR-Good-Bt-Flx-(1.5k-3k)’ refers to a road category located in wet non reactive soil, IRI < 
2.31, bitumen surfacing, flexible pavement type, ADDT between 1501-3000. 
 

Table 1 Criteria used for categorising road pavements 
Annual 

Average Daily 
Traffic 

Pavement 
Roughness 

(IRI) 

Surface Types Base 
Types 

Climatic and Soil 
Types 

 
< 500 
 

 
Good 

(IRI<2.31) 

 
Bitumen 

 
Flexible 

 
Wet  

non Reactive soil 
 

501-1500 
 

Fair 
(2.31<IRI>4.2) 

 
Asphalt 

concrete (AC) 

 
Semi Rigid 

 
Dry  

non Reactive Soil 
 

1501-3000 
 

Poor 
(IRI>4.2) 

  
Full Depth 
Asphalt 

 
Dry  

Reactive Soil 
 

3001-5000 
    

 
 

5001-10000 
 

    

 
10001-25000 

 

    

 
>25000 

 

 
 

   

 
Table 2 Road categories 

Description Climatic 
Zone 

Surface 
Type 

Pavement 
Type 

Roughness 
IRI 

AADT 
 

 
WNR-Good-Bt-Flx-(1.5k-3k) 

 
Wet Non 
Reactive 

 
Bitumen 

 
Flexible 

 
< 2.31 

 
1501-3000 

 
WNR-Fair-Bt-Flx-(1.5k-3k) 

 
Wet Non 
Reactive 

 
Bitumen 

 
Flexible 

 
2.31-4.2 

 
1501-3000 

 
WNR-Poor-Bt-Flx-(1.5k-3k) 

 
Wet Non 
Reactive 

 

 
Bitumen 

 
Flexible 

 
>4.2 

 
1501-3000 

 
The fourth step is to quantify the variability of critical input variables for each road category. 
As mentioned, the critical input variables include roughness, AADT, rut depth and pavement 
strength. Roughness data, AADT and rut depth data were extracted from ARMIS database (a 



Road Management Information System Database) of the Queensland Government 
Department of Main Roads. The variability of these critical input variables were quantified by 
the means, standard deviation values and probability distributions for each road category.  
For roughness, the majority of probability distributions of the sixty-five categories were found 
to have goodness-of-fit with beta general distributions. For average rut depth, the most 
common probability distributions that have goodness-of-fit with the data were found to be log 
normal and gamma distributions. For annual average daily traffic, the data showed 
goodness-of-fit with triangular and exponential distributions. Beta general distribution and log 
normal distribution can be used for modelling the probability distributions of pavement 
roughness and rut depth, respectively. Triangular or exponential distribution can be used for 
modelling the probability distribution of average daily traffic (AADT). Figures 2, 3 and 4 show 
mean values, standard deviations of pavement roughness (IRI), AADT and rut depth, 
respectively for the identified sixty-five road categories. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Means and standard deviations of roughness (international roughness index 
IRI) for 65 road categories 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Means and standard deviations of annual average daily traffic (AADT) for 65 road 
categories 
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Figure 4 Means and standard deviations of rut depth for 65 road categories. 
 
Pavement strength was identified as one of the critical input variable. Road agencies do not 
usually monitor pavement strength at the network level. Pavement strength is usually 
monitored by the Falling Weight Deflectometre (FWD). It is time consuming and high in cost 
in collecting pavement strength data at the network level. An analysis method for optimising 
longitudinal test intervals for pavement strength was developed by Piyatrapoomi et al 
(2004).Three case studies were conducted using the developed method in assessing optimal 
intervals for pavement strength data collection for three climatic and soil conditions in 
Queensland. The results found that road agencies could reduce strength test sampling rates 
by 75 to 80 per cent compared to current practice without losing statistical relevance for 
network applications. 
 
Based on the above findings, pavement strength data were collected at an affordable cost for 
the 4,500 km network used for the analysis in this study. The probability distribution of 
pavement strength was established for each road category.  In this study, pavement 
deflections obtained from the FWD test were transformed into the Structural Number (SN) 
which represents pavement strength by Robert’s function. Using Australia and New Zealand 
FWD data, Robert’s function yielded a reasonably close relationship to r2 > 0.9 (Salt and 
David 2001). The Robert’s function is given below; 
 

)(936.0)(167.4992.12 900DLogDLogSNP o +−=        (1) 

Where; 
SN  = the Structural Number 
Do  = pavement deflection under load cell 
D900  =  pavement deflections at locations 900mm from the load cell 
 
Figure 5 shows mean values and standard deviation values of the structural numbers (SN) 
for the identified sixty-five road categories. 
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Figure 5 Means and standard deviations of structure numbers for 65 road categories. 
 
Step five is to incorporate the variability of the critical input variables into the analysis. In this 
study, Latin-Hypercube sampling technique was used for simulating sample values from the 
probability distributions of the critical input variables for the analysis. In analysing a complex 
system, the Latin-Hypercube sampling technique is more appropriate than the well-known 
Monte Carlo simulation technique. This is because the Latin-hypercube sampling is the 
simulation technique that can be used for assessing the relationship of the variability of input 
and output variables by simulating small sampled data sizes for the analysis. The Latin-
Hypercube sampling technique can substantially reduce analysis tasks that may not 
economically be viable to conduct using the Monte Carlo simulation. Since the Latin-
Hypercube sampling technique has been popular in recent years for assessing quantitative 
risk, the technique has been incorporated in commercial risk analysis softwares, such as 
@Risk software. Piyatrapoomi (1996) found that sampling observational values of thirty data 
points were enough to obtain good estimates of the means, standard deviations and 
probability distribution functions of output variables. To obtain better results, forty sample 
data were simulated for each critical input variable and for each road category. @Risk 
software was used for simulating the variability of critical input variables for the analysis.  
 
Step six is to model road network for network performance analysis. In this study, HDM-4 
was used as a calculation tool. HDM-4, developed by the International Study of Highway 
Development and Management (ISOHDM), is a globally accepted pavement management 
system. It is a computer software package used for planning, budgeting, monitoring and 
management of road systems. There are three analysis options in HDM-4, which include:  (1) 
Strategy Analysis, (2) Program Analysis and (3) Project Analysis. The Strategy Analysis 
Option was employed in this study in assessing the effects of the variability of pavement 
strength on the estimate of maintenance and rehabilitation budgets. Forty HDM-4 input files 
were prepared for a series of HDM-4 analysis. Each file represents the randomness in the 
variability of the critical input variables. 
 
Step seven is to calibrate performance models. Since HDM-4 was used in this analysis, 
HDM-4 performance models were to be calibrated to reflect network performance for local 
condition. Piyatrapoomi and Kumar (2004) used the probability-based method in calibrating 
road performance models. The method is based on the probability theory and the Monte 
Carlo simulation technique. In this method, the stochastic characteristics of input variables of 
the deterioration prediction models were quantified by probability distributions. Monte Carlo 
simulation method was used to simulate the variability of the input variables of the prediction 



model to predict the variability of the model output. The model output is then tuned so that 
the predicted variability demonstrated by modelled deterioration closely replicates actual 
variability of measured deterioration.  In this method, the degree of goodness-of-fit between 
the calibrated function and recorded road data can be explicitly assessed and identified. 
Thus, this method gives a higher degree of confidence in using the calibrated models. Two 
case studies were conducted to assess the calibration factors of annual change in roughness 
for HDM-4 models in the previous study (Piyatrapoomi and Kumar (2004).  Road data of 
1688 kilometres of a National Highway (Bruce Highway) located in the tropical Northeast 
region of Queensland were used in the analysis. And road data of 1034 kilometre from 
Landsborough Highway located in central Queensland were used in the second analysis. 
The calibration factors for annual change in roughness found in that study were used in this 
analysis. Tables 3 and 4 show the calibration factors for annual change in pavement 
roughness for wet and dry regions. It must be noted that other prediction models need to be 
calibrated. In this study, only annual change in pavement roughness model was calibrated 
for demonstration purposes.  
 

Table 3 Wet tropical region of Queensland 
 

Thickness 
 

Calibration 
Factor for 

HDM-4 annual 
change in 
roughness 
model 

 
 200-300 mm 0.55 
300-400 mm 0.35 
400-500 mm 0.25 
500-600 mm 0.20 

 
 

Table 4 Dry region of Queensland 
 

Thickness 
 

Calibration 
Factor for 

HDM-4 annual 
change in 
roughness 
model 

 
100-200 mm 0.78 
200-300 mm 0.48 
300-400 mm 0.48 
400-500 mm 0.43 

 
Step eight is to conduct a series of HDM-4 analysis in order to predict the statistics of the 
output network performance. Details for maintenance and rehabilitation treatment choices 
and the intervention criteria for treatments that will be invoked are given in Piyatrapoomi et al 
2006. 
 
Step nine is to quantify the statistical information (e.g. mean, standard deviation, probability 
distribution, etc.) of output network performance. 
 
Step ten is to assess risk and variation in road network performance. 
 



 
4 Results 
 
From the statistical information of the outputs, we can investigate risk and variation of road 
network performance. As established earlier, road network performance of interest includes: 
 

• Whole-of-life cycle costs  
• Physical performance characteristics 
• Nature of maintenance and rehabilitation activities 
• Cost per kilometre 
 

Discussions of the results are given below. 
 
4.1 Whole-of-life cycle costs 
 
Information on risk and variation of whole-of-life-cycle costs allow road asset managers to 
investigate the likelihood or probability of costs of not being exceeded for a certain degree of 
confidence. From such information, road asset managers can choose an appropriate level of 
confidence in the cost estimates. For instance, they may choose the mean cost estimate with 
a probability of occurrence of approximately 50 per cent. Or they can choose high level of 
probability of occurrence, for instance, 95th or 90th percentile for which there is respectively 
5 and 10 per cent probability that the cost will be exceeded. Decision-makers will have 
informed knowledge on the variation and limitation of the cost estimate which is very helpful 
in preparing a realistic budget for road network maintenance and rehabilitation. Figure 6 
shows mean values of cumulative whole-of-life cycle costs for a 25-year period. Figure 7 
shows standard deviation values of the whole-of-life cycle costs. The total mean costs for the 
network investment for the next 25-year period would be approximately A$1.8 billion. It is 
noted that the estimated cost had not yet been discounted. Cost variation of one standard 
deviation shown in Figure 7 indicated sudden increases in the calculated standard deviation 
values. This characteristic indicated that there are possibilities of major maintenance and 
rehabilitation or major spending occurring in those years. It is observed that there are 
between 3 to 5 years for sudden increases in the standard deviation values. 
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Figure 6 Mean estimates of cumulative costs for road maintenance and rehabilitation for a 
whole life cycle of 25 years for 4,500 km road network 
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Figure 7 Standard deviations of cumulative cost estimates for road maintenance and 
rehabilitation for a whole life cycle of 25 years for 4,500 km road network 
 
The statistical information including the mean, standard deviation and probability distributions 
can be used to assess levels of risk in cost estimates. Table 5 shows the calculation of levels 
of risk (probability of occurrence) when it is assumed that costs were blown out by 10 and 20 
per cent from the mean estimates. These levels of risk assessment were calculated for 5-
year period.   
 

Table 5 Risk or probability of occurrence of cost blowouts 
 

Years of 
Cumulative 

Cost 
Estimates 

 
Mean Cost 
Estimates 
(A$ Million) 

 
10% 

Blow out 
Costs 

(A$ Million)  

 
Risk or 

(probability 
of 

occurrence) 
(%) 

 
20% 

Blow out 
Costs 

(A$ Million) 

 
Risk or 

(probability 
of 

occurrence) 
(%) 

1st year 39.95 43.29 36.0% 47.22 29.7% 
2nd year 48.61 53.47 37.4% 58.33 28.8% 
3rd year 69.46 76.40 35.2% 83.34 25.6% 
4th year 115.30 126.83 32.6% 138.36 20.1% 
5th year 115.23 170.73 32.2% 186.30 18.7% 

 
 
4.2  Physical performance characteristic 
    
Figure 8 shows an example of whole-of-life cycle performance for pavement roughness for a 
road category. The figure shows mean and mean plus one standard deviation of whole-of-life 
pavement roughness for a 25-year period for a road category in wet non reactive soil having 
initial roughness of less than 2.31, bitumen surfacing, flexible pavement and carrying traffic 
of AADT between 1500 to 3000 vehicles. The figure shows that mean IRI values are less 
than 4 for the whole-life-cycle. When we take the mean value for consideration, it represents 
approximately 50 per cent probability of occurrence. When we consider the IRI values of 
mean plus one standard deviation which represents approximately 83.33 per cent of 
occurrence, the maximum value of mean plus one standard deviation of most road 
categories are below 5 IRI. From this information, road asset managers can investigate in 
detail the variation and probability of occurrence of pavement roughness for the whole-of-life 
cycle for each road category. 
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Figure 8 Mean and mean plus one standard deviation for pavement roughness for a whole 
life cycle of 25 years for road category of WNR-Good-Bt-Flx-(1.5k-3k) 
 
4.3 Nature for maintenance and rehabilitation activities 
 
Table 6 shows typical results of time intervals for maintenance and rehabilitation treatments 
for a road category. The table shows means and standard deviations of the time-intervals.  In 
the Table, WNR-Good-Bt-Flx-(1.5k-3k) represents road category in wet non reactive soil, 
with pavement roughness of IRI less than 2.31, bitumen surfacing, flexible pavement and 
carrying traffic of AADT between 1501 and 3000 vehicles.  
 
The first time interval is the time required for a treatment from the start of the analysis year. 
The start of the analysis year for this analysis is 2006. The second time interval is the return 
period for a major rehabilitation after the first treatment has carried out. The percentage (%) 
of treatment types represents possibility or percentage of a selected treatment that is likely to 
occur. There may be different possibilities of selected treatments for a road category. These 
different possibilities of treatment resulted from the variability of critical input variables and 
the random combination of the variability represented in the analysis and random simulation. 
This information allows road asset managers to be aware that there are other possibilities in 
the treatments that can occur or can be selected. Mean and standard deviation values of the 
time intervals presented in the tables provide flexibility of the variation in selecting a time for 
treatments.  
 
4.4  Cost per kilometre 
 
Cost per kilometre was calculated from the whole-life cycle cost of 25-year period of each 
road category divided by the number of kilometres of road length within that category. Table 
5 shows typical results of means and standard deviations of costs per kilometre. This 
information can assist road asset managers to make informed decisions in relation to 
investment costs and the degree of variation in the predicted costs for each road category. 
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5 Conclusion 
 
This paper presents a ten-step framework for assessing risk and variation in whole-
of-life cycle road network performance for maintenance and rehabilitation investment 
of road networks. Queensland Inter-city road networks of approximately 4,500 km 
were used as a case study. The expected outcomes of the project included: 
 

• Greater confidence in predicting future whole-of-life costs for short- and long-
term investment in road assets; 

• Greater confidence in predicting the nature of future maintenance required 
and return periods (time intervals) for maintenance and rehabilitation; 

• Greater confidence in economic outcomes; 
• Greater accuracy in predicting the relationships among the variability of 

critical input variables, such as traffic, environmental zones, roughness, etc. 
on predicted outcomes (i.e. roughness, costs)  

• Greater confidence in assessing cost per kilometre for each road category. 
 
 The case study has achieved the following: 
 

• Identified critical inputs that influence the reliability of road investment model 
outputs. 

• Incorporated stochastic properties of critical model inputs for chosen road 
networks into the investment analysis process. 

• Improved and applied a methodology for calibrating road investment models 
that make use of the variability input properties. A calibrated model reliably 
predicts the variability of the roughness model outputs when compared with 
the network variability of actual roughness of the chosen network. 

• Analysed and demonstrated the variability of predicted network performance 
(both physical and financial performance) for a chosen primary inter-city road 
network in Queensland, The Queensland National Land Transport Network. 
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