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1 Introduction 
 
Transportation Systems are complex networks. The traditional means to describe complex 
networks is the random graph model (ER model) established in 1959 by Paul Erdos and 
Alfred Renyi (1959). The defining characteristics of ER random graph model are that they 
are statistically homogeneous and their degree (number of links attached to a node) 
distributions are poissonian (Albert, 2001). In contrast, recent empirical evidence shows real 
traffic and transport networks have a hetrogenous nature and their degree distribution has 
scale free power law distribution. Scale free characteristics of the transport networks 
suggest a small number of locations (nodes) within the network attract far more pepole and 
vehicles than others.  It is thus reasonable to propose the observed scaling characteristics of 
the traffic flow in real traffic network is due to the nature of gradient fields which directs a 
large portion of traffic into locations such as shopping centers, house of worships and other 
important social and cultural infrastructures.  In this paper we use the term ‘node’ to refer to 
any sites that a vehicle stops. Traffic red lights are nodes.  Links are inter-connectors that 
allow one or more vehicles to travel between nodes. A Gradient induced flow (GIF) network 
or simply gradient network is then defined as the collection of all directed links within a traffic 
network (Toroczkai et al, 2004).  GIF entities are of great practical importance in the fields of 
transport and urban planning as they offer far more efficient and robust transportation 
systems.  
 
In this paper, we study the topological characteristics and functional properties of gradient 
networks. We define centrality measure in order to characterize GIF entities. We also 
develop a superstatistical model of urban traffic. We discuss the dynamical route toward 
global synchronization of our transport systems. 
           
For clarity, we distinguish between the phase signal of traffic light (signal phase) and 
structural phase-state transitions (topological phase state). We refer to synchronizability as 
dynamical relationship between the nodes and not to some external dynamics. 
         
1.1 Random graphs 
 
Graphs are mathematical representation of transportation networks (Holmes, 2003). The 
simplest representation is static random graph of Erdos and Renyi. In this model, we start 
with N nodes and connect every pair of nodes with equal probability P, creating a graph in 
which links are distributed randomly.  The random graph shows remarkable structural phase 
transitions.  If for example, we increase the number of links (for a fixed number of nodes), all 
of sudden a single giant component appear in the network in which all nodes are fully 
connected. This is known as giant component of supercritical phase of random graph.  The 
giant component of the supercritical phase of the random graph currently use by traffic 
engineers and urban planners to sample real traffic and transport networks. The problem 
with using random graphs as models for transportation networks is that it cannot account for 
the hetrogenous structure of scale free power law distribution observed in such networks. 
This is because all nodes are equally important in random networks.  The degree distribution 

of random graph )deg( reekstatic =Π , in the large N (=number of nodes) limit is a Poisson 

distribution. 
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where k  denotes the average degree.   

 
In summary, the basis of static random graph theory is based on assumptions that nodes 
are equivalent and links are distributed randomly. In practice, we assign weights to the links 
(costs) causing variation in the probability of connection between nodes. We can establish a 
gradient induced field by making the network weighted (Park et al, 2005).  In the next 
section, we discuss the topological characteristics of GIF networks. 
 

2    Topological characteristics of the gradient network 
 
Gradient induced flow (GIF) networks or simply gradient networks (Toroczkai et al, 2004) 
have certain structural properties similar to power law scale free networks. Their degree 
distribution Π (K=degree) have scale free characteristics of the form:  

Π  (k) ~k
-γ             (2) 

where scaling exponent γ is a fine-tuning parameter which defines the dynamics of the 
network and its topological phase evolution. This form of the distribution is the easiest to see 

when the graph of probability distribution Π  ( k ) is plotted on the log-log scale. The slope of 

the line is the exponent γ  of the power function.  
 
GIF networks have a small world phenomenon and a high clustering coefficient. By small 
world phenomenon we mean that the average degree of separation or average shortest path 
between nodes is small. In urban traffic, the average shortest path length can be defined as 
the average minimum number of times vehicles need to stop (i.e. red traffic light, junctions, 
roundabouts and reversing) in order to get from one location (node) to any other location in 
the network (Mojarrabi, Gwal and Mojarrabi 2005).  
 
Clustering coefficient of the GIF networks provide useful information about the community 
nested structure. The global clustering coefficient is average of all local clustering 
coefficients (Watts and Strogatz 1998). We can measure the global clustering coefficient 
(Cmeasured) in the traffic network by calculating the ratio of the total number of parked vehicles 
(Nparked) to the total number of available (possible) car parks (Nvacant) within the network  
(Mojarrabi and Mojarrabi 2005, Mojarrabi and Mojarrabi 2006): 

vacant

parked

measured
N

N
c =           (3) 

The topology of the GIF networks also play an important role on their synchronization. For 
example, Li, Wang and Chen (2003) showed that they are robust but yet fragile in 
synchronization. This means they are robust against random node failure but vulnerable to 
the deliberate attack on their hubs (i.e. the nodes that lie on the tails of the distribution P(k)).   
 
There is also an important engineering parameter called “betweenness centrality” Bi of the 

traffic node Ιτ  (red traffic signal, intersections, roundabouts) in traffic network. Here we 
define it as the number of the shortest path connecting two locations within the network that 

involve a stop at traffic node Ιτ. It has been suggested by Hong et al (2004) that 
synchronization is enhanced if the betweenness centrality is reduced. The traffic node Ιτ  has 
an important functional role in the network as it sits between the shortest path connecting 

two locations within the network. This means it can be used to fine-tune the exponent γ by 
controling the traffic flow between corresponding locations. Betweenness centrality can be 
used to characterize GIF entities.  
 
We classify GIF entities into two groups: firstly GIF entities with low betweenness centrality 
(i.e. local GIF entity) and secondly clear time scale GIF entities which have Maximum 
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Betweenness Centrality.  In the next section, we details techniques to measure the 
topological characteristics of the GIF networks including an example. Gradient network is 
scale free network in which traffic jamming is limited compared to random graphs (Toroczkai 
and Bassler 2004; Park et al, 2005). 
 

3 Measuring topological characteristics of gradient network 
 
Scale free networks (SF) have been the subject of intensive research and scientific 
observation in recent years. A considerable number of real graphs in Biology, Sociology, 
Internet and telecommunications have scale free characteristics, i.e. the network looks the 
same when zooming in or out.  NASA (Alexandrov 2004) has proposed scale free networks 
as their future air transportation systems. 
 
There have been some attempts to infer scale free network characteristics within traffic 
network and urban network. Jiang and Claramunt (2005) provided the evidence that large 
urban street networks in the Swedish city of Gavle have small world characteristics but do 
not exhibit scale free characteristics. Yanguang and Yixing (2005) reported that urban 
systems and the road networks based on urban systems for cities of Hanan provenance in 
China are also scale-free networks.  The real empirical data come from the city of Portland, 
Oregan, USA (Chowell et al, 2005), city of Marion in Adelaide, Australia (Mojarrabi and 
Mojarrabi, 2005), Beijing city in China (Wu et al, 2004) and Sardinia region in Italy (De 
Montis, 2006) providing the clear evidence the flows of peoples and vehicles within the 
transportation networks have power law scale free characteristics. Here, we review of the 
results obtained from the Marion shopping center in Adelaide to show the first evidence of 
the existance of a local GIF entitiy in traffic network.  
 
To explore whether the network around the shopping centre was scale free, Mojarrabi and 
mojarrabi (2005) created the statistical profile of the degree distribution. They considered 
nodes to be any sites, at which a vehicle stops or parks.  For example, a parked vehicle 
within the physical boundary of a house was treated as a node with degree 1. Similarly 
nodes with degree 2 were sites in which two vehicles stop within the physical boundaries of 
the site and so on. The number of vehicles that had stopped for the red signal of  traffic 
lights was counted as its node degree.  
 
In this way, they created a cumulative network consisting of about N=3445 sites with the 
mean degree of 8.11=〉〈k . The degree distribution had scale free characteristics with scaling 

exponent 3.01.1 ±=γ . The distribution also showed an unexpected characteristic dip at 

degree 2 and exponential cut-off at degree 250, presumably due to the limitation in the car 
park capacity arising from city planning regulations (Figure 1).  
 
They used the linear fit of the first nine points to calculate the error in the exponent of the 
power law as they contain most of the data and were less affected by error distortion of log-
log transformation of the tail (Goldstein, Morris and Yen, 2004). 
 
The other characteristics of the scale free networks such as high clustering and small world 
phenomena were also measured. The clustering coefficient was found to be Cmeasured = 
0.56± 0.04 far larger (164 times larger) than corresponding clustering coefficient calculated 
for random graph Crand = 0.0034. 
 
The network around Marion shopping centre had an average short path of about, L = 3.2, 
which was small compared to the size of network.  
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 Figure 1        Degree distribution of the traffic network around the vicinity of Marion  
                        Shopping centre. The log-log plot of the cumulative distribution of 
                        the graph shows a power law distribution with 3.01.1 ±=γ . The 

                        distribution has a characteristic dip at degree 2 and a cut-off at degree 
                        250. 
 

4 Gradient network modelling 
 
4.1 Background 
 
To date, two potential theories have been put forward to explain the observed Gradient 
Induced scale free behaviour of the real traffic networks. 
 
In the first model, Mojarrabi and Vogiatzias (2005) proposed that the origin of this class of 
network within urban traffic is due to the competitive nature of the nodes at the microscale 
level. Nodes compete to attract vehicles. As the flow rate increases (more vehicles enter the 
network) the model predicts the existence of Fit-get Rich and Bose-Einstein condensation as 
a result of a fitness mechanisam. They then use the phase-state diagram of evolving scale 
free network to create the optimised solution for the end to end delay in the context of a 
strategy and tactical construct theory called Locality-Scope (Vogiatzis, 2005). In this 
framework, the scope provides the external synchronisation and optimisation services of the 
traffic lights using Nash flows. Section 4.2 contains detailed discussion about this model. 
 
This model is, however, inedequate to account for all real traffic situations. In fact, there are 
situations within the traffic network that fitness of the nodes may vary due to events such as 
collisions, accidents, traffic jams and/or other types of spatial chaos or even due to some 
external influence such as abrupt weather changes.  
 
A further problem is the fact that the model uses the ingredieants of preferential attachment.  
It assumes new vehicles tend to attract to the nodes that are already established and 
attaractive.  This imply that the new vehicles joining the network must have some prior 
knowledge of the attractiveness of locations within the local area in order to choose with 
whom to join. This is certainly not always the case. A  similar view was expressed by 
Servedio and Caldarrelli (2004).   
 
In addition, the model does not include the internal synchronisation of the traffic light network 
on different time scales, from microscale at the very early stage of formation of gradient flow 
up to the macroscale at the end of time evolution of the gradient network. 
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Mojarrabi and Mojarrabi (2005) then proposed a superstatistical approach to traffic network 
around large shopping centers. In this model, a two-folded process is responsible for the 
emergence of scale free power law structure within the traffic network: a gradient induced  
flow resulting from the competitive dynamics of the nodes, and secondly, the temperature 
fluctuation associated with varying probability of connection of the nodes due to events such 
as collisions, accidents and traffic jamming (spatial chaos in the background). They 
established the joint probability of these two processes are scale free network with adaptive 
phase evolution.   
 
Although it is reasonable to assume in a great number of cases that the emergence of 
gradient network is due to competitive nature of the nodes, this is certainly not always the 
case. For example, A GIF network can be formed due to cooperation/partnership or mutual 
participation between the nodes. As an example, we can imagine the traffic flow around the 
vinicnity of the Gleneg beach in Adelaide or Taj Mahal in India is a result of inherent beauty 
of these places. It is pluasiable, a subsatantial number of large hotels and commercial 
developemnts will gain benefit from the proxity to these centers of attraction. Another 
example with inherent attraction properties are religious infrastructures that often ilicit a deep 
feeling of peace, strengh and fellowship in their worshipers.  
 
In general, the hetrogenous relationship between nodes and the emergence of gradient 
induced flows are not necessary due to one factor, but a  combination of many factors. If this 
is the case, then it is pluasable, our model will not identify all relevent micro-macro linkages 
of the mesoscopic level suggesting anomalous results (White et al, 2004) . i.e. We can not 
account for all the functional and relational abilities of the multicommuniy structure of the 
network when each community has its own GIF’s. When placed in the context of 
globalization, this may prove crucial to operationalize a stable and roubust global integrated 
transportation system that serves to secure a sustainable human future (IRG SCAFT 2006).  
 
In this paper we show, for a suitable superstatistical model, the main dynamical path toward 
global synchronisation within our increasingly close-knit “global village” is oriented toward 
clear time scale GIF entities, persumably, those of religious communities. Here, we will focus 
our attention to the role and function of clear time scale GIF superstructures such as House 
of worships to the design and planning of a futuristic global integrated transport and urban 
system. 
 
Here we propose the evolution of traffic networks around large shopping centers and 
religious infrastructures as gradient flow with respect to an innate quality called “energy” iε  

and a fluctuating parameter T, called temperature refereeing to the variation in the 
probability of the connection between the nodes due to temporal chaos in the background. 
Since synchronization is related to the topological scales of the gradient field, then it is 
possible to observe the gradient network with temperature fluctuation as a type of evolving 
scale free network constrained both in its direction and in its form. 
 
4.2  A preferential attachment and fitness model of traffic network  
 

In an evolving traffic network the probability Π that a certain vehicles parks at certain node i 
is given by: 

iiii kaA +=Π )(κ                                                                                     (4) 

where A is the physical space that originally attracts a vehicle.  
 

Once a vehicle stops within the physical space, then the second mechanism iika  starts. 

Vehicles prefer to join the sites that are more attractive and established. Scale free 

properties emerge as a result of this mechanism.  The parameter ia  is the rate of the 
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growth of this mechanism. It will determine the value of the exponent γ of the scale free 

power function. ik is the degree of the node i.  

 
In real traffic networks, sites have limited capacities to attract more vehicles; for example, 
after some time, the car park may become full, however there are still other mechanisms to 
consider in the evolution of the network. 
 
The sites where vehicles stop have an intrinsic tendency to increase their degree at the 
expense of the other nodes. The competition is costly and must be done in the time scale of 
the dynamics of the traffic network.  Bianoconi and Barabasi (2001) proposed a fitness 

mechanism in which each new node has a different fitness η. In traffic networks, the ‘fitness’ 
is the ability of the node to pay the cost in order to succeed in accruing new links in a 
competitive environment. Each node employs tactics to minimize the link cost or equivalently 
its average time delay payments. As a result of this fitness mechanism, the newly arrived 
node may win over old established nodes.  

 
Under these conditions the equation 4 becomes: 

∑
++=Π

j

jj

ii
iiii

k

k
KaAk

η
η

)(                                                               (5)                          

where iei

βεη −=  is the fitness of the node i. The energy εi is the ability of the node i to retain 

its competitiveness and 
T

1
=β plays the role of inverse temperature T. We can use it as a 

control tuning parameter.  Furthermore the denominator normalizes the distribution and the 
sum is over all nodes j present within the network.  The rate of change of the degree of the 

node i (i.e. the rate at which particles accumulate on energy level εi ) is given by: 
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                                                                          (6) 

where m is the number of links that a new node has when it joins the network. 
In the limit of ∞→t , the evolving network maps into a Bose gas as shown in figure 2(a).  

 
Bosons are identical particles which can share their quantum states. Photons and Helium-4 
atoms are bosons. The fact that particles can be identical has important consequences in 
statistical mechanics calculations as a result of probabilistic laws. The statistical behaviour of 
the bosons can be determined from the so-called Bose-Einstein Statistics. 
 
In this paper, we show that the mathematics of the atomic boson is similar to the 
mathematics of the traffic around large shopping centers. 
 
We can treat the links within the transport networks as identical particles. Vehicles are 
allowed to park in any of parking sites. This will allow us to represent entire transport system 
as a Bosanic network. Nodes can be represented by energy levels and links are represented 
by particles in energy levels.  
 
The mapping indicates two distinct phase evolutions in the evolution of the traffic network.  
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Figure 2     A  schematic illustration of the mapping between the scale-free model with 

                    fitness η η η η and a Bose gas (Barabasi, 2001).  
 
From the figure, one can see the fit-get–rich phase (FGR) in which several high degree 
nodes accompanied by many less connected nodes exhibit the power distribution 

relationship FGRk
γ− . The difference in value of the exponent from the scale free status to FGR 

indicates the dynamics of the system has been shifted from established nodes to that of 
fittest nodes.  In the energy diagram of figure 2b, the FGR phase characterized by a few 
highly populated low energy levels.  
              
In Bose-Einstein condensation, the winner takes a finite fraction of all links. In the energy 
diagram this corresponds to the most populated ground level and sparsely populated higher 
energy levels (Figure 2c); it occurs at the critical temperature TBE.  The difference between 
FGR and BEC is in the relative occupation number of the large nodes at different 
temperatures. 
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Real traffic networks are however directed networks in which the traffic flows have an 
incoming and outgoing direction. In this case, we consider the network as two isolated 
incoming and outgoing subsystems. 
 
The mapping of directed traffic networks can be done independently for each subsystem as 
shown in Ergün and Rodgers (2001) and  Sotolongo-Costa and Rodgers (2003).  For each 

node (site/ sites in which a vehicle stops) we assign 2 ‘fitnesses’ (incoming fitness inη for the 

receiving node and outgoing fitness outη  for the emitter node). This means that the link can 

be grouped into two different separate subsystems in which each group can separately map 
to Bose gas similar to figure 2. Under this condition, the creation of a directed link 
corresponds to the creation of two particles, one in each subsystem, simultaneously. In the 

mapping, the fittest node (high η) results in the lowest energy levels (energy ε). A link from 

node i to node j in the network corresponds to creation of a particle in level ε in the Bose gas 
for each subsystem. The network evolves over time by adding a new node. The super node 
appears as a highly populated, lowest energy level while higher energies remain only 
sparsely populated. 
 
The solutions show similar phase-state transitions of FGR and Bose condensation phases 
for each isolated subsystems as that of undirected network. However TBE may be different 
for each subsystem.  
 
4.3 Superstatistical model of traffic network 
 
We start with a short introduction to the “superstatistics” concept itself. Superstatistics or 
statistics of the statistics is the model developed by Beck and Cohen (2003), Beck (2004), 
Sattin (2005) and (Beck, Cohen and Swinney, 2005) to describe the inhomogeneous non-
equilibrium systems. These systems usually have different dynamics on different time 
scales. Superstatistics allow us to postulate a universal statistical profile for such systems. 
For example, we can view a traffic network as a non-equilibrium system in which a number 
of vehicle move randomly (i.e. A poission distribution for reasonably large number of 
vehicles) through a gradient field with energy iε . There is also a second much slower 

dynamics of the background, namely, the spatiotemporal fluctuation T of the background. 
For example, Drivers make mistakes and collisions may happen or traffic jams may occur. 
The net result of these fluctuations is to cause variation in nodal fitness and thereby varying 
the probability of connection. Nowadays varying fitness is referred to as hidden variable 
theory in literature (Servdio and Caldarelli 2004).  I.e. we have a fluctuation random graph 

with distribution Π(T)  instead of a static random graph with distribution 
)(kstaticΠ
. In this paper 

we show the poissonian transformation of Π(T)  is power law scale free.  
 

The probability distribution for static random graph )(kstaticΠ  is a poissonian of the form: 

≈Π )(kstatic
T

k

e
K

T
1

!
                                                                 (7)    

where average degree k  in equation 1 corresponds to temperature in equation 7. The 

question we need to answer is what the form of degree distribution Π(ki) is when k  is a 

stochastic variable. In this case, the distribution in equation of 7 is a conditional probability 

)|( TkiΠ . i.e. the probability of finding a certain number of vehicles attracted to a node i  

given some value of Temperature T.  
 

However, we are interested in the degree distribution Π(ki) of a fluctuating random graph 
which is the probability to observe a certain number of vehicles attracted to a node i  

irrespective of the T. We propose that the degree distribution Π(ki)  can be found from 
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marginal of the joint probability ),( TkiΠ  using the superstatistics tools developed in the 

papers Abe and Thurner (2005) and Beck (2004). The joint probability ),( TkiΠ  is simply the 

probability to observe both processes for a given value of K and T. i.e. 

),( TkiΠ )|()( TkT iΠΠ=                                                                          (8) 

 
 Finally from equations 7 and 8 we deduce: 

( ) dTe
K

T
Tk T

k

i

1

0
!

)(∫
∞

Π=Π                                                                       (9) 

that means the degree distribution of Π(ki)  can be found from the superposition of random 

graphs Π(T)  and )(kstaticΠ  in the form equation 9.  Abe and Thurner (2005) have established 

the form Π(ki)  is a power law scale free distribution using the example of a quantum 
mechanical harmonic oscillator.  
 
Here we offer a simpler approach for the gradient field defined to be the number of possible 
fittest nodes that vehicles may be attracted within each traffic light phase. The gradient 
network is then defined as the collection of all directed links attracted to the fittest nodes or 
supernodes. 
 
We follow a similar approach as in the paper by Argentini (2005). The flow on a node i at a 

given traffic signal phase Si t∆+  depends on the flow at signal phase Si with the probability 

Π(ki) given by:  

Π(ki) =
∑
j

j

i

k

k
                       (10) 

where ik  is the degree of the node i .The flow rate at which vehicles accumulate on node i 

is given by Albert and Barabasi (2002) continuum approach similar to equation 6 (see 
section 4.2).  
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                                                                              (11) 

where  iη ′  is defined as the fitness of the node i to stay with the flow and m′  is a function 
that relates to the general properties of the field in the node i to the temperature fluctuation 
within each traffic signal phase S. Numerically it is related to the road and flow parameters 
such as the number of lanes, the speed, viscosity and density of the flow. It can couple to a 

transport equation through the energy εi. Here we assume m′  is a constant referring only to 
the geometrical parameter of the parking sites in which a vehicle has been attracted.  
 

The intrinsic fitness iη ′  is generally a power law distributed function (Cladarelli et al, 2002) 

which couples field energy εi with background temperature T. Here we choose T
i

i

e

ε

η
−

=′  

which a simple way is for supernode to pumps its field energy into the system. Under these 
conditions the equation 11 has similar form as equation 6. i.e we have shown the poissonian 

transformation of Π(T)  is power law scale free. It is evident that the origin of this power law 
is statistical and therefore is different from the origin of GIF networks.  However, we can still 
observe gradient network scale free structural characteristics even when spatiotemporal 
properties of the background is embedded into the dynamics of the system.  However, the 
synchronization dynamics of the network would be altered from the original optimal design.  
 
In the next section, we investigate the tempral dynamical attributes of the gradient network 
when placed in the context of synchronization (considering spatiotemporal fluctuation T of 
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the background). Later in this paper, synchronization will be put forward as a mechanism to 
frame how different transportation/ urban systems distributed across the globe can be 
integrated in a sustainable manner. 
 

5    Synchronization 
 
It is suggested by Arenas, Diaz-Guilera and Perez-Vicente (2006) and IRG SCAFT (2006) 
that often the neigbours of the fittest node cooperate to form local clusters. These 
synchronized clusters will grow in size as more nodes join the flow creating larger and larger 
community structures up to the final stage when the entire population has synchronised their 
phase.  This process will occur in a clear time scale from the microscale at very early stage 
up to the macroscale at the end of time evolution. We use popular Kuramoto model 
(Kuramoto and Nishikawa, 1987) to investigate the synchronisation nature of this process in 
gradient network.  
 

)sin( ji

i

iji

neigbours

W
dt

d
Φ−Φ+=

Φ
∑ω      (12) 

here iω  and iΦ  are the original frequency and phase of the individual oscilator. 

ijW  is the weight parameter of the gradient network. It depends on the fitness of nodes i  to 

…N. The gradient network interacts with the background fluctuation field parameterized by T 

within a time step ht∆ .  In general ht∆  is the fraction of time the fluctuation background 

spends in a certain state. For example an accident might take more than one traffic phase 

t∆ to clear by re-routing the traffic. The effective weight parameter ijW  of the gradient 

network is then the weighted sum of all ijW  spent interacting with background.  The effective 

weight ijW causes a shift in the field distribution. As time passes, the field distribution will be 

shifted to a degree that is not centered at origin anymore.  In this case the transition cycle of 
the traffic lights cannot be completed on time as different topology implies different values of 

tuning parameter γ. A possible solution is to reset the system defaults by for example re- 
zoning. To understand this correspondence we need to look into the Laplacian matrix form 
of the equation 12. From the eigenvalues obtained from the solution of the Laplacian matrix 
equation, we can see gaps which correspond to the times of resets often suggesting the 
emergence of new community structures with different functional time scales. In this way we 
conjecture that the eigenvalue solutions to the Laplacian matrix contain the synchronization 
codes for the traffic lights.   
 
The point to be stressed is that now equation 12 can be written as  

)sin( ji

i

iji

neigbours

W
dt

d
Φ−Φ+=

Φ
∑ω              (13) 

this means we can always create a local gradient network easily fitted to synchronize by 
making the network weighted using the methods of superstatistics. This proposition has 
been supported also by Park et al (2005).     
 
Putting these arguments together, although many experts employ successful theories of 
traffic flow in the local network, such models altogether miss the point that traffic network 
can have scale free characteristics. The idea that structures emerge within traffic gradient 
fields (and social fields as well) is an important consideration with regard to prior 
identification of the community structures essential for the establishment of dynamical route 
toward global synchronization of often our disjoined world transport network.  Naturally, the 
first thing is to look for a benchmark. It is plausible we initially look for an established 
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community structure which has a well detectable synchronization codes to serve as our 
benchmark.  
 
What we are looking at is a community structure that has evolved from the embryonic stage 
up to the macroscale at the end of time evolution showing non-trivial topological structures 
with multiple time scale for synchronization. For this reason the method of community 
structure benchmarking algorithm develop by (Arenas, Diaz-Guilera and Perez-Vicente 
2006; Nel and Serfontein 2005 and White et al, 2004) stand out as a natural choice for our 
study.  An outcome of these studies is that the networks that have a nested multi-community 
structures with an overall clear time scale GIF topology, presumably those of religious 
communities and multinational organizations, provides the best dynamical route to global 
integration of our transport networks.   
 
There are several criteria for the Clear time scale GIF entities to be accepted as a 
benchmark following the line of White et al (2004).  Firstly their synchronisation code should 
show adaptive patterns over time; secondly their fields should embrace the entire network 
and actively support collaboration among the nodes. Using the terminology of White et al 
(2004), synchronization acts in the gradient induced fields “as a radar screen for searching 
for prospective partners” “a ladder for successful attachments, and a “source for 
collaborative resources”.  
 
In terms of mathematical relations, it is equivalent to say that the eigenvalue gap for the 
Laplacian matrix of the chosen organization should enable synchronization for a wide range 
of engineering parameters and also in the presence of transportation and logistical delays. 
Since eigenvalue gaps within the social networks are corresponds to the periods of 
community structural developments, the supra social organization that successfully have 
transmitted these codes to significantly diverse geographic units of the planet bear distinctive 
imprints of being clear time scale GIF entity and a formal benchmark candidate. Not unlike 
IRG SCAFT (2006), we are proposing that the combined synchronisation codes of religion 
social network spectrums show a clear time scale gap offering a dynamical route toward 
global integrated transport and urban network. 
 
The key to this finding is the design planning of Baha’i House of worships offering a 
universal outward expression.  In addition to the temple, they have a travel and urban centre 
in one location catering for all social, educational and cultural needs of communities. In this 
way they transfer their own established dynamical route to all other organizations in which 
certain microscopic behaviour and local community structure order is required before they 
can be linked organically to the macro structures of the global integrated gradient network.  
We also point to the evidence that House of worships have an inherent feedback loop 
design to prevent single organizational monopolies over the entire time scales.  For this 
reasons, we believe they can serve as a benchmark for creating global integration 
transportation / urban systems. 
  

6 Conclusion 
 
The interplay between theoretical studies and empirical observation of scale free nature of 
human mobility has led us to design new tools and techniques which will revolutionalize our 
understanding of the nature of globalisation forces. Superstatistics offer transport and urban 
planners with excellent tools to extract more information hidden in the wiring of social and 
transport network. For example, using methods of superstatistics we have been able to show 
synchronisation code of religion infrastructures favour gradient field interactions and thereby 
a global integrated transportation/ urban system is woven into their clear time scale gradient 
induced infrastructures.  
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We believe that these results can serve as a starting point for the developmet of an 
economically feasible and robust global integrtaed tarnsportation system that serve to 
secure a sustainable human future.  
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