

27th Australasian Transport Research Forum, Adelaide, 29 September – 1 October
2004

Paper title:

An algorithm for reducing detection load in transportation
oriented DSMS

Author(s) name(s):

Hideto Ikeda*, Nikolaos Vogiatzis**, Waskitho Wibisono*, Yu He*

Organisation(s):

*Cyberspace Technology Laboratory: Department of Computer
Science, Ritsumeikan University
**Transport Systems Centre: University of South Australia

Contact details:
Postal address: 1-1-1 Noji-higashi, Kusastu, Shiga 525-8577 JAPAN

Telephone: +81-775-61-2691
Facsimile: +81-775-61-2669

email: hikeda@cyber.is.ritsumei.ac.jp

Abstract (200 words):
In order to integrate transportation systems such as road traffic, rail signalling, bus
management, air traffic control and shipping lane systems, it is important to establish a
holistic concept design and technology inventory before beginning. These systems are all
ubiquitous in today’s societies; they impact on our daily personal and commercial lives, and
as such we need to ensure that if they are integrated, that it is done so in a seamless and secure
way. At the heart of the integration process is the 3-Layer Object Model (3LOM). It consists
of four primary components in three layers: 1) local units at the lowest layer; 2) a distributed
database management system in the middle layer; and 3) a knowledge management and
central control system at the highest layer. In this paper we continue the design of a future
integrated transport management and will do so by concentrating on the middle layer; the
conduit of 3LOM. It is responsible for the data acquisition management for the front-end
devices in the bottom layer, the data management function, and reports refined information to
the knowledge management system in the top layer. Specifically, we will propose an
algorithm that allows the development of the middle layer of the 3LOM, and how it needs to
function in order to succeed.

Algorithm for reducing detection load in transport DSMS 2

Introduction

Conventional database management systems (DBMS) are designed to manage and process
business data(Vogiatzis, Ikeda, Woolley and He, 2003, Ikeda, 2003, Ikeda, Vogiatzis,
Wibisono, Mojarrabi and Woolley, 2004, Ikeda and Vogiatzis, 2003). They, by their very
nature, do not reflect the object character of the physical world; rather they natively prefer
the relationships between processes.

In a traffic management context, these systems need to be able to collect data every second
(and more specifically at every event which may well occur in less than a second from the
previous event), whether or not they report it back to the management system(Vogiatzis,
Ikeda and Wibisono, 2004). SCATS for example reports traffic volumes to a flat file (a
physical disc file that contains collections of data, typically comma separated, which make
up records) every 5 or 15 minutes depending on the setting of the system. However those
counts are the number of vehicles triggering an event during the prescribed time-frame.
Current database management systems such as Relational Database Management Systems
(RDBMS) are not capable to manage streaming data, as is needed in the traffic management
sense.

Ikeda, Vogiatzis et al (2004) are currently in the process of designing a new generation
traffic management and traffic micro-simulation tool, and they identified a significant
challenge in such a system, being how does one make automated and human-guided
decisions in a time-frame that would reduce the number of invalid decisions for the
movement of the vehicles because of new events occurring that render any previous
information useless. They concede that one will probably never be able to make decisions so
fast as to eliminate the problem completely (not at least much into the future), and until such
time as one can, they have identified the need for a technique now that will minimise this
problem.

Thus, a new data management system known as a Data Stream Management System
(DSMS) is needed and is has been developed by researchers at Stanford (Babu,
Subramanian and Widom, 2001) and an implementation for this new traffic
management/micro-simulation tool is proposed for the process management of the data
streams for integrated transport systems. This does not suggest that conventional DBMS are
no longer of any import within a transport system; rather the system functions sine qua non
both a DBMS and a DSMS. One of the important features of a DSMS is its ability to query a
database whilst looking over a live stream of data, such as one would find in a data traffic
network (Babu et al., 2001). Babcock, Babu, Datar, Motwani and Widom (2002) report that
queries in DSMS are of two distinct types, being either 1) one-time queries (queries
performed on a historical data set within a database); or 2) continuous queries (queries
performed on a dynamic set of data entering the database as the query is being performed
without loss of validity), each of which can be either predefined or ad hoc queries.
Heuristically predefined queries are continuous in nature; however scheduled one-time
queries can also be predefined.

In the context of systems which monitor external activities, such as traffic management
systems, predefined queries allow for specified detection criteria to be defined, observed,
and analysed as part of a monitoring system. For example, a traffic control system has to
detect various potentially hazardous conditions such as traffic accidents, fire, earthquakes,

Ikeda, Vogiatzis, Wabinoso and He 3

air-pollution, and road flooding and then formulate complex but well-organised responses
quickly.

The challenge that exists is that of finding the most efficient manner by which all the data
being presented to the DSMS from the traffic network can be analysed. The load on the
analysing computers would be extraordinarily high if every event were to be analysed.
Unfortunately, there does not seem to be a great deal in the literature that can suggest an
efficient algorithm that will allow traffic management systems, and
IMAGINATION(Vogiatzis et al, 2003, Vogiatzis et al, 2004) in the long term, to be able to
detect important conditions from within the data stream.

Alert (Schreier, Pirahesh, Agrawal and Mohan, 1991) is an architecture that provides a
mechanism for implementing event-condition-action style database triggers (software
commands that are issued as soon as an event is detected by a database management system)
in a conventional SQL (Structured Query Language: a computer language used to make the
querying of data within a database more efficient for the programmer) database, by using
continuous queries defined over specially created append only database tables. The Aurora
Project (Brandeis University, Brown University and Massachusetts Institute of Technology,
2003) is in the process of developing a new type of data processing system specifically
targeted towards the monitoring of stream data within monitoring applications. Specifically,
this project:

‘… addresses three broad application types in a single, unique framework: 1) Real-
time monitoring applications continuously monitor the present state of the world and
are, thus, interested in the most current data as it arrives from the environment. In
these applications, there is little or no need (or time) to store such data; 2) Archival
applications are typically interested in the past. They are primarily concerned with
processing large amounts of finite data stored in a time-series repository; and 3)
Spanning applications involve both the present and past states of the world, requiring
combining and comparing incoming live data and stored historical data. These
applications are the most demanding as there is a need to balance real-time
requirements with efficient processing of large amounts of disk-resident data…’
(Brandeis University et al, 2003)

One can easily see that the traffic management, and specifically the transport system
integration process, is a perfect example of all three of these three broad application types.
At the core of the Aurora system, consists of a large network of triggers. However, these two
research themes only try to provide mechanisms to solve detection problem within
conventional DBMS or a new processing system. There is no research being conducted with
relation to solving the problem of how to reduce the system load for detecting predefined
serious conditions over all of data streams and respond them in real time, as is required,
ultimately, within a transport environment.

The Detection Problem

Detection problem from the application perspective

In most of data stream applications, a group of sensors is responsible for collecting data
relating to numerous environmental (as a rule, we refer to environment as being more than

Algorithm for reducing detection load in transport DSMS 4

just natural ecology, but rather the transport eco-system as a whole, which includes the
natural environment) states in real time. An application system analyses the collected data in
order to identify if any serious conditions have occurred which either have affected or will
affect the environment in real time. Then, the application system employs some sort of
mechanism(s) to control environment, again in real time, in order to ensure environmental
recovery and to return the environment to its nominal status. For example, within the context
of a transportation system in a city setting, an application system would usually collect
traffic information through many sensors, such as vehicle/speed sensors, noise level meters,
and airborne pollution sensors and so on. In fact, a human being such as the police can be
considered as a kind of traffic sensor that provides real time information relating to traffic
conditions.

The main challenge is to develop a problem detection system that can identify any problems
within the traffic network (such as traffic congestion) in an automated way, and then to
inform all the appropriate controllers of the problem, a project solution, and the
methodology required to solve the problem. These controllers, however, are not only
electronic devices. They can be human controllers, and the information presented to them
may be as a series of alternatives upon which the human controllers can make a decision on
how to proceed. Once a decision has been reached, then the detection system can provide a
detailed methodology so as to ensure that a uniform and repeatable action plan can be
executed. The rules within the system are referred to as condition-action rules, or more
commonly as control rules.

In the application of such a system in transport, one finds that the most frequent operation is
that of incident detection, therefore, it is important that in designing an integrated transport
system, one needs to address the issue of system load to the data stream management
system, being a DSMS, so as to ensure that the system can manage the detection operation
for all data streams within the application. Remember, that a data stream can be any type of
device, human or electronic, that provides information the management system which needs
to be analysed and acted upon in real-time.

We can see this by realising that in a typical sphere of operation, there could be literally
thousands of sensors that monitor their environment continuously, with data arriving at the
DSMS concurrently and non-linearly. If the DSMS attempts to analyse each data packet
against hundreds of condition-rules in real-time, it will place an unduly heavy load on the
detection system, rendering it useless as it will not be able to respond within a time-frame
that would provide the optimum value to network users. That being the case, it is necessary
to identify a more efficient approach, and this is what we will explore now.

Control Rules

We begin by formalising the detection problem by first defining some elementary control-
rules that we will use later in this paper.

A collection of control rules is in fact a collection of control sentences. Each control
sentence describes both a critical condition that needs to be detected and a corresponding
action that needs to be performed. We will use the formal ‘language’ definition format used
to describe language context free grammars (The Free Dictionary.com, 2004):

,...}{: ><= controlCR

Ikeda, Vogiatzis, Wabinoso and He 5

The term <control> represents a pair being a condition and an action. The sentence inform
us/the system that when a condition is satisfied, that a corresponding action needs to be
executed. A control term can be described as:

><><=>< actionthenconditionifcontrol :

The term <condition> is defined as a logical combination of simple conditions as follows:

)(|
|
|!

_:

><
>><><<

><
>=<><

condition
conditionlogical_opcondition

condition
conditionsimplecondition

>><><=<
><

valueopcomparisonsensor
conditionsimple

_:
_

To aid the reader, the above notation reads: <condition> is composed of either a <simple
condition> or (| is the logical symbol for ‘or’) the negation of an existing <condition> (! is
the logical symbol for ‘not’) or is composed of the result of the application of a logical
operator on two conditions, or finally, a collection of conditions.

We find that <action> can be defined in exactly the same manner as follows:

)(|
_log|
_:

><
>><><<

>=<><

action
actionopicalaction

actionsimpleaction

)]...,[(
:

321 ><><><
>=<><

parameterparameterparameter
nameactionactionsimple

≥≤≠=<=>>< |||||:_opncomparisio

orandopical |:_log =><

Example of Control-Rules as applied in a traffic management context

In order to assist the reader in understanding the definition of control rules, we give an
example of how knowledge is defined within the system:

Algorithm for reducing detection load in transport DSMS 6

Figure 1 Example of real-time environment control

Figure 1 illustrates a crossing of road M1 and M2. There are 4 sensors in this area with
sensor S1 being a video camera, S2 is a vehicle speed sensor for monitoring vehicle speeds
on road M1. S3 is a sensor which calculates the queue length and S4 is an in-house fire alarm
(sensor) that detects the occurrence a fire in the house. For the purpose of the example, we
want to define two ‘emergency’ conditions which will affect the flow of traffic on the roads,
and these will be traffic congestion and a fire outbreak.

We consider two ways of detecting if congestion has occurred:

1. The presence detectors show that the vehicle spacing is less than ½ a metre;
2. Average vehicle speed in a 15 minute period is calculated as being less that 5 km/h

and a camera reports ‘abnormal’.

To solve this problem, it may be decided to increase the green time at controller L1 on the
affected movement direction, but to keep the total cycle time the same for the intersection.
For example, we could describe this control-rule as:

Knowledge 1: if ((S3 < ½ metre) or (S1 = ‘abnormal’ and S2 < 5)) then
 {

change_traffic_signal_phase(L1, 10, false, false, true);
 }

Where change_traffic_signal_phase(L1, 10, false, false, true) means change the signal phase
for controller L1, increase green time by 10, do not change the cycle time, do not alter
yellow phase, adjust effective red.

In the case of a house fire we may expect that we need to detect the following criteria:

1. Fire sensor S4 has triggered;
2. The average speed of vehicles on M1 is less than 10 km/h in a 15 minute period.

The actions that we may want to initiate as a result of the condition being met might be:

Knowledge 2: if ((S2 < 10) and (S4 =true)) then
 {
 close_road(M1) and call_fire_department(M1);
 }

Canonical Condition

When considering the condition clauses, we note that they are a kind of predicate logic.
Therefore, we are able to transform each of the condition clauses into its disjunctive form,

Ikeda, Vogiatzis, Wabinoso and He 7

being of simple conjunctive forms. The simple conjunctive condition is referred to as the
canonical condition.

With the canonical condition, each logical operation is only a conjunction, meaning that
when all simple conditions in canonical form are true, then the canonical condition is also
true. This suggests that we can monitor one data stream from the traffic network to look for
the canonical condition, and thus lowering the system load.

So, when a selected simple condition is evaluated to being true, we then begin looking at other data
streams to identify if the canonical condition is true or not.
Looking at the two knowledge statements above, knowledge 1 and 2, we observe that knowledge 1 is in
disjunctive normal form because it is composed of two canonical conditions:
c1: S3 < ½ metre
c2: S1 = ‘abnormal’ and S2 < 5

Whereas knowledge 2 is a canonical condition:
c3: S2 < 10 and S4 =true

Definition of the Detection Problem

Even though the detection problem can be formalised in many different ways, we will
formalise it with relation to a DSMS, as ultimately a DSMS will be used for the
development of a real time transport environment controller. Unfortunately, this can not be
done without providing the reader with some fundamental mathematics. We encourage the
reader to read and understand the mathematics presented below as it will enhance their
understanding of the algorithm, however, it is possible to move directly to the algorithm if
the reader so chooses.

Definition 1 (specification of detection problem). The detection is defined as a 4-tuple
<S, C, d, l> which satisfies the following conditions:

(1) S is a finite set which is the set of all data streams,
(2) C is a finite set which is the set of all canonical conditions,
(3) d is a function from ->{0,1}, where SC× 1),(=ji scd means that the canonical

condition c needs to monitor data stream permanently and otherwise not. i js
(4) l is a function S-> R ,where R is the set of non-negative real numbers and l() is

detection load l(s) for monitor data stream .
js

j js

Using the example from figure 1 we see that:

S: { , , , } 1s 2s 3s 4s
C: {c , , c } 1 2c 3

),(31 scd = = = = =1),(12 scd),(22 scd),(23 scd),(43 scd
),(11 scd = = = d = d = = = 0),(21 scd),(41 scd),(32 sc),(42 sc),(13 scd),(33 scd

Assume that the detecting load l() for monitoring data streams , , , is 4, 1, 2, 3
respectively. Then l by Definition 1 is:

js 1s 2s 3s 4s

Algorithm for reducing detection load in transport DSMS 8

l()=4, l()=1, l()=2, l()=3 1s 2s 3s 4s

In terms of detection problem defined above, a solution, the set of permanent detection
stream, can be defined as follows:

Definition 2 (Solution of detection problem). Given 4-tuple <S, C, d, l>, which satisfy

 and l: S->R, find satisfy: CSscd ji ×⊂),(sSZ 2: 0 ⊂
~~)'()(SlZl ≤ , for any sS 2'⊂

{ }() 1≥∩× DCZ , for Cc ⊂∀ , where ∑
∈

=
'

)()'(~
Ss

slSl for any sS 2'⊂

The data streams which form Z are referred to as permanently monitored data streams
(PMDS), the other data streams are referred to as eventually analysed data streams (EADS).
It may be the case that we only monitor the PMDS until such time as a positive event is
identified, after which we may begin monitoring the EADS. This allows us to detect whether
or not the condition identified is a canonical condition.

Finding a solution to the detection problem

In this next section, we begin by discussing a number of preliminary topics that will then
lead us to the reduction algorithm.

Integer linear programming

It is important to begin by introducing a very famous optimisation problem known as the
integer linear programming problem(Gomory, 1963). To clarify, linear programming deals
with a class of optimisation problems where both the objective functions to be optimised and
all the constraints are linear in terms of the decision variables.

Specifically, an Integer Linear Program (LP) is a problem <A, B, C> that can be expressed
as follows (the so-called Standard Form):

1. Minimize the value of CX
2. Satisfy the condition BAX = , 0≥X
3. is an integer, for each ix Xxi ∈

Where X is the vector of variables to be solved for, A is a matrix of known coefficients, and
C and B are vectors of known coefficients. The expression CX is called the objective
function, and the equations BAX = are called the constraints. All these entities must have
consistent dimensions, of course, and you can add "transpose" symbols to taste. The matrix
A is generally not square, hence you don't solve an LP by just inverting A. Usually A has
more columns than rows, and BAX = is therefore quite likely to be under-determined,
leaving great latitude in the choice of x with which to minimize . CX

Minimum-Weight Covering Problem

In order to provide an algorithm for the detection problem, we shall define a mathematical
problem called minimum weight covering problem.

Ikeda, Vogiatzis, Wabinoso and He 9

Definition 1 (Minimum-Weight Covering Problem):
A 3-tuple is called a minimum-weight covering problem or MWCP in short
when the following conditions are satisfied:

>< wSC ,,

1. is a non-empty finite set },...,,{ 21 ncccC =
2. is a non-empty set of subsets in },...,{ 21 msssS = C

3. Cs
m

i
i =

=
U

1

4. a positive function, where is the set of all positive real numbers. +→ RSw : +R

Definition 2 (A solution of MWCP):
For MWCP < , a subset of is called a solution of >wSC ,, A S >< wSC ,, if it satisfies the
following conditions:

1. Cs
As

=
∈
U

2. for any subset of ∑∑
∈∈

≤
'

)()(
SsAs

swsw 'S S

In definition 2, the condition (1) is referred to the covering condition and the condition (2) is
referred to weight minimizing condition. The minimum value ∑

∈As
sw)(is called the solution

value, denoted by , because the value is a unique value defined by MWCP <)(Pw >wSC ,, .
By the above definitions, we can the following proposition directly.

Proposition 1
A solution of MWCP does not include the empty subset in , that is, A >< wSC ,, S
if an element of is empty, is not included in any solution . s S s A

We leave the proof of this for a later forum.

The Algorithm

We now reach the point of this paper. However, before we describe the algorithm, we recap
the rationale for the algorithm. The reader will recall that in order to integrate a
transportation system at the computer systems level, one needs to read, analyse and act upon
many data input streams (data streams). Further, the reader will recall that it is not possible
to analyse all the data entering from the data streams, as it would place undue load on the
analysis computer, and thereby slowing the computer to a point where calculations would
not be performed in real time. Finally, the reader will recall that by defining a particular
class of data to monitor, it is able to reduce the amount of actively reviewed material, further
investigate sections of data that breach certain system defined conditions, and finally act
upon them.

What follows is the algorithm based on the above description.

Algorithm 1:
(Step 0) For integer to , repeat Step1 through Step 6. 1=i ||2 S

(Step 1) Transform to the binary expression, say . i imii bbb ...21

Algorithm for reducing detection load in transport DSMS 10

(Step 2) Make subset },...1,1|{ mjbsS ijji ===

(Step 3) Check the covering condition of C , that is, . If Cs
jSs

=
∈
U

iS is not a covering of , skip the following Steps and go to Step 5, otherwise go to Step 4. C
(Step 4) Calculate the weight of , iS ∑

∈

=
iSs

i swSw)()(and set the value to iw

(Step 5) If then increment and go to Step 1, otherwise go to Setp 6. ||2 Si < i
(Step 6) Find all ‘s having the minimum value. iS

It is possible to validate algorithm 1 by using the definitions stated above. In a practical
setting, the number of sensors in the transport network could number in the thousands. In
fact, within the Adelaide, South Australia metropolitan area, there are about 600 signalised
intersections. If we assume there is an average of 10 detectors per intersections that leaves
us with approximately 6000 detectors embedded in the road surface itself. In the context of
the middle layer of the 3LOM(Ikeda et al., 2004), and assuming that a traffic management
system based on IMAGINATION(Vogiatzis et al., 2003) is devised that also includes
natural environment detectors and other ‘non’ traffic volume detectors are placed in the
network(Vogiatzis et al., 2004), one could easily see that the number of sensors/detectors of
all types in a city the size of Adelaide could reach the tens of thousands. However, even if
someone were to use high performance computing platforms, it is still not possible to find
the solution to algorithm 1 directly.

Reduction theorems for the MWCP

In almost all practical cases, it is possible to construct a set of conditions classified into
specific groups. For example, all detectors currently located on approaches in the road
collect the same type of information (simply they are located in a different geographical
location). We will leave the proofs of these theorms for a later forum.

Theorem 1 (Reduction by partition of the Condition Set)
For the MWCP , if there is a set of subsets of C , C satisfying the
following conditions;

>=< wSCP ,, kCC ,...,, 21

(1) , CC
k

i
i =

=
U

1

(2) for any I φ=ji CC ji with , ji , ≠

(3) For any in , there exists unique integer s S j in { such that , },...2,1 k jCs ⊂
then

 ∑
=

=
k

i
iPwPw

1
)()(,

where and }|{ ii CsSsS ⊂∈= >=<
iSiii wSCP |,, .

Theorem 2(Reduction by unique sensor)
Let be a MWCP. For an element c of C , if |>=< wSCP ,, 1|}|{ =∈∈ ii scSs , then

Ikeda, Vogiatzis, Wabinoso and He 11

 , where is the element of {)()'()(0swPwPw += 0s }| ii scSs ∈∈ , }|{' 0 SsssS ∈−=
and . >−=< '|,',' SwSsCP

Theorem 3 (Reduction by Smaller-Weight Superset)
Let be a MWCP. If there is a pair of elements and in such that

 and , then w
>=< wSCP ,,

2s)(1sw ≥
1s 2s S

1s ⊂)(2sw)'()(PwP = , where >−=< − }{1},,'
issSCP |Sw{ .

Theorem 4 (Reduction by branch)
Let be MWCP and be an element of . One of two equations: >=< wSCP ,, 0s S

)()()(01 swPwPw += or is satisfied, where:)()(2PwPw =

>−=< '01 |,', SwSsCP , where }|{' 0 SsssS ∈−= ,
>−=< − }{02 0

|},{, sSwsSCP .

Improved Algorithm for MWCP

By using the stated theorems above, we can improve algorithm 1:

Algorithm 2(Improved Algorithm for MWCP)
(Step 0) Set >=< wSCP ,,
(Step 1) Check the conditions of Theorem 1. If kPPPP ⊕⊕⊕= L21 then this algorithm is
applied to each smaller problem recursively, otherwise go to Step 2. iP
(Step 2) Check the conditions of Theorem 2. If there is an element c of C with

,then this algorithm is applied to each smaller problem
, where

1|}|{| =∈∈ ii scSs
>−=< '|,',' SwSsCP }|{' 0 SsssS ∈−= recursively, otherwise go to Step 3.

(Step 3) Check the conditions of Theorem 3. If there is a pair of elements and in
such that s and , then this algorithm is applied to each smaller problem

, recursively, otherwise go to Step 4.

1s 2s S

21 s⊂
− 1},{sS

)()(21 swsw ≥
>}{ is=< −|,' SwCP

(Step 4) If P satisfies none of Theorem1, 2 and 3, select an element in and construct
the following two problems:

0s S

 1) , where >−=< '0 |,',' SwSsCP }|{' 0 SsssS ∈−=
 2) >−=< − }{0 0

|},{,' sSwsSCP
and apply this algorithm to both 'P .

How it all fits

In the case of IMAGINATION, we are interested in developing a new type of integrated
traffic management and traffic micro-simulation tool. Among the many issues that one faces
is the problem of data management, storage and manipulation. We accept that these systems
(in this case we also include the current crop of traffic management/micro-simulation
systems) can generate a great deal of data; however which data is important, which is noise,
what can/can not be ignored etc. In the case of a DSMS, we are collecting and analysing

Algorithm for reducing detection load in transport DSMS 12

data ‘on-the-fly’, so the algorithm itself can monitor streams of data without there being
undue load on the systems themselves.

In order to integrate various transportation systems in a real-time context, we need to
monitor a number of inbound data streams; e.g. road temperature, atmospheric
emissions/pollutants, wind velocity and direction, and noise level, to name a few. Sensing
for environmental changes along with traffic volume changes provides us with an insight
into the condition of traffic within a given section of a road network. However, this sort of
data needs to be analysed twice; once at the time of detection to ensure that the traffic
management system can manage the movement of traffic in real time, and second after the
fact as a part of periodic reporting. Naturally, if the data was only reported on after the fact,
it would be far too late from a tactical traffic movement prospective to do anything to
alleviate traffic congestion, accidents, or other specific events that we are testing for.

The problem faced by such a system wanting to react in real-time is that the volume of data
being collected by the streaming system would be so large, that the time required to analyse
all the in the stream would be much more than is available to be able to react in real-time.
Hence it is important to identify an algorithm that can filter out the bulk of the typical data
in the system and only begin monitoring/analysing data that shows some ‘difference’ to the
rest of the data. For example, if the audio stream detects an audio signature that somehow
matches a traffic accident, then the system would begin the process of deep analysis from
that time on at the origin location of the noise.

Conclusion

In this paper, we discussed the integration of transportation systems, and specifically traffic
management systems. We looked at some of the problems associated with the collection of
data in an environment where there is a potential of millions of second by second data points
could be generated and some how managed in order to improve the management of transport
networks into the long term. Specifically, we concentrated on how we manage the data
points so as to detect particular network conditions when they occur. We formalised this by
defining a group of language ‘tags’ to describe control rules within the transport network.
Then we formalised the detection problem by transforming it from the application domain
into a mathematical domain. In conjunction with the formalisations, we showed that
detecting events of interest within a transport network is a special class of integer linear
programming problem.

Finally, we proposed an algorithm for finding the optimised solution to detecting events of
interest, and we explained that the algorithm is not only unique, but also efficient for
practical application; more so than existing general integer linear programming algorithms.

References

Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J. (2002) Models and Issues in
Data Stream Systems, In 21st ACM Symposium on Principles of Database Systems
(PODS 2002), http://dbpubs.stanford.edu:8090/pub/2002-19

http://dbpubs.stanford.edu:8090/pub/2002-19

Ikeda, Vogiatzis, Wabinoso and He 13

Babu, S., Subramanian, L. and Widom, J. (2001) A Data Stream Management System for
Network Traffic Management, In Workshop on Network-Related Data Management
(NRDM 2001), http://dbpubs.stanford.edu/pub/2001-20

Brandeis University, Brown University and Massachusetts Institute of Technology (2003)
The Aurora Project, 'June 2004', http://www.cs.brown.edu/research/aurora/

Gomory, R. E. (1963) An algorithm for integer solutions of linear programs In Recent
Advances in Mathematical Programming(Eds, Graves, R. L. and Wolfe, P.)
McGraw-Hill, pp. 269-302.

Ikeda, H. (2003) Personal Communication - On a Three Layered Model for Transportation,
Vogiatzis, N., email

Ikeda, H. and Vogiatzis, N. (2003) Personal Communications - Modelling Transportation
Systems using Database Objects, Vogiatzis, N.,

Ikeda, H., Vogiatzis, N., Wibisono, W., Mojarrabi, B. and Woolley, J. E. (2004) Three
Layer Object Model for Integrated Transportation System, In 1st International
Workshop on Object Systems and Systems Architecture,

Schreier, U., Pirahesh, H., Agrawal, R. and Mohan, C. (1991) Alert: An architecture for
transforming a passive DBMS into an active DBMS, In International Conference on
Very Large Data Bases,

The Free Dictionary.com (2004) Context-free grammar: encyclopaedia article about
context-free grammar, 'June 2003',
http://encyclopedia.thefreedictionary.com/Context-free+grammar

Vogiatzis, N., Ikeda, H. and Wibisono, W. (2004) On the Locality-Scope Model for
Improving the Performance of Transportation Management Systems - ABSTRACT
accepted, In 27th Australasian Transportation Research Forum,

Vogiatzis, N., Ikeda, H., Woolley, J. and He, Y. (2003) The Journal of the Eastern Asia
Society for Transportation Studies, 5, 2092-2107.

http://dbpubs.stanford.edu/pub/2001-20
http://www.cs.brown.edu/research/aurora/
http://encyclopedia.thefreedictionary.com/Context-free+grammar

	Introduction
	Detection problem from the application perspective
	Control Rules
	Example of Control-Rules as applied in a traffic management context
	Canonical Condition
	Definition of the Detection Problem

	Finding a solution to the detection problem
	Integer linear programming
	Minimum-Weight Covering Problem
	The Algorithm
	Reduction theorems for the MWCP
	Improved Algorithm for MWCP

	How it all fits
	Conclusion
	References

