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1 Introduction 
 
The purpose of this paper is to analyse the effectiveness of the current method of modelling 
trip generation used in the Brisbane Strategic Transport Model (BSTM), and to propose an 
alternative methodology.  
 
The current method of predicting trip productions is to use ordinary linear regression with 
dummy variables.  Ortuzar and Willumsen (1994) provide an introduction into this 
methodology for transport modelling.  In brief, trips are split by purpose and for each 
purpose a separate regression equation is calculated relating the number of trips (for each 
purpose) to household attribute (such as the number of workers, dependents or vehicles).  
This is a simple method of allowing zone totals to be used as inputs for the model equations.  
However, some of these models have a very low explanatory power and violate some basic 
and extremely important statistical assumptions of linear regression.  These assumptions are 
that the range of dependent variable is unrestricted, the dependent and independent 
variables are linearly related, and that errors are independent, normally distributed and 
uncorrelated with a constant variance.  The dummy formulation is used to avoid issues of 
non-linear relationships, yet does not address the problems created by the restricted range 
of the dependent variable (that is, the number of trips can only be positive) nor the non-
normal, non-constant errors.  The use of simple regression is further complicated by the 
presence of a large number of zero trips for all trip purposes, which will be a large focus of 
this paper.  
 
Therefore, the main objection to the current models is that the distribution of the variables is 
not appropriately considered.  Many published trip generation models use a log transform to 
account for the restricted range of the dependent variable and the non-constant errors (for 
example, Washington (2000)).  However, count data with values close to zero may be more 
effectively modelled using a Generalised Linear Model (GLM) framework with a Poisson or a 
negative Binomial distribution; Said and Young (1990); Hellerstein (1991).  In addition, where 
there is a large proportion of zeros, a more appropriate model may be a two-stage model or  
a zero-inflated regression model.  A two-stage model was applied to trip generation data by 
Monzon, Goulias and Kitamura (1989), where the authors concluded that the extra time 
involved in calculating a two-stage model was not justified by the relative improvement in 
model performance.  However, this was not explicitly used on zero-inflated data and so the 
conclusions are not clear.  A variation on the two-stage model is a zero-inflated model 
developed by Lambert (1992), in which the parameters are estimated simultaneously and for 
which software is freely available.  In terms of computing time there is little additional effort 
involved in calculating a zero-inflated model over a linear model.  This has yet to be trialled 
in the trip generation literature.  As such, this paper compares the following models:  
 

1. Linear model: stratified dummy linear regression. 
2. Log-linear model: log transform of dependent variable. 
3. Zero-Inflated Poisson/Negative Binomial (ZIP/ZINB) regression. 
 

                                                
1
 This work was carried out by Dr Mary Kynn whilst working for the Planning, Design and Environment 
Division, Department of Mainroads, Brisbane. 
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2 Dataset description 
 
The Brisbane Household Travel Survey collected data in the form of travel diaries from 
approximately 4000 households.  Each household filled in the diary for a representative 
working day, during October-November 2003 or February-March 2004 (note that this did 
include some school and university holidays).  The previous 1992 Household Travel Survey 
had drawn a random sample from residential Energex billing addresses and used a mail 
out–mail back survey.  This sampling methodology was changed slightly for the 2003/04 
SEQTS to improve a dropping response rate observed in other cities.  It was decided to 
change to a hand delivery–hand collection system with follow-up telephone calls to 
encourage the completion of questionnaires.  To facilitate this more labour intensive method 
a two-step process was used when sampling.  First, census collection districts were sampled 
(176 out of 3000), and then households were randomly sampled within each district (at the 
rate of approximately 6%). Using these techniques the target response rate was 60%, giving 
a final sample size of 4057.  This information is explained in more detail in The Urban 
Transport Institute (2005).   
 
The variables pertinent to this analysis are: the number of trips (by purpose); household 
structure (blue collar, white collar and undefined workers), dependents by age groups A[0-
17], B[18-64],C[≥65]), and household vehicles where those used in the subsequent analyses 
are given in Appendix 1. 
 
 

3 Model Formulations 
 
As described in the introduction, three models will be discussed in this paper: a Linear 
model; a Log-linear model; and a Zero-Inflated Poisson/Negative Binomial (ZIP/ZINB) 
model.   
 
3.1 A Linear Model 
 
The current method of modelling trip production in the Brisbane Strategic Transport Model 
(BSTM) is to use simple linear regression with no intercept with stratified household 
attributes included as dummy 0-1 variables.  While this is effective for calculating average 
trip rates for various household attributes, the nature of the data is such that the 
assumptions of linear regression are seriously violated.  This means that the usefulness of 
these averages applied at various levels is questionable and measures of model accuracy 
are not to be trusted.  However, the results from this particular technique will be compared 
with the models fitted in Section 3.2.  
 
3.2 A Log-linear model  
 
A common technique in the transport modelling literature is to transform the dependent 
variable (the number of trips) onto the log scale.  This has the effect of ‘normalizing’ the 
distribution (under the hypothesis that the data is actually from a Poisson distribution) and 
tempering the effects of increasing variance.  The histograms in Figure 1 show the trip rates 
transformed by first adding 1 (since it is not possible to take the log of zero) and then by 
taking the log to base 10.  In this case, it makes the spike at zero even more prominent, and 
so it is unlikely it will improve the model at all.  Other transformations are possible but there 
is no transformation that can ‘spread out’ the zeros, and none would significantly improve the 
model overall. 
 
The model coefficients are not presented here as there are some considerations when 
transforming the parameters back from the log scale and the parameters should not be 
directly interpreted in terms of trip rates.  Rather, by looking at the histograms, it is clear that  
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Figure 1: Log-linear model: histograms of the transformed trip rates by each trip purpose. 

 
a log transform is not appropriate in this case.  Observation of the residual plots and 
prediction intervals do confirm this (although these are not shown here) where rather than 
accommodating the assumptions of normally distributed, constant errors, the non-normality 
has in fact been exacerbated.  This was indicated in the initial histograms that showed a 
spike at zero for each trip purpose. It is clearly evident that when the data is heavy in zeros 
taking a log transform of the trip rates is not an appropriate way to ‘fix’ the problems of linear 
regression. 
 
3.3 Zero Inflated Poisson regression  
 
3.3.1 Assumptions 
 
Count data with a large number of zeros have been analysed in a number of fields and there 
exists methodology and supporting software to conduct such analyses.  The original zero 
inflated Poisson model (Lambert, 1992) describes of a factory line which fluctuates between 
perfect and imperfect states.  The perfect state producing no faults (that is, all zeros), and 
the imperfect state producing some faults according to a Poisson process, where this may 
also include some zeros.  The overall percentage of zeros in this example was 81%, which is 
clearly higher than can be explained by the Poisson distribution alone (for example, a 
Poisson distribution with a mean of 1 predicts only 37% zeros, a mean of 2 predicts 14% 
zeros and a mean of 3 predicts 5% zeros).  For the trip production data the percentage of 
zeros by trip purpose is given in Table 1. 
 
Other count distributions have been tested in accounting for cases with a high proportion of 
zeros such as the binomial and negative binomial.  However these cannot adequately model 
data with a high proportion of zeros either, unless also mixed with a distribution giving a 
point mass at zero.  For this analysis, the zero-inflated Poisson model of Lambert (1992) 
was used in three cases, and a modified form using the negative binomial distribution 
(Heilbron (1994); Lewsey and Thomson (2004)) was used to model the count part in the  
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Table 1: Percentage of zeros for each trip purpose in the whole dataset. 

 

Purpose % zero  

Blue 78 

White 56 

Edu 76 

Edu Tert 95 

Shopping 44 

Rec/Other 53 

 
remaining three cases.  This is because some of the trip purposes showed over-dispersion 
in the trip rates which is better accounted for by the negative binomial distribution.  This 
relaxes the strict mean-variance relationship of the Poisson distribution and allows for 
greater dispersion.  The effect of the high proportion of zeros on the overall distribution can 
be seen in Figure 2, which shows boxplots of trip rates by purpose including and excluding 
the zeros. 
 
As with the study of defects in a factory line, there are also two types of zeros in trip 
generation.  Zeros can result when a trip purpose is not applicable to any member of the 
household, and also when no member of the household chooses to make a trip for a 
particular purpose.  For example, a house with no blue collar workers will not make any blue 
collar work trips.  However, when a household does have blue collar worker(s) there may be 
still be zero trips produced on that day due to illness or personal holidays, for example.  In 
the case of shopping and recreation trips there is no category which precludes these trips, 
so zeros are solely due to ‘choice’. 
 
As a result, the model has two components; the probability that no trips are made which may 
include both the ‘not applicable’ groups and the ‘free choice’ groups, and the distribution of 
trips modelled by a Poisson or negative binomial distribution (which may also contain some 
zeros).  For a zero-inflated Poisson regression, Lambert (1992) describes the model as 
follows: 
 

The responses ( ),...,1 nY YY =  are assumed to be independent, and  
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where the expected value is given by ( ) ( )1i i iE Y p λ= − , since the mean of the Poisson 

distribution is λ  itself.   
 
The case is similar for zero-inflated negative Binomial regression, although the equation for 
the count part of the model is more complicated (see Cheung (2002) for details).  Therefore, 
in words, the expected number of trips is the probability that a trip is made multiplied by the 
mean trip rate as defined by the Poisson distribution.  These particular models were 
developed specifically for count data, whereas the trip data had been weighted and was no 
longer discrete.  It was decided to round the trip data back to the closest count to facilitate  
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Figure 2: Boxplots of trip rates for each trip purpose including and excluding the zeros. 

 
this investigation, and to make sure that all models were compared on equal grounds the 
linear models were rerun on the rounded data.  This had very little impact on the actual 
model coefficients or measures of fit. 
 
3.3.2 Formulation and fit 
 
The parameter values of the zero-inflated models are given in Appendix 2.  It is interesting to 
compare the variables that were significant in the zero-inflated models with those in the 
linear models, and to make comparisons of model fit.  Table 2 shows the variables 
significant in the linear regressions and those significant in the zero-inflated regressions.  In 
most cases, the same variable that was significant in the linear regression was significant for 
predicting the zero-inflated part of the model (represented by a Z), when these zeros were 
accounted for, other variables then became significant in predicting the counts (represented 
by an X).  So for blue collar workers, the number of blue collar workers in the household was 
the best predictor of whether or not any blue collar trips were made.  Having accounted for 
the mass of zeros, the household structure then became significant in determining the 
number of trips made.  Note that the number of vehicles owned by the household was tried 
for each model but since this was highly correlated with the number of workers (particularly 
the number of white collar workers) it was not sensible to include it. The final choice of 
variables relied on variable significance, or practical importance, and lowering the Akaike’s 
Information Criterion (AIC) value where the AIC measure the ‘distance’ from the true model 
(that is, the data) and the approximating model.  The larger the distance, the worse the 
model, and this will increase with sample size irrespective of the type of model. 
 
When comparing the performance of zero-inflated regression with linear regression it was 
also of interest to see what improvement could be made with no additional variables.  So for 
each trip purpose a simple zero-inflated model was created using only the variables 
significant in the linear regression for both the zero and the count parts of the model.  This 
comparison makes it clear how much of the improvement in the model performance is 
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Table 2: Variables significant in the (L) linear and (ZI) zero-inflated models.  Z represents a variable 
included in the zero-inflated part of the model, and X represents a variable included in the count part of 
the model. 

 

Blue White Edu Edu T Shop Rec/ Oth Stratified Household 
Attribute Variable Variables included 

  L ZI L ZI L ZI L ZI L ZI L ZI 

Households (intercept)           Z   Z         

Blue Collar Workers X ZX   X   X   Z   X     

White Collar Workers     X ZX     X Z   ZX     

Dependents A (0-17)   X   X X ZX       X     

Dependents B (18-64)   X   X   X X ZX   ZX     

Dependents C (>=65)   X   X           ZX     

Total Persons                 X   X ZX 

 
achieved by more accurately describing the underlying structure of the data, without relying 
on any additional predictive variables.  Table 3 gives a comparison of AIC values for the 
linear regression, simple zero inflated regression and ‘free’ zero-inflated regression.  It is 
clear that most of the improvement in the model has come from the different representation 
of the data, and not from the additional variables.  This is not to imply that accounting for 
household structure is not important, but rather it is to demonstrate the impact of the 
underlying structure of the data on the final model.  
 
3.3.3 Diagnostics 
 
Tools for diagnosing non-linear models are given in Huet, Bouvier, Poursat and Joliet (2004).  
Briefly however, although there are no assumptions made about the normality of errors as 
there are with simple linear regression, it is important to examine residual plots to see if 
errors are random or if any ‘patterns’ remain.  There are several types of residual plots that 
can be examined. Two of these are presented here.  These are: absolute residuals versus 
the fitted values, and the standardised residual versus the fitted values.  
 
The plots of the absolute residuals versus the fitted values (given in Figure 3) show random 
scatter about zero, although there may still be a slight tendency for increasing variance 
which could perhaps be investigated further.  This is a marked improvement on the linear 
models although the plots are not shown here for brevity. 
 
The plots of the standardised residuals versus the fitted values, given in Figure 4, show that 
predicting zeros was vastly more accurate for the blue and white-collar workers than for the 
other purposes.  This is due to the type of zeros.  For work trips it is easy to predict that a 
household with no workers of the specified trip will not make any of those work trips, and 
there will be little error involved in those predictions.  However, for the other trips purposes 
there is no defining category that precludes a certain trip.  Instead, different households 
have a different probability of making a trip, and the predicted or expected value is this 
probability multiplied by the predicted number of trips from the count part of the model.  So if 
the household has a 0.3 chance of making an education trip, and if the expected number of 
(person) trips is 10, given that they do go out, the overall expected value is 3.33.  Thus 
giving a large residual if the observed value is 0 or 10.  Given the nature of trip making for 
less clearly defined purposes, predictions at the household level are very difficult.  However, 
lack of fit for the education trips may also be affected by the data, which was partly collected 
during the holidays.  In either case, in terms of predictions it is more instructive to look at the 
overall probability of each of the counts and these are presented for each of the models in 
section 4. 
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Table 3: comparison of AIC values for the linear regression, simple zero inflated regression and ‘free’ 
zero-inflated regression 

 

 3.3.3.1.1.1 Blue White Edu Edu T Shop Rec/ Oth 

Model AIC 

linear 6162 8972 12574 5358 13524 14320

simple ZI 2773 5853 5047 1522 10400 9932

free ZI 2768 5789 5014 1518 10360 9932

Model 
3.3.3.1.1.2 Difference from best AIC 

linear 3394 3183 7560 3840 3164 4388

simple ZI 5 64 33 4 40 0

free ZI 0 0 0 0 0 0

type of ZI model ZIP ZIP ZINB ZIP ZINB ZINB

 

 
 

 

Figure 3: Absolute values versus the fitted values for the zero-inflated models. 
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Figure 4: Standardised residuals versus the fitted values. 

 
3.3.4 Performance 
 
Figure 5 shows the predicted versus observed values for each trip purpose, with confidence 
intervals about the expected values.  Unfortunately it was not possible to calculate the 
prediction intervals from the model output, although with extra time a routine could be written 
to simulate these

2
.  The confidence intervals for the expected values for the zero-inflated 

models are actually slightly wider than those for the linear models.  This is a more realistic 
picture of the error, and although the confidence intervals are slightly wider, due to structure 
the prediction intervals would be more realistic.  They would not include the negative values 
of the linear models or the extremely large values of the log-linear model.  
 
 

4 Results 
 
In order to compare how effectively each regression technique can model the household 
data, we can compare the predicted distributions.  That is, the number of zeros, ones, twos, 
etc that each model predicts.  Given the inability of the log-linear model to ‘fix’ the problems 
with the linear regression, it is not discussed further in this section and only the linear and 

 

                                                
2
 Prediction intervals can be estimated by drawing MC samples from a multivariate normal distribution centred 
on the MLE’s of the parameters and variance-covariance matrix equal to the MLE’s variance-covariance matrix. 
From the sampled set of parameters values predictions can be generated, and the prediction interval can be taken 
from the percentiles of a large number of these simulated observations. A personal communication with Simon 
Jackman, the author of the Pscl library, indicates that this may written into the existing functionality of the 
prediction routine in the near future. 
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Figure 5: Predicted versus observed values with 95% confidence intervals for the expected values 

 
zero-inflated models are compared.  The values in table 4 were calculated using a hold-
out/validation data set that was not used in the model calibration and shows the percentage 
of zeros predicted by the linear and zero-inflated models, as well as the observed 
percentage of zeros, and the percentage that are zero though have no applicable (NA) 
members of the household.  Thus the percentage of NA’s for blue collar trips is equal to the 
percentage of the households with no blue collar workers.  The percentage of NA’s for 
education are those household with no dependants 0-17, and the percentage of NA’s for 
tertiary education are those households with no dependant 18-65 AND no white collar 
workers.  However, although the data show that blue collar workers and dependants aged 
over 65 or under 18 are less likely to be involved in tertiary education, they are certainly not 
excluded.  These results demonstrate that the linear model only captures absolute zeros 
resulting from the trip purpose not being applicable to the household, whereas the 
percentage of zeros in the zero-inflated model is a very close match to the observed values.  
 
The following figure plots the percentage for each count, from each model, for each trip 
purpose.  The percentage of the observed counts are marked with an ‘O’, the percentage of 
linear counts are marked with an ‘L’ and the percentage of zero-inflated counts are marked 
with a ‘Z’.  In all cases the zero-inflated model is a much closer fit to the observed counts 
than the linear model is.  In some cases (such as the zero prediction for shopping and 
rec/other trips) there is a vast difference in the predictions. 
 
 

5 Conclusions 
 
This analysis has investigated stratified linear dummy regression for predicting trip rates for 
various purposes by household characteristics, and proposed zero-inflated regression 
techniques an alternative.  Although stratified dummy linear regression can be used to  
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Table 4: Percentage of zeros predicted by the linear and zero-inflated models, to compare with the 
observed and 'trip not applicable to the household’ percentage of zeros. 

 

Probability of a zero trip 
Purpose 

NA Linear Observed Zero Inflated 

Blue 0.70 0.70 0.78 0.79 

White 0.42 0.42 0.58 0.56 

Edu 0.65 0.66 0.74 0.76 

Edu Tert 0.21? 0.23 0.95 0.95 

Shopping 0.0 0.0 0.41 0.46 

Rec/Other 0.0 0.0 0.55 0.52 

 
 

 

Figure 6: The distribution of counts predicted by the linear model (L), the zero-inflated model (Z) and 
the percentages observed in the data (O). 

 
calculate averages, the measures of fit and performance given are not reliable and the 
model should not be interpreted as a description of the relationship between trip making and 
household characteristics.  In contrast, the zero-inflated Poisson and negative binomial 
regression models relax the assumptions of linear regression and provide a much closer fit 
to the data. 
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The current formulation of the BSTM model uses aggregated census data in the linear 
regression equations to predict total trips for each zone (see the following equations).  This 
is very simple and effective, but unfortunately not possible with the non-linear models 
presented here. 
 

Linear Model Expected Value: 
 

( ) 1 1 2 2 3 3 ...i i i iE Y x x xβ β β= + + +  

 
Aggregated Expected Value: 
 

( ) ( )1 1 2 2 3 3 1 1 2 2 3 3

1 1 1 1 1

... ...
n n n n n

i i i i i i i

i i i i i

E Y x x x x x xβ β β β β β
= = = = =

= + + + = + + +∑ ∑ ∑ ∑ ∑ Σ E(yi) = Σ (β1x1i +  

 
 

ZIP Model Expected Value: 
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1 1 2 2 3 3

1
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E

β β β
γ γ γ
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Aggregated Expected Value: 
 

( ) ( )
( )
1 1 2 2 3 3

1 1 1 1 2 2 3 3

exp ...

1 exp ...

n n

i

i i

E Y
β β β
γ γ γ= =

+ + +
=

+ + + +∑ ∑
x x x

z z z
. 

 
An alternative to using aggregated data is to simulate household data and calculate all 
predictions at the disaggregated level.  Simulated data has been used in many other cities, 
for example, see studies in Sydney and Adelaide (Pointer, Stopher and Bullock (2004), 
Stopher, Rose and Bullock (2002)).  There are three (possibly more) reasons why a move to 
a more comprehensive model would be justified: 
 
1. The linear model provides mean estimates that are based on a large, random, 

heterogeneous sample of Brisbane. 
 

- Sampling theory predicts that the averages for small homogeneous zones will likely 
deviate from this overall mean. 

- With smaller zone sizes greater deviations from the means can be expected. 
- With more homogeneous zones greater deviations from the means can be 

expected. 
 
2. In terms of traffic planning, an upper percentile of the predictive distribution may be 

more useful than the mean value.  That is, it may be more desirable to plan traffic 
models around a ‘heavy’ traffic day than an ‘average’ day. 

 
- The linear model cannot produce useful upper or lower predictions, as it does not 

capture the underlying distribution of the data. 
 
3. In terms of future planning, linear models may not be reliable in predicting future trip 

generation of future households if household structures change. 
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- For example, household structure was significant in predicting work trips when the 
zeros were accounted for, but the linear model cannot reliably detect this.  Thus, if 
household structures change, the linear model will still predict the same number of 
trips. 
 

Further comparison of these models could be conducted before moving to simulate 
household data.  This analysis was constructed around a random split of the data into 
calibration and validation datasets.  A better alternative would be to bootstrap the model 
using the collection districts as groups, so that each district could be independently predicted 
based on the other districts.  There are 176 districts and approximately 20 households in 
each one, so the bootstrap simulation would need to run each model 176 times each time 
leaving out a different district.  An alternative could be to use the 11 zones described in the 
survey documentation (The Urban Transport Institute, 2005).  This would also facilitate the 
investigation of transferability of the trip generation equations to areas outside of the 
Brisbane Statistical Division.  If the temporal or spatial transferability of models were a 
priority, then the use of the zero-inflated models within a Bayesian framework would also 
allow for the input of expert knowledge or past data.  
 

Appendix 
 
Appendix 1: Description of Dependent Variables 
 
Dependent Variables Code 

Home Based Work_White HBW_Wh 

Home Based Work_Blue HBW_Bl 

Home Based Education_Total HBE 

Home Based Education_Tertiary HBET 

Home Based Shopping HBS 

Home Based Rec_Other HBX 

 

 
Appendix 2: Model output for zero-inflated models. 
 

There a few cases where a variable is not significant at the ‘5%’ level, but is included in the 
model nonetheless for practical reasons.  That is, it is sensible to include all levels of a 
categorical variable where there is no intercept to account for a ‘missing’ level.  Otherwise 
the model is forced to choose between an incomplete listing of categories.  The alternative is 
to group levels within a category, but in some cases this is not advisable as it may affect the 
AIC values and comparison with the linear models. In most cases all variables are highly 
significant. 
 
HBW-Bl – Blue Collar work trips 
 
Total Log-likelihood: -1373.99911927419  
 
 Zero-Inflated Model was fit with a logit link 
Coefficients: 
            Estimate Std. Error  z value  Pr(>|z|) 
Wrkrs_Bl_0    20.566   570.7725  0.03603 9.713e-01 
Wrkrs_Bl_1    -2.155     0.3035 -7.10200 1.230e-12 
Wrkrs_Bl_2    -3.146     0.6916 -4.54879 5.396e-06 
Wrkrs_Bl_3p   -1.606     0.6726 -2.38725 1.697e-02 
--------------------------------------------------------------------- 
 
Count Model (Poisson) 
Coefficients: 
            Estimate Std. Error z value  Pr(>|z|) 
Wrkrs_Bl_1   0.42211    0.04895  8.6237 6.485e-18 
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Wrkrs_Bl_2   1.10526    0.05706 19.3687 1.418e-83 
Wrkrs_Bl_3p  1.55744    0.12830 12.1394 6.533e-34 
DepsA_1     -0.02817    0.07421 -0.3796 7.042e-01 
DepsA_2     -0.27165    0.08517 -3.1893 1.426e-03 
DepsA_3p    -0.14183    0.11344 -1.2503 2.112e-01 
 
HBW_Wh – White Collar work trips 
 
Total Log-likelihood: -2879.47718914046  
 
 Zero-Inflated Model was fit with a logit link 
Coefficients: 
            Estimate Std. Error  z value  Pr(>|z|) 
Wrkrs_Wh_0    19.566   474.9114   0.0412 9.671e-01 
Wrkrs_Wh_1    -2.568     0.4021  -6.3871 1.690e-10 
Wrkrs_Wh_2    -2.521     0.2412 -10.4503 1.461e-25 
Wrkrs_Wh_3p   -3.052     0.5360  -5.6945 1.237e-08 
--------------------------------------------------------------------- 
 
Count Model (Poisson) 
Coefficients: 
            Estimate Std. Error z value   Pr(>|z|) 
Wrkrs_Wh_1   0.36271    0.04403  8.2375  1.758e-16 
Wrkrs_Wh_2   1.01464    0.03249 31.2309 4.056e-214 
Wrkrs_Wh_3p  1.48178    0.05406 27.4107 2.047e-165 
DepsA_1     -0.24714    0.05340 -4.6281  3.691e-06 
DepsA_2     -0.32941    0.05533 -5.9532  2.629e-09 
DepsA_3p    -0.42608    0.07724 -5.5161  3.467e-08 
DepsB_1      0.11155    0.04410  2.5297  1.142e-02 
DepsB_2     -0.07714    0.08700 -0.8866  3.753e-01 
DepsB_3p    -0.27366    0.23658 -1.1567  2.474e-01 
DepsC_1     -0.10208    0.10727 -0.9516  3.413e-01 
DepsC_2p    -0.80529    0.41695 -1.9314  5.344e-02 
 
HBE – Eduction (preschool, primary & secondary trips) 
 
Total Log-likelihood: -2521.04771254125  
 
 Zero-Inflated Model was fit with a logit link 
Coefficients: 
         Estimate Std. Error z value  Pr(>|z|) 
DepsA_0   3.42059     0.1638 20.8766 8.732e-97 
DepsA_1  -0.06275     0.1115 -0.5628 5.736e-01 
DepsA_2  -0.96883     0.1123 -8.6284 6.222e-18 
DepsA_3  -2.00448     0.2428 -8.2542 1.530e-16 
DepsA_4p -2.15187     0.5342 -4.0279 5.628e-05 
--------------------------------------------------------------------- 
 
Count Model (Negative Binomial) 
Coefficients: 
           Estimate Std. Error z value   Pr(>|z|) 
DepsA_1       1.092    0.05244   20.82  2.678e-96 
DepsA_2       1.713    0.03193   53.64  0.000e+00 
DepsA_3       1.965    0.04171   47.11  0.000e+00 
DepsA_4p      2.310    0.07951   29.05 1.374e-185 
log(theta)    2.165    0.17067   12.69  6.992e-37 
 
HBET – Education Tertiary trips. 
 
Total Log-likelihood: -743.288044231178  
 
 Zero-Inflated Model was fit with a logit link 
Coefficients: 
            Estimate Std. Error z value  Pr(>|z|) 
DepsB_0       4.7861     0.2788  17.165 4.827e-66 
DepsB_1       2.9304     0.2101  13.947 3.268e-44 
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DepsB_2       2.0550     0.2332   8.811 1.245e-18 
DepsB_3       1.0459     0.4401   2.377 1.747e-02 
DepsB_4p     -1.2114     1.2019  -1.008 3.135e-01 
Wrkrs_Wh_1   -0.5543     0.2347  -2.362 1.816e-02 
Wrkrs_Wh_2   -1.4740     0.2488  -5.925 3.129e-09 
Wrkrs_Wh_3p  -2.1269     0.3145  -6.762 1.364e-11 
Wrkrs_Bl_1p  -0.4349     0.1958  -2.221 2.635e-02 
--------------------------------------------------------------------- 
 
Count Model (Poisson) 
Coefficients: 
         Estimate Std. Error z value  Pr(>|z|) 
DepsB_0    0.2895     0.1815   1.595 1.107e-01 
DepsB_1    0.5490     0.1014   5.416 6.088e-08 
DepsB_2    0.9272     0.1102   8.413 3.985e-17 
DepsB_3    1.2569     0.1686   7.455 8.956e-14 
DepsB_4p   1.4350     0.2489   5.765 8.154e-09 
 
HBS – Shopping trips 
 
Total Log-likelihood: -5169.18773743085  
 
 Zero-Inflated Model was fit with a logit link 
Coefficients: 
            Estimate Std. Error z value  Pr(>|z|) 
Wrkrs_Wh_1p  -0.6711    0.09013  -7.446 9.610e-14 
DepsB_1p     -0.7382    0.10677  -6.914 4.707e-12 
DepsC_1p     -0.6773    0.13841  -4.894 9.902e-07 
--------------------------------------------------------------------- 
 
Count Model (Negative Binomial) 
Coefficients: 
            Estimate Std. Error z value  Pr(>|z|) 
Wrkrs_Bl_1    0.2290    0.04951   4.625 3.749e-06 
Wrkrs_Bl_2p   0.4366    0.09133   4.781 1.744e-06 
Wrkrs_Wh_1p   0.3396    0.03983   8.526 1.517e-17 
DepsA_1       0.4157    0.06543   6.353 2.111e-10 
DepsA_2       0.4819    0.06286   7.666 1.775e-14 
DepsA_3p      0.6622    0.07676   8.626 6.355e-18 
DepsB_1       0.4518    0.04577   9.871 5.548e-23 
DepsB_2       0.9235    0.07088  13.029 8.324e-39 
DepsB_3p      0.8808    0.17582   5.010 5.449e-07 
DepsC_1       0.4455    0.06860   6.494 8.368e-11 
DepsC_2p      1.1145    0.07408  15.045 3.717e-51 
log(theta)    0.9823    0.10145   9.683 3.555e-22 
 
HBX – Recreation and Other trips 
 
Total Log-likelihood: -4952.83872812529  
 
 Zero-Inflated Model was fit with a logit link 
Coefficients: 
        Estimate Std. Error z value  Pr(>|z|) 
Pers_1   0.21638     0.1389   1.558 1.193e-01 
Pers_2  -0.08907     0.0880  -1.012 3.114e-01 
Pers_3  -0.67713     0.1224  -5.530 3.204e-08 
Pers_4  -0.75368     0.1117  -6.749 1.491e-11 
Pers_5  -0.98855     0.1699  -5.817 5.986e-09 
Pers_6p -0.69392     0.2742  -2.530 1.139e-02 
--------------------------------------------------------------------- 
 
Count Model (Negative Binomial) 
Coefficients: 
           Estimate Std. Error z value   Pr(>|z|) 
Pers_1       0.2714    0.08999   3.016  2.564e-03 
Pers_2       0.7336    0.04950  14.822  1.062e-49 
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Pers_3       1.1917    0.05307  22.454 1.178e-111 
Pers_4       1.4869    0.04626  32.140 1.216e-226 
Pers_5       1.7262    0.06335  27.249 1.704e-163 
Pers_6p      1.4909    0.11784  12.651  1.101e-36 
log(theta)   0.9259    0.10009   9.251  2.222e-20 
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